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1 INTRODUCTION

Thesingletransferablevote(STV) methodof conduct-
ing an electionexists in a numberof differentformu-
lationsin differentcountries.Most of themethodsare
designedto be practicablewhencountingis by hand,
andthis necessarilyenforcessimplicity even at theex-
penseof notalwaysgettingthebestpossibleanswer.

Meek[1,2] consideredthe questionof the bestpos-
siblemethod,within theSTV framework, whena com-
puteris availableto dothecounting,andit is hismethod
thatwepresenthere.Themethodwasrediscovered,in a
differentformulation,by Woodall[4]. However, neither
Meek nor Woodall dealt with certaindetailedpoints,
suchashow to resolve a ‘tie’, so we have had to ex-
tendthesystemto becomplete.Thealgorithmasgiven
herehasbeenadoptedby theRoyalStatisticalSociety
for its Councilelections.

Thebasisof any STV systemconsistsof thefollow-
ing. (1) Votingby orderof preferenceof candidates,the
first choicebeingmarked1, the second2, andso on,
on the ballot papers. (Meek also consideredan alter-
native formulationin which voterswouldbeallowedto
indicateequalpreferencefor somecandidatesinstead
of a strict ordering;we have not implementedthis al-
ternative.) (2) A quotafor election,calculatedfrom the
numberof votesandthenumberof seatsto befilled. (3)
A first countingby first preferencesonly, andtheelec-
tion of any candidatewho equalsor exceedsthequota
(exceptin thespecialcaseof a multi-way tie). (4) Re-
distribution of surplusvotes(above the quota)for any
candidate,in accordancewith thevoters’furtherprefer-
ences,andelectionof any whonow reachthequota.(5)
Whenno furtherredistributionof surplusesis possible,
�
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theexclusionof thecandidatewho thenhasthe fewest
votes,and redistribution of thosepapers. (6) Further
counting,election,redistribution of surplusesand ex-
clusionasnecessary, until all seatsarefilled.

In the Meek formulation the rule for redistributing
surplusesis that,atevery stage,if a candidatehasvotes
totalling � timesthequota,thenhe (or she)keeps �	�
�
of eachof thosevotesandpasses����������
� on to the
next candidateonthevoter’slist. Thissamefractionap-
pliesalsoto portionsof votesreceivedaspartsof other
surpluses.This requiresthe iterative solution of non-
linearequations.It is proved in Section4 below thata
solutionalwaysexistsandis unique.

It shouldbe emphasisedthat the resultswill not al-
waysbethesameasby manualcountingmethods.The
algorithmdeliberatelyusesthe power of the computer
to getbetterresultsthanareeasilyachievableby hand.

2 THE SPECIFICATION

2.1

At eachstage,eachcandidateis in oneof threestates,
designatedas ‘elected’, ‘excluded’ and ‘hopeful’. At
thestartevery candidateis in thehopefulstate.

2.2

At eachstagethe votesarescanned,andthe onevote
allowedto eachvotermaybesplit into partsthatareas-
signedto thevariouscandidatesaccordingto thevoter’s
choices.At thefirst stagethewholeof thevotegoesto
the first choice— this follows automaticallyfrom the
operationof rules2.1and2.3.
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2.3

Eachcandidate,� , hasan associatedweight, ��� , and
keepsa proportion ��� of eachvoteor partof a votere-
ceived,while passingon to anothercandidate(asspec-
ified by the voter’s choices)a proportion ������ . Ev-
eryhopefulcandidatehasweight1, andthereforekeeps
everything received andpassesnothingon. Every ex-
cluded candidatehas weight 0, and thereforekeeps
nothingandpasseseverythingon. Electedcandidates
have weightsbetween0 and1, to becalculatedby rule
2.5.

2.4

Thus if someonehas voted for candidate � as first
choice,� assecond,� asthird, andno more:

� � receivesfrom thatvoter ��� of a vote

� � receivesfrom thatvoter ������ � ���� of a vote

� � receivesfrom thatvoter ����!�����"�#��!�  ����$ of
a vote

A fraction �#�%&� � �'���%(�� )�'���%(� $ � remainsand
this goesto ‘excess’. (Notethat if a hopefulcandidate
appearsin the list, all the fractionsbeyond that point
automaticallybecome0).

2.5

The quota is defined as (total votes  total ex-
cess)/(numberof seats+ 1), andtheweightsfor elected
candidatesarefoundsuchthat thetotal voteremaining
with eachof themequalsthequota.This is doneby the
convergentiterativeschemespecifiedin rule 2.9.

2.6

Theweightshaving beenfound,theresultingtotalvotes
for eachhopefulcandidateareexamined,andany can-
didate whose total votes equal or exceed the quota
changesstatefrom hopefulto elected(exceptin thespe-
cial casewhereall the hopeful candidateseitherhave
zerovotesor exactly equalthe quota. In this caseall
thosewith zero votes are excluded, one other is ex-
cludedby a pseudo-randomchoiceandthe othersare
elected).

2.7

If no candidatewere electedunderrule 2.6, then the
hopefulcandidatewith the fewestvoteschangesstate
from hopeful to excluded. Any tie is resolved by a
pseudo-randomchoice.

2.8

If thetotal numberof electedcandidatesis equalto the
numberof seats,theelectionis complete.Otherwisethe
processis repeatedfrom rule 2.2.

2.9

The convergent iterative schemeis as follows: set �+*
equalto 0 for excludedcandidates,1 for hopefulcan-
didates,andtheir lastcalculatedvalues��,* . for elected
candidates.(Immediatelyafter electionof any candi-
datethe last calculatedvalueis 1 initially .) Applying
rule 2.3, usingtheseweights,let - * be the total value
of votesreceived by candidate. andlet / be the total
excess.Usingthis valuefor / , calculatethenew quota
q usingrule 2.5. Finally updatetheweightsfor elected
candidatesto values�%0*21 ��,*43 �
-5* . Repeattheprocess
of successively updating-5*46)/
6 3 and �+* until everyfrac-
tion 3 �
-5* , for electedcandidates,lies within the limits
0.99999and1.00001(inclusive).

3 THE PROGRAM
(by I. D. HILL, and
B. A. WICHMANN)

Wehave allowedfor upto 40candidates,but theneces-
sarychangeto allow a largernumberis trivial.

3.1 The data

The datafile shouldbe held on disc, or other device
thatallowsquick ‘rewinding’, becauseit hasto beread
many timesduringprogramexecution.

Its form shouldbeasfollows:

4 2
-2
3 1 3 4 0
4 1 3 2 0
2 4 1 3 0
1 2 0
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2 2 4 3 1 0
1 3 4 2 0
0
"Adam"
"Basil"
"Charlotte"
"Donald"
"Title"

Thefirst line meansthat thereare4 candidatesfor 2
seats.Thesecondline meansthat candidatenumber2
withdrew beforethecount.As many candidatesasnec-
essarymaybeincludedin this line, eachprecededby a
minussign. If nocandidatewithdrew, theline shouldbe
omittedentirely. Thethird line meansthat3 votersput
candidate1 first, candidate3 second,candidate4 third,
andno more.Eachsuchlist mustendwith a zero.The
final zeroendsthevotes.Thesubsequentlinesnamethe
candidates,in theorderof candidatenumbersasusedin
thevotes,andfinally give a title for theelection.If any
of thesenames,or thetitle, is longerthan20characters,
only thefirst 20 will beused.

For electionson any substantialscale,further pro-
gramsare desirableto get the data into this required
form. Machine-readableballot paperswouldobviously
beagreathelpif a suitablesystemcanbedevised.

3.2 Ties

The only ties that canoccur in this systemareasfol-
lows. (1) If 7�89� candidatesall exactly equalthequota,
whereonly 7 seatsare available. One of thesecan-
didatesmust thenbe excluded(togetherwith all other
candidates,who necessarilyhave zero votes)and the
other 7 elected.(2) If the candidatewith fewestvotes
mustbeexcludedandtwoor morehaveequalfewest.In
boththesecasesapseudo-randomprocedureis used,on
thegroundsthat ‘if they areequal,they areequal’and
any procedureto chooseonemustbe arbitrary. Alter-
nativesaresometimesrecommended,suchasexcluding
theonewhohadfewervotesthefirst timethey weredif-
ferent,or thelast time they weredifferent,or whatever,
but suchrules addmuchcomplicationfor no real ad-
vantage,sosimplicity is preferable.

The pseudo-randomgeneratoris derived, with per-
mission,from AppliedStatisticsalgorithmAS 183[3].
This needsthree seedsto initialise it, and theseare
formedfrom dataitemsfor theparticularelection.This
leavesit sufficientlynearlyrandomthatnobodycanma-
nipulateit to favour a particularcandidate,yet hasthe

advantagethat, for a given election,thereis alwaysa
uniqueresult. Runningit on a differentday, or usinga
differentcomputer, will makeno change— in the un-
likely event that a randomchoiceis needed,the same
thing will alwayshappenfor any given dataset. If a
tie doesoccuranda randomchoicehasto be made,a
warningmessageis printed.

It shouldbeemphasisedthata tie thatactuallyinflu-
encestheresultis a very rareevent.

3.3 Partial abstentions

There is no compulsionon voters to give a complete
listing of candidates.They maystopshortif desired.If
they dosoandtheuseof theirvote‘runsoff theend’we
allow it todoso,butadjustthequotatoallow for thefact
that therearenow fewer remainingusablevotes. This
treatsthepartial abstentionin sucha way asto be fair
to all remainingcandidates.

This usageis different from that adoptedin most
manualcountingsystemswhere, under suchcircum-
stances,votesaredivided into ‘transferable’and‘non-
transferable’andno quotaadjustmentis made.We are
convincedthat,within Meek’s system,our approachis
right, but it hasto bemadeclearthatwe arein dispute
over thiswith thecouncilof theElectoralReformSoci-
ety. Wehavehelduppublicationof thealgorithmin the
hopeof resolvingthedifficulty, but now feel thatwecan
wait no longer. Unfortunately, it is thereforenecessary
to warnpotentialusersthat they maybe told by others
thatourmethodis undesirablein thisparticular.

3.4 Language

Thealgorithmis presentedin standardPascal.Onsome
machinessmall,non-standard,changesmayberequired
in themethodof accessingthedatafile. We have used
upper-caselettersfor Pascalword-symbols,lower-case
or mixed-casefor identifiers.

3.5 Listing
PROGRAM stvpas(datafile, output);

{This program counts the votes in a Single Transferable Vote election,
using Meek’s method, and reports the results}

{If there are more than 40 candidates an increase in the size of
MaxCandidates is the only change needed}

CONST MaxCandidates = 40;
NameLength = 20;

TYPE Candidates = 1 .. MaxCandidates;
CandRange = 0 .. MaxCandidates;
name = PACKED ARRAY [1 .. NameLength] OF char;

VAR NumCandidates, NumSeats: Candidates;
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candidate, NumElected, NumExcluded,
multiplier, ignored: CandRange;

Droop, excess, quota, total: real;
faulty, SomeoneElected, RandomUsed: Boolean;
FracDigits: 1 .. 4;
table, seed1, seed2, seed3: integer;
datafile: text;
title: name;
votes, weight: ARRAY [Candidates] OF real;
status: ARRAY [Candidates] OF (Hopeful, Elected, NewlyElected,

Almost, Excluded, ToBeExcluded, NotUsed, Used);
names: ARRAY [Candidates] OF name;

FUNCTION InInteger: integer;

{Reads the next integer from datafile and returns its value}

VAR i: integer;
BEGIN
read(datafile, i);
InInteger := i
END; {InInteger}

PROCEDURE PrintOut;

{Updates the table number and prints out the current results}

VAR arg: real;
cand: Candidates;

BEGIN
table := table + 1;
writeln;
writeln(’ ’: 20, title);
writeln;
write(’Table: ’, table: 1);
writeln(’ Quota: ’, quota: 1: FracDigits);
writeln;

{The numbers of blanks following Candidate, Retain and
Transfer are 12, 3 and 3 respectively}

writeln(’Candidate Retain Transfer Votes’);
writeln;
FOR cand := 1 TO NumCandidates DO

BEGIN
write(names[cand]);
IF status[cand] = ToBeExcluded THEN

arg := 100.0 ELSE arg := 100.0 * weight[cand];
write(arg: 6: 1, ’%’);
write(100.0 - arg: 8: 1, ’%’);

{If it is valid to do so, print quota instead of votes[cand]
because the latter might have a small rounding error that
would confuse unsophisticated users}

IF status[cand] = Elected THEN arg := votes[cand] / quota
ELSE arg := 0.0;

IF (arg >= 0.99999) AND (arg <= 1.00001) THEN arg := quota
ELSE arg := votes[cand];

write(arg: 10: FracDigits, ’ ’);
IF status[cand] = Excluded THEN write(’Excluded’)
ELSE IF status[cand] = Elected THEN write(’Elected’)
ELSE IF status[cand] = NewlyElected THEN write(’Newly Elected’)
ELSE IF status[cand] = ToBeExcluded THEN

BEGIN
write(’To be Excluded’);
status[cand] := Excluded
END;

writeln;
IF (NumCandidates > 9) AND (cand MOD 5 = 0) AND

(cand <> NumCandidates) THEN writeln
END;

writeln;
writeln(’Excess’, excess: 40: FracDigits);
writeln;
writeln(’Total ’, total: 40: FracDigits);
writeln;
writeln
END; {PrintOut}

PROCEDURE elect(cand: Candidates);
BEGIN
status[cand] := NewlyElected;
NumElected := NumElected + 1
END; {elect}

PROCEDURE exclude(cand: Candidates);
BEGIN
status[cand] := ToBeExcluded;
weight[cand] := 0.0;
NumExcluded := NumExcluded + 1;
IF RandomUsed THEN

BEGIN
writeln;
writeln;
writeln(’Random choice used to exclude ’, names[cand])
END

END; {exclude}

FUNCTION LowestCandidate: CandRange;

{Returns the candidate number of the candidate who currently has the
lowest number of votes. If two or more are equal lowest, then a
pseudo-random choice is made between them}

VAR cand: Candidates;
LowCand: CandRange;

FUNCTION random: real;

{Returns a pseudo-random number rectangularly distributed
between 0 and 1. Based on Wichmann and Hill, Algorithm
AS 183, Appl. Statist. (1982) 31, 188 - 190}

VAR rndm: real;
BEGIN

{ If seeds have not been set, then set them}

IF seed1 = 0 THEN
BEGIN
seed1 := NumCandidates;
seed2 := NumSeats + 10000;
rndm := total + 20000.0;
WHILE rndm > 30322.5 DO rndm := rndm - 30322.0;
seed3 := round(rndm)
END;

seed1 := 171 * (seed1 MOD 177) - 2 * (seed1 DIV 177);
seed2 := 172 * (seed2 MOD 176) - 35 * (seed2 DIV 176);
seed3 := 170 * (seed3 MOD 178) - 63 * (seed3 DIV 178);
IF seed1 < 0 THEN seed1 := seed1 + 30269;
IF seed2 < 0 THEN seed2 := seed2 + 30307;
IF seed3 < 0 THEN seed3 := seed3 + 30323;
rndm := seed1 / 30269.0 + seed2 / 30307.0 + seed3 / 30323.0;
random := rndm - trunc(rndm)
END; {random}

FUNCTION lower(cand, lowest: CandRange): Boolean;

{Find whether cand has fewer votes than lowest, and also
reports whether a random choice had to be made}

VAR lowly: Boolean;
BEGIN
IF lowest = 0 THEN

BEGIN
RandomUsed := false;
lower := true
END

ELSE IF votes[cand] = votes[lowest] THEN
BEGIN
RandomUsed := true;

{Multiplier is used to make all equally-lowest candidates
equally likely to be chosen, even though they are
considered serially and not simultaneously}

lower := (multiplier * random < 1.0)
END

ELSE
BEGIN
lowly := (votes[cand] < votes[lowest]);
lower := lowly;
IF lowly THEN RandomUsed := false
END;

IF RandomUsed THEN multiplier := multiplier + 1
ELSE multiplier := 2

END; {lower}

BEGIN
LowCand := 0;
FOR cand := 1 TO NumCandidates DO

IF (status[cand] = Hopeful) OR (status[cand] = Almost) THEN
IF lower(cand, LowCand) THEN LowCand := cand;

LowestCandidate := LowCand
END; {LowestCandidate}

PROCEDURE compute;

{This is the heart of the program, which counts the votes, taking
the current weights into account, and adjusts the weights and
the quota iteratively to attain the required solution}

{MaxIterations is the maximum number of iterations allowed in
calculating the weights. It is unlikely that so many will
ever be used, but its value may be increased if desired}

CONST MaxIterations = 500;
VAR temp, value: real;

count, iteration: integer;
cand: CandRange;
converged, ended: Boolean;

PROCEDURE Rewind;

{Returns to the beginning of datafile, and ignores the first two
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numbers on it. These are the number of candidates and the
number of seats, whose values are not needed again. Numbers
indicating withdrawn candidates are also ignored}

VAR ig, ignore: integer;
BEGIN
reset (datafile);
FOR ig := -1 TO ignored DO ignore := InInteger
END; {Rewind}

BEGIN
iteration := 1;

REPEAT
Rewind;
excess := 0.0;
FOR cand := 1 TO NumCandidates DO votes[cand] := 0.0;
count := InInteger;

WHILE count > 0 DO
BEGIN
value := count;
cand := InInteger;
ended := false;

WHILE cand>0 DO
BEGIN
IF NOT ended AND (weight[cand] > 0.0) THEN

BEGIN
ended := (status[cand] = Hopeful);
IF ended THEN

BEGIN
votes[cand] := votes[cand] + value;
value := 0.0
END

ELSE
BEGIN
votes[cand] := votes[cand] + value * weight[cand];
value := value * (1.0 - weight[cand])
END

END;
cand := InInteger
END;

excess := excess + value;
count := InInteger
END;

quota := (total - excess) * Droop;

{The next statement is unlikely ever to be used, but is a
safeguard against certain pathological test data}

IF quota < 0.0001 THEN quota := 0.0001;
converged := true;
FOR cand := 1 TO NumCandidates DO

IF status[cand] = Elected THEN
BEGIN
temp := quota / votes[cand];
IF (temp > 1.00001) OR (temp < 0.99999) THEN

converged := false;
temp := weight[cand] * temp;
weight[cand] := temp;

{The next statement is unlikely ever to be used, but is
a safeguard against certain pathological test data}

IF temp > 1.0 THEN weight[cand] := 1.0
END;

iteration := iteration + 1
UNTIL (iteration = MaxIterations) OR converged;

IF NOT converged THEN
BEGIN

{The "Failure to converge" message is unlikely ever to appear.
If it does, increasing MaxIterations will probably cure it}

writeln;
writeln;
writeln(’Failure to converge’);
writeln
END;

count := 0;

FOR cand := 1 TO NumCandidates DO
IF (status[cand] = Hopeful) AND (votes[cand] >= quota) THEN

BEGIN
status[cand] := Almost;
count := count + 1
END;

{Allow for the special case where there is a multi-way tie and
too many candidates reach the quota simultaneously}

WHILE NumElected + count > NumSeats DO
BEGIN
PrintOut;

RandomUsed := false;
FOR cand := 1 TO NumCandidates DO

IF status[cand] = Hopeful THEN exclude(cand);
exclude(LowestCandidate);
count := count - 1
END;

SomeoneElected := false;
FOR cand := 1 TO NumCandidates DO

IF status[cand] = Almost THEN
BEGIN
elect(cand);
SomeoneElected := true
END;

IF SomeoneElected THEN PrintOut;
FOR cand := 1 TO NumCandidates DO

IF status[cand] = NewlyElected THEN
BEGIN
IF NumElected < NumSeats THEN

weight[cand] := quota / votes[cand];
status[cand] := Elected
END

END; {compute}

PROCEDURE complete;

{Used to elect all remaining candidates if the number
remaining equals the number of seats remaining}

VAR cand: Candidates;
BEGIN
FOR cand := 1 TO NumCandidates DO

IF status[cand] = Hopeful THEN elect(cand)
END; {complete}

PROCEDURE Preliminaries;

{Checks datafile for errors and sets initial values of variables}

VAR cand, count, LineNo: integer;

PROCEDURE error(cand: integer; TooBig: Boolean);
BEGIN
writeln;
write (’On line ’ , LineNo: 1, ’, Candidate ’, cand: 1);
IF TooBig THEN write (’ exceeds maximum’)
ELSE write (’ is repeated’);
writeln;
faulty := true
END; {error}

PROCEDURE ReadName(VAR n: name);

{Reads the name of a candidate, or reads a title, and stores
it for later use. If the name has more than NameLength
characters the excess ones will be disregarded. If it
has fewer than NameLength characters blanks will be used
to extend it}

VAR i: integer;
ch: char;

BEGIN

REPEAT
read(datafile, ch)
UNTIL ch = ’"’;

i := 0;
read(datafile, ch);
WHILE ch <> ’"’ DO

BEGIN
IF i < NameLength THEN

BEGIN
i := i + 1;
n[i] := ch
END;

read(datafile, ch)
END;

WHILE i < NameLength DO
BEGIN
i := i + 1;
n[i] := ’ ’
END

END; {ReadName}

BEGIN
Droop := 1.0/(NumSeats + 1);
LineNo := 1;
seed1 := 0;
total := 0.0;
table := 0;
NumElected := 0;
NumExcluded := 0;
ignored := 0;
FOR cand := 1 TO NumCandidates DO weight[cand] := 1.0;
count := InInteger;
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{Deal with withdrawals, if any}

WHILE count < 0 DO
BEGIN
weight[-count] := 0.0;
count := InInteger
END;

WHILE count > 0 DO
BEGIN
LineNo := LineNo + 1;
total := total + count;
FOR cand := 1 TO NumCandidates DO status[cand] := NotUsed;
cand := InInteger;
WHILE cand > 0 DO

BEGIN
IF cand > NumCandidates THEN error(cand, true)

ELSE IF status[cand] = Used THEN error(cand, false)
ELSE status[cand] := Used;

cand := InInteger
END;

count := InInteger
END;

FOR cand := 1 TO NumCandidates DO
BEGIN
ReadName(names[cand]);
status[cand] := Hopeful;
IF weight[cand] < 0.5 THEN

BEGIN
status[cand] := Excluded;
NumExcluded := NumExcluded + 1;
ignored := ignored + 1
END

END;
ReadName(title);
IF NOT faulty THEN

BEGIN

{FracDigits controls the number of digits beyond the decimal
point that will be printed in the output tables}

FracDigits := 4;
IF total > 999.5 THEN FracDigits := FracDigits - 1;
IF total > 99.5 THEN FracDigits := FracDigits - 1;
IF total > 9.5 THEN FracDigits := FracDigits - 1
END

END; {Preliminaries}

{Start of main program}

BEGIN
reset(datafile);
NumCandidates := InInteger;
NumSeats := InInteger;
writeln;
writeln;
writeln(’Number of Candidates = ’, NumCandidates: 1);
writeln (’Number of seats = ’, NumSeats: 1);
IF NumCandidates < NumSeats THEN writeln(’All candidates elected’) ELSE

BEGIN
faulty := false;
Preliminaries;
IF NumCandidates <= NumSeats + NumExcluded THEN

writeln(’All non-withdrawn candidates elected’) ELSE
BEGIN

{The Preliminaries procedure will have reset faulty to true if
the data contain errors}

IF NOT faulty THEN
BEGIN

REPEAT

{Count votes and elect candidates, transferring
surpluses until no more can be done or all
seats are filled}

REPEAT
compute
UNTIL NOT SomeoneElected OR (NumElected >= NumSeats);

{Unless the election is finished, someone must
now be excluded}

IF NumElected < Numseats THEN
BEGIN
PrintOut;
exclude(LowestCandidate);
IF NumCandidates - NumExcluded = NumSeats

THEN complete ELSE PrintOut
END

UNTIL NumElected = NumSeats;

{Now that all seats are filled, exclude any candidates not
already elected, and print out the final table}

RandomUsed := false;
FOR candidate := 1 TO NumCandidates DO

IF status[candidate] = Hopeful THEN exclude(candidate);
PrintOut
END

END
END

END.

4 PROOF OF EXISTENCE
AND UNlQUENESS (by D.
R. WOODALL)

We prove in this sectionthat theequationsthatneedto
besolvedateachstageof Meek’smethodhaveaunique
solution.

At eachstage,eachcandidateis in oneof threestates,
called ‘elected’, ‘excluded’ and ‘hopeful’. It is ex-
plainedin Section2 how a candidatearrivesin oneof
thesestates;but for thepurposesof the formal proof it
is irrelevant:we maysupposethateachcandidateis as-
signedto oneof thesestatesat random,subjectto the
conditionthat the number: of ‘elected’ candidatesis
non-zeroanddoesnot exceedthenumber; of seatsto
be filled: �=<>:?<>; . We alsorequirethe following
non-triviality condition: thereis at leastoneballotpa-
perthatcontainsthenameof a‘hopeful’ candidatein its
list of preferences.Theseconditionswouldcertainlybe
fulfilled in a real election(in which no equationneeds
to besolveduntil somecandidateis declared‘elected’).

Let the ‘elected’ candidatesbe @ 0 6	ABABAB6)@�C . Let the
weightassignedtocandidateX (asin Section2.3)be � �
( DE<�� � <F� ). Sinceeach‘excluded’candidatealways
receivesweight0 andeach‘hopeful’ candidatereceives
weight 1, the assignedweightsarespecifieduniquely
by the : -vector G 1 ��� 0 6	ABABAB6)� C � , in which �+* is the
weightassignedto @+* for each. ( . 1 �H6�ABABAI65: ).

In the situation describedby the : -vector G , letJ �K�LGM� denotethevotefor candidateX (thatis, thesum
of thepart-votesthatX receivesfrom all theelectors);
for convenience,write

J4N4O �LGM� as
J *4�LG=� . Let PQ�LG=� de-

notethe total excessvote,anddefinethe quota RS�LGT�
to be � J �PQ�LGT�#���U��;�8V��� , where

J
is the total num-

ber of votes (ballot papers). The effect of the non-
triviality condition mentionedabove is to ensurethat
RQ�LG=�XWV�	�U��;Y8����[Z&D for all G , sinceif aballotpaper
containsthe nameof a ‘hopeful’ candidateamongits
preferencesthenno partof that votecanbe lost to the
excessvote,andso

J \PQ�]GM��WV� .
We shall makeextensive useof the following facts,

which areobviousfrom theabove definitionsandfrom
Section2.4,andin which we usethe terms‘increases’
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and‘decreases’in the weaksense(that is, both terms
correctlydescribea numberthat doesnot change):if
onecomponent�+* of G is decreasedwhilst all theother
componentsareunchanged,then:

(1)
J *4�]GM� decreases, in exact proportion to the de-
creasein �+* ;

(2) each
J_^ �LG ) ( �9`1 . ) increases;

(3) thesumof thevotesfor all the‘elected’candidates
decreasesby anamount-aW&D (sincethecontribu-
tion from eachballot paperdecreases);

(4) theexcessvote increases, by at most - ;
(5) thequotadecreases, by atmost -H�4�b;c8d��� .

Let an : -vector G becalledfeasible if DQ<��+*a<e�
and

J *_�LG=��W(RQ�LGT� for each. , andbecalleda solution
vector if Df<g�+*=<>� and

J *_�]GM� 1 RQ�]GM� for each.
( . 1 �
6	ABABAB6): ). Thepurposeof this sectionis to prove
that if there is a feasiblevector, thenthere is a unique
solutionvector. We notein passingthat,in a realelec-
tion, theexistenceof a feasiblevectoris assured,since
thesolutionvectorat eachstageof thecountingyields
a feasiblevectorfor thenext stage.

We shallusethefollowing algorithmwhich,starting
with a feasiblevector, will constructa solutionvector.
(This is thealgorithmdescribedin Section2.9.)

Algorithm: Let G=, 1 ����,0 6�ABAIAB65�h,C � be a feasible
vector. Given GTi , defineG�iLjk0 by therule

� iLjk0* l 1 � i* RS�LG i ��� J * �]G i � ��mH�
for each. ( . 1 �H6�ABABAI65: ).
Theorem 1. ThisAlgorithmconstructsa sequenceof

feasiblevectorsthat convergesto a solutionvector.
Proof. Supposethat G�i is a feasiblevector, so thatJ *4�LG�i���W�RS�LGTin�oZ�D andso ��i* Z�D for each. . Then

to convert G�i into G�iLjk0 we must (weakly) decrease
eachof its components.Fix . , and let G�p be the vec-
tor obtainedfrom GTi by replacingthe onecomponent
��i* by � iLjk0* . By (2), (1), (6) and(5),

J * �]G iqjk0 ��W J * �]G p � 1 J * �LG i �#� iLjk0* �H� i*

1 RQ�]G i �rW&RQ�]G iLjk0 �'A �bsH�
This holdsfor each. , andso GTiLjk0 is a feasiblevec-

tor. Since G=, is feasibleby hypothesis,it follows by
inductionthat G i is feasiblefor all t .

It follows from this that, for eachfixed . , the se-
quence

� ,* 6)� 0* 65�hu* ABABA
is a monotonicdecreasingsequencethatis boundedbe-
low (by 0), andsoconverges.Thusthereis a limit vec-
tor G=v 1 �b�hv0 6�ABAIABABAB6)��vC � . We mustprove that G=v is
a solutionvector. By thefeasibilityof GTi and(7),

Dw< J *4�LG i �+�RQ�LG i � 1 J *4�]G i �k J *4�LG p �"6

< J�x �b� i* !� iLjk0* �
since decreasing�+* by y cannotdecrease

J *U�LGM� by
morethan

J y (
J

beingthe total numberof ballot pa-
pers).But,as t{z}| , ��i* ~� iLjk0* z�D , andsince

J * �]GM�
and RQ�LGT� arecontinuousfunctionsof G it followsthatJ * �]GTvT� 1 RQ�LG=vQ� . Thisholdsfor each. , andso GMv
is a solutionvector, asrequired. �

Theorem 2. The solution vector, whoseexistence
wasprovedin Theorem1, is unique.

Proof. Let G 1 �b�~�
6	A�A�A)65�%:T� and
GM� 1 �b�h�0 6	ABABAB6)���C � be two solution vectors and
defineGT, 1 ����,0 6�ABABAI65�h,C � by

� ,* l 1��T�B� �b� * 65� �* �
for each. . For a fixed . supposewithout lossof gener-
ality that ��,*a1 �+* , andnotethat,by (2) and(5)

J *��]G , ��W J *4�LG=� 1 RQ�]GM��W(RQ�]G , �'A
This holdsfor each. , andso GM, is a feasiblevector.

By Theorem1 we can apply the Algorithm to GM, to
constructa solution vector GTv 1 �b�hv, ABABAI65�hvC � such
that

DE�(� v* <�� ,* <(� *
for each. . We shall prove that G=v 1 G , from which
it will immediatelyfollow that G 1 GT, 1 GT� , asre-
quired.

We prove first that RQ�]GTvT� 1 RS�LGM� . By (5),
RQ�LG=vQ�w<�RQ�]GM� . By the sameargumentthat is used
to derive(5) from (3),

��;�8����"�bRQ�LG=�k\RQ�]G v ��� 1 PQ�]G v �k!PQ�]GM�

<
C�
*	� 0

� J * �LGT�+ J * �LG v �#�
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1 :���RQ�]GM�k!RQ�LG v �#�
sinceG and GMv arebothsolutionvectors.Since :�<
;
6)RQ�]GM�k�RQ�LG=vQ��<&D . Thus RQ�]GMvQ� 1 RQ�LG=�"6 and

J *4�]G v � 1 J *4�]GM� ���
�
for each. .

Finally, let � denotethe set of candidates@+* (if
any) for whom �hv* �e�+* , andsupposethat � is non-
empty. Since � v* �e� for eachsuch. and

J *_�]G v � 1RQ�]GMvQ�SZ�D , it is not difficult to see(by considering
eachballot paper)that the sumof the votesfor all the
candidatesin � is a strictly increasingfunction of the
weight assignedto eachsuchcandidate,and so must
strictly increasewhen the vector GTv is replacedby
G . But this violates (8). So � must be empty and
GMv 1 G . Thiscompletestheproof thattherecanbeat
mostonesolutionvector G . �
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A Document details, Not pub-
lished

Scannedandconvertedto LATEX, November1999.
My addressis notNPL dueto thepolitical sensitivity

of NPL during the Thatcheryears! The work wasnot
doneatNPL, in any case.

David Hill hasnow retiredandhis addressis: Laver-
ton, Berry Lane,Chorleywood,Rickmansworth,WD3
5EY.

The secondparagraphof section4 states: there is
at leastone ballot paper that containsthe nameof a
‘hopeful’ candidatein its list of preferences. Thepro-
gramdoesnot checkthis! This error wascorrectedin
theversionsof Meekin actualusein 1999.

Theprogramaspublishedaboveproducesquitevolu-
minousoutputin relationto thestandard‘result sheet’
that the ElectoralReform Societyusesfor STV elec-
tions.Versionsof Meekusedin realelectionstherefore
summarisetheoutputin someway — which caneven
beto producea conventionalresultsheet.
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