
51

Cake Cutting Really Is Not a Piece of Cake

JEFF EDMONDS, York University
KIRK PRUHS, University of Pittsburgh

We consider the well-known cake cutting problem in which a protocol wants to divide a cake among n ≥ 2
players in such a way that each player believes that they got a fair share. The standard Robertson-Webb
model allows the protocol to make two types of queries, Evaluation and Cut, to the players. A deterministic
divide-and-conquer protocol with complexity O(n log n) is known. We provide the first a �(n log n) lower bound
on the complexity of any deterministic protocol in the standard model. This improves previous lower bounds,
in that the protocol is allowed to assign to a player a piece that is a union of intervals and only guarantee
approximate fairness. We accomplish this by lower bounding the complexity to find, for a single player, a
piece of cake that is both rich in value, and thin in width. We then introduce a version of cake cutting in
which the players are able to cut with only finite precision. In this case, we can extend the �(n log n) lower
bound to include randomized protocols.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems

General Terms: Algorithms, Economics

Additional Key Words and Phrases: Cake cutting, fair division

ACM Reference Format:
Edmonds, J. and Pruhs, K. 2011. Cake cutting really is not a piece of cake. ACM Trans. Algor. 7, 4, Article 51
(September 2011), 12 pages.
DOI = 10.1145/2000807.2000819 http://doi.acm.org/10.1145/2000807.2000819

1. INTRODUCTION

Our setting is a collection of self-interested entities who desire to partition a disparate
collection of items of value. Imagine heirs of an estate wanting to divide the posses-
sions of the newly departed. Or imagine the creditors of a bankrupt company, such
as Enron, wanting to split up the company’s remaining assets. The entities may well
value the items differently. For example, one can imagine different heirs of an estate
not necessarily agreeing on the relative value a baseball signed by Pete Rose, a worn
leather lazy boy recliner, a mint condition classic Farrah Fawcett poster, etc. The goal
is devise a protocol to split up the items fairly, that is, so every entity believes that
he/she gets a fair share based on how he/she values the objects. Achieving this goal
is potentially complicated by the fact that the entities may well be greedy, deceitful,
treacherous, etc. They may not be honest about how they value the objects, they may

J. Edmonds was supported in part by NSERC Canada. K. Pruhs was supported in part by an IBM faculty
award and by NSF grants CNS-0325353, CCF-0514058, IIS-0534531, and CCF 0830558.
Authors’ addresses: J. Edmonds, Department of Computer Science and Engineering, York University, CSEB
3044, 4700 Keele Street, Toronto, Ont., Canada M3J 1P3; email: jeff@cse.yorku.ca; K. Pruhs, Department
of Computer Science, University of Pittsburgh, 210 South Bouquet Street, Sennott Square Building, Room
6415, Pittsburgh, PA 15260, email; kirk@cs.pitt.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1549-6325/2011/09-ART51 $10.00

DOI 10.1145/2000807.2000819 http://doi.acm.org/10.1145/2000807.2000819

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 51, Publication date: September 2011.

51:2 J. Edmonds and K. Pruhs

collude together to cheat another entity, etc. So we seek a protocol that guarantees a
fair share to everyone that is honest. If someone tries to cheat or lie, then they cannot
blame the protocol if they don’t end up with a fair share.

In the literature, this problem falls under the rubric of cake cutting [Brams and
Taylor 1996; Robertson and Webb 1998]. (This is motivated by the well-known phe-
nomenon that some people value the frosting more than others.) The cake cutting
problem arose from the 1940s school of Polish mathematicians. Since then the prob-
lem has blossomed and been widely popularized [Robertson and Webb 1998]. Most
people find cake cutting problems psychologically and socially interesting, and some
quick Googling reveals that cake cutting algorithms, and their analyses, are commonly
covered in algorithms and discrete mathematics courses.

Cake cutting in formalized in the following manner. The objects of value are ordered
in some arbitrary way, and then abstracted away into subintervals of the interval [0, 1],
which is the cake. Each entity/player has a value function V that specifies how much
that player values a particular subinterval, or more precisely, the objects in the subin-
terval. This is a reasonable model if the value of each item is small relative to the total
value of the items. The protocol can query players about their value functions, which are
initially unknown to the protocol. In the standard Robertson-Webb model [Robertson
and Webb 1998; Sgall and Woeginger 2003], the two types of queries are Evaluation
and Cut. In an Evaluation query, a player is asked how much he values a subinterval.
In a Cut query, the player is asked to identify an interval, with a fixed left endpoint, of
a particular value.

1.1. Previous Results

Sgall and Woeginger [2003] provide a nice brief overview of results in this area. Books
by Robertson and Webb [1998] and Brams and Taylor [1996] provide more extensive
overviews.

Let us first consider upper bound results. A deterministic protocol that uses �(n2) cuts
was described by Steinhaus [1948]. Evan and Paz [1984] gave a deterministic divide
and conquer protocol that has complexity �(n log n). Further, they gave a randomized
protocol that uses �(n) cuts and �(n log n) evaluations.

Approximately fair protocols were introduced by Robertson and Webb [1995]. We
say that a protocol is c-fair if it guarantees each honest player a piece of cake that he
believes has value at least 1/cn. There is a deterministic protocol that achieves O(1)-
fairness with �(n) cuts and �(n2) evaluations [Robertson and Webb 1995; Krumke et al.
2002; Woeginger 2002].

Traditionally, much of the research has focused on minimizing the number of cuts,
without too much regard for the number of evaluations. In the settings that we are
interested in, e.g. heirs splitting an inheritance, there is no good reason to assume that
evaluation queries are especially easier or cheaper than cut queries. It is not clear why
the initial focus was on minimizing cuts. One possibility is concern that too many cuts
would lead to crumbling of a literal cake. In any case, we will view evaluation and cut
queries as equally expensive, and define the complexity of a protocol to be the number
of queries used.

Thus, one can summarize the known upper-bound results as follows: There is a
deterministic protocol with complexity O(n log n) that guarantees exact fairness. No
protocol that uses a linear number of queries is known, even if randomization is allowed,
and even if the protocol need only guarantee O(1)-fairness.

So a natural avenue for investigation is to attempt to prove an �(n log n) lower
bound on the complexity of any cake cutting protocol. The most obvious way to
prove such a lower bound is to try to reduce sorting (or more precisely, learning an
unknown permutation) to cake cutting. A first step in this direction was taken by

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 51, Publication date: September 2011.

Cake Cutting Really is Not a Piece of Cake 51:3

Magdon-Ismail et al. [2003], who were able to show that any protocol must make
�(n log n) comparisons to compute the assignment. So this result did not really lower
bound the number of queries. A second step in this direction was taken by Sgall and
Woeginger [2003] who give a more complicated reduction from sorting to show an
�(n log n) lower bound on the complexity of any deterministic protocol that is required
to assign to each player a piece that is a single subinterval of the cake. On the positive
side, all known protocols have this property. On the other hand, there is no natural
reason to impose this restriction in the settings that we are interested in. That is,
it is perfectly reasonable to assign to an inheritor a collection of items that are not
consecutive in the initial arbitrary ordering of the items. The lower bound of Sgall and
Woeginger [2003] can be seen to hold against randomized protocols. However, note
that neither of these lower bounds [Magdon-Ismail et al. 2003; Sgall and Woeginger
2003] hold if the protocol is only required to achieve approximate fairness.

1.2. Our Results

In Section 2, we give a lower bound of �(n log n) on the complexity of any deterministic
protocol for cake cutting, which is the first ω(n) lower bound in the general Robertson-
Webb model. Recall that the complexity of a protocol is the number of evaluation and
cut queries used. Our lower bound improves on the results in Sgall and Woeginger
[2003] in two ways: (1) it applies to protocols that may assign to a player a piece that is
a union of intervals, and (2) it applies to protocols that only guarantee n1−δ approximate
fairness, that is, players can be allocated pieces with value as low as 1/cn = 1/n2−δ.

We believe that the main reasons why earlier lower bounds were not stronger is
that they essentially attempted to reduce from sorting, which does seem to capture the
difficulty of cake cutting in the general model. Instead, we observe that not only are
the players required to find a piece that is rich in value, but if their pieces are not to
overlap then most players need a piece that is thin in width. We obtain our �(n log n)
lower bound by showing a lower bound of �(log n) on the complexity of a single player
finding a piece that is both thin and rich, where thin means that the width at most 2/n,
and rich means that the value at least 1/cn. It is easy to see how to find a piece that is
thin and rich in O(1) time using a randomized algorithm. With probability at least 1/2,
a random interval of width 1/n is thin and rich. Thus, our deterministic lower bound
does not extend to randomized algorithms.

To our knowledge, all the literature to date has assumed that players can answer
cut and evaluation queries with exact precision. This is probably not so realistic in
some settings, for example, it is probably too much to ask an inheritor to value an
arbitrary subcollection of items to within a penny. For this reason, we introduce what
we call approximate cut queries to which a player need only return an interval of cake
of value within a 1+ε factor of the requested value. To our knowledge, no one to date
has considered approximate queries.

In Section 3, we prove that if ε is a constant, then there is an �(n log n) lower bound
on the complexity of any randomized protocol for cake cutting with approximate cuts
(with relative error 1 + ε) and exact evaluation queries, even if only n1−δ-fairness is
required. The fact that the protocol is allowed exact evaluations, but only approximate
cuts, demonstrates the asymmetric power of these two operations. This lower bound is
oblivious in that our adversary doesn’t change the lower bound instance in response to
random events internal to the protocol.

We believe that the main contribution of this article, beyond the explicit lower bounds,
is the identification of the importance of the problem of finding thin rich pieces. We also
believe that the concept of approximate queries is interesting, and worthy of further
investigation.

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 51, Publication date: September 2011.

51:4 J. Edmonds and K. Pruhs

1.3. Formal Problem Statement

The cake consists of the interval [0, 1]. Each player p, 1 ≤ p ≤ n, has value function
Vp(x1, x2) which specifies a value in the range [0, 1] that a player assigns to the
subinterval [x1, x2]. Player values are scaled so that they each have value 1 for the
whole cake, that is, Vp(0, 1) = 1. The value function should be additive, that is,
∀x1 ≤ x2 ≤ x3 ∈ [0, 1], Vp(x1, x2) + Vp(x2, x3) = Vp(x1, x3). Further, the value function
must give value 0 to every point, that is, Vp(x, x) = 0. In this article, a piece of cake
is a collection of subintervals, not necessarily a single subinterval. Further, the ends
of each subinterval in a piece must have been at one of the ends of a cut. The value of
a piece of cake is then just the sum of the values of the subintervals of the piece. The
value functions are initially unknown to the protocol.

The protocol’s goal is to assign to each player p a piece Cp of the cake. The pieces
must be disjoint, that is, Cp and Cq must be disjoint for all players p �= q. Further, the
protocol should be c-fair to each player p, that is, it must be the case that the value
of Cp according to Vp is at least c/n. Thus one gets different variations to the problem
depending on the value of c.

In order to achieve its goal in the Robertson and Webb model, the protocol may
repeatedly ask any player one of two types of queries.

—AEvalp(ε, x1, x2). This 1 + ε approximate evaluation query to player p returns an
(1 + ε)-approximate value of the interval [x1, x2] of the cake for player p. That
is, 1

1+ε
Vp(x1, x2) ≤ AEvalp(ε, x1, x2) ≤ (1 + ε)Vp(x1, x2). An exact evaluation query,

Evalp(x1, x2), is equivalent to AEvalp(0, x1, x2).
—ACutp(ε, x1, α). The 1 + ε approximate cut query returns an x2 ≥ x1 such that the

interval of cake [x1, x2] has value approximately α according to player p’s value
function Vp. More precisely, x2 satisfies 1/(1 + ε)Vp(x1, x2) ≤ α ≤ (1 + ε)Vp(x1, x2). An
exact cut query, Cutp(x1, α), is equivalent to ACutp(0, x1, α).

The protocol may be adaptive in the sense that the protocol need only decide on the
ith query after it has seen the outcome of the first i − 1 queries and when randomized
on coin flips. The complexity of a protocol is the worst-case, over all possible valuation
functions, of the expected number of queries needed to accomplish its goal. For cake
cutting, Las Vegas and Monte Carlo algorithms are of equal power; Since the complexity
of verifying the correctness of an assignment has linear complexity, a Monte Carlo
algorithm can be converted into a Las Vegas algorithm.

As Sgall and Woeginger [2003] point out, cut and evaluation queries can efficiently
simulate all other types of queries used in protocols in the literature, for example,
cutting the cake into two parts with a specified ratio of value. There are many tech-
nical issues that must be considered when formally defining the “right” model. A nice
discussion of these issues can be found in Sgall and Woeginger [2003]. For example, in
the standard model, after a cut, each piece is re-indexed to [0, 1]. As we are proving
lower bounds, it is more convenient to continue to index with respect to the entire cake.
Several issues that are relevant when proving upper bounds—for example, further
niceness properties on the value functions, and robustness against cheating—are not
particularly relevant to us here. Our value functions satisfy every niceness property
considered in the literature. To prove our lower bound, it suffices to consider only the
case when all players are honest. Our lower bounds are robust against reasonable
minor modifications to the model.

2. THE DETERMINISTIC LOWER BOUND

This section is devoted to showing an �(n log n) lower bound on the complexity of cake
cutting for deterministic algorithms. We first introduce a new game, that we call the

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 51, Publication date: September 2011.

Cake Cutting Really is Not a Piece of Cake 51:5

thin-rich game, which takes place in the same setting as the cake cutting game. We
then introduce what we call value trees, which represent certain types of cake value
functions that will be useful for us. We then give an adversarial strategy for the thin-
rich game on value trees. This adversarial strategy gives a bound of �(log n − log c)
on the complexity of the thin-rich rich game. We then show that any protocol for cake
cutting has to essentially solve �(n) different thin-rich games, giving us a lower bound
of �(n(log n − log c)) on the complexity of cake cutting.

Thin-Rich Game. This game involves a single player. We say that a piece of cake is
thin if it has width at most 2/n. We say a piece is rich if it has value at least 1/cn for
this player. The goal for the protocol is to identify a thin rich piece of cake.

We now define value trees and explain how a value function is derived from a value
tree. Assume n ≥ 6 is twice an integer power of 3. The tree is a balanced 3-ary rooted tree
with n/2 leaves, depth L = log3 n/2, and a value V (u) for each node. For each internal
node u, its left, middle, and right children are denoted l(u), m(u), and r(u). Two of these
three edges are labeled 1/4 and are called light edges, and the remaining edge is labeled
1/2 and is called a heavy edge. The value V (u) of node is the product of the edge labels
along the path from the root to u. Note that u’s value is the sum of its children’s values,
that is, V (u) = (1/4)V (u)+ (1/4)V (u)+ (1/2)V (u) = V (l(u))+ V (m(u))+ V (r(u)). Let d(u)
denote the number of edges in the path from the root to the node u. Let q(u) denote the
number of these that are heavy edges. It follows that V (u) = (1/2)q(u)(1/4)d(u)−q(u).

The cake is partitioned into n/2 thin intervals, namely for i ∈ [1, n/2], the ith interval
of width 2

n is [2(i − 1)/n, 2i/n]. These n/2 intervals are associated with the leaves of
the value tree. We associate with each internal node u, the interval of cake that is the
union of the leaves of the subtree rooted at u. We say that a point is in a node in the tree
if it is contained in the interval association with that node. The width of this interval
is W(u) = 3−d(u), and its value is given by V (u). If u is a leaf, then this value is spread
evenly over this interval.

Some intuition may be useful. The canonical thin-rich piece, which is the goal of a
protocol to find, consists a leaf u with density D(u) = V (u)/W(u) = 1/cn/2/n = 2/c.
Towards this goal, the protocol must find nodes in the tree that are both low in the tree
and dense. In order for a node to have high density, the path from the root to it must
have lots of heavy edges, namely

D(u) = V (u)
W(u)

= (1/2)q(u)(1/4)d(u)−q(u)

(1/3)d(u)
≥ 2

c

Or equivalently,

q(u) ≥ log2

(
4
3

)
d(u) − log2 c >

4
10

d(u) − log2 c

The obvious O(log n) time protocol, starts at the root, which has density D(u) = 1, and
follows the unique path consisting of only heavy edges down the tree. If a deterministic
protocol attempts to circumvent this process by leaping to a lower node, then the
adversary can simply fix the edges in the path to this node to be light. If a randomized
protocol selects a random node, then each edge is heavy with probability 1/3 giving
q(u) = (1/3)d(u), which is much less than the q(u) = (4/10)d(u) − log2 c needed for it to
be rich.

We say that a protocol for the thin-rich game is normal if, when the value function is
derived from a value tree, the protocol always returns a leaf of the value tree. We now
show that, without loss of generality, we may restrict our attention to normal protocols.

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 51, Publication date: September 2011.

51:6 J. Edmonds and K. Pruhs

LEMMA 2.1. If there is a deterministic protocol Afor the thin-rich game with complex-
ity T (n), then for value functions derived from value trees, there is a normal deterministic
protocol B with complexity O(T (n)).

PROOF. Consider an arbitrary protocol A. Let I denote the collection of intervals
returned by A. Because overall I has density at least 2/c, at least one I of these
intervals in I does as well. Since the cardinality of I is at most T (n), one such interval
I can be found with O(T (n)) queries. Because this interval has width at most 2/n, it
overlaps with at most two leaves of the value tree. Because each leaf has uniform value
along its width, at least one of these two leaves must have density at least 2/c. The
protocol B can query the value of each of these two leaves, and return the one of higher
value.

As a protocol for the thin-rich game asks queries, it gains information about the value
tree. In order to bound the information learned, the lower bound adversary reveals the
labels of enough edges of the value tree to provide the protocol with at least as much
information as the thin-rich protocol gets from the query. Let P = u0, . . . , uk be a path
from the root u0 of the value tree to a node uk. The node uk is said to be revealed if all
the labels on all the edges leading from a node ui, 0 ≤ i ≤ k − 1, to a child of ui, are
revealed. Lemma 2.2 quantifies what can be learned from revealed vertices.

LEMMA 2.2

—For any revealed node u, the value V (u) of the interval of cake under it can be computed.
—Let u be a revealed node, let x be the leftmost point in u, and y the rightmost point in

u. Then V (0, x) and V (0, y) can be computed.
—Let x be a point in a revealed leaf u, and let y ≥ x be a point in a revealed leaf v. Then

V (0, x) and V (x, y) can be computed.
—Let u be a revealed leaf, let x1 is a point in u, and let α be a cake value. From this

information, the least common ancestor of u and the node v that contains the point x2
satisfying V (x1, x2) = α can be computed.

PROOF. We consider the items one by one. For the first item, V (u) is just the product
of the edge labels leading to u. Consider the second item. Let u0, . . . , u = uk be the
path from the root to u. V (0, x) is then just the sum of the values of the siblings to
the left of a ui, 1 ≤ i ≤ k, which may be computed by the previous item. V (0, y) is
then V (0, x) + V (u). Consider the third item. Let x′ be the left most point in the leaf
u. Because the value of the cake is uniform on leaves, V (x′, x) = (x − x′)/(2/n) · V (u).
Then V (0, x) = V (0, x′) + V (x′, x) and V (x, y) = V (0, y) − V (0, x). Consider the fourth
item. Let u0, . . . , uL = u be the path from the root to the leaf u containing x1. Proceed
up the tree from u, computing V (x1, yi) where yi is the right most point under ui. Here
V (x1, yL) = (yL − x1)/(2/n) · V (u) and V (x1, yi) is V (x1, yi+1) plus the sum the values of
the children of ui that are to the right of ui+1. When the sum exceeds α, then ui is the
least common ancestor.

We are now ready to give the lower bound for the thin-rich game.

LEMMA 2.3. The deterministic complexity of the thin-rich game is �(log n − log c).

PROOF. We give an adversarial strategy that lower bounds the complexity of an
arbitrary normal protocol A on a value tree distribution. We maintain a number of
invariants. First, for each node, either none or all three of its outgoing edges have been
revealed. Second, at each point in time the set of revealed nodes forms of a connected
component of the value tree that contains the root. Third, after k queries, any root to
leaf path contains at most 2k edges revealed to be heavy. Initially, these invariants are
trivially true.

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 51, Publication date: September 2011.

Cake Cutting Really is Not a Piece of Cake 51:7

Suppose that on the kth query, the protocol A makes the query Eval(x1, x2). Let
u0, . . . uL be the path from the root to the leaf containing x1. Let ui be the highest
unrevealed node in this path. The edges in ui, . . . uL are revealed to be light. For each of
these nodes, when its outgoing edge is revealed to be light, one of its other two outgoing
edges is revealed to be light and the other heavy. Note that this automatically reveals
not only all the nodes in this path, but also reveals all the children of the nodes in
this path. This same process is then repeated for x2. By Lemma 2.2, A will then have
enough information to compute the answer to this Eval query. It is easy to verify that
the invariants are maintained.

Now suppose that on the kth query, the protocol Amakes the query Cut(x1, α). As done
for an Eval query, the “forked” path from the root to the leaf containing x1 is revealed.
As given by Lemma 2.2, let ui be the least common ancestor of the leaf containing x1
and the leaf containing the unknown point x2 satisfying V (x1, x2) = α. We will now
describe how to recursively determine and reveal the path U from ui to x2 in such a
way that all these edges on this path are light. Starting from ui, follow revealed edges
down in the tree toward the leaf that contains x2 until one reaches an unrevealed node
v. Let β be the value of cake that A seeks from the subtree rooted at v. This is well
defined by Lemma 2.2. If β/V (v) ≤ 1/2, then the three edges leading to children of v are
labeled [1/4, 1/4, 1/2]; otherwise, they are labeled [1/2, 1/4, 1/4]. Note that either way,
the next edge in U will be a light edge. Now we redefine v to be the first unrevealed
vertex on the path from the root to the leaf containing x2, and repeat this process. This
process ends when v becomes the leaf containing x2. By Lemma 2.2, A now has enough
information to determine the value of x2. It is easy to verify that all invariants are
maintained.

Suppose that the protocol terminates after ((4/10)L− log2 c)/2 queries claiming that
a leaf node u is rich. The second invariant states that at most (4/10)L − log2 c edges
on the path from the root to u have been revealed to be rich. By making the rest of the
edges in this path light, we can make u not rich. This then contradicts the correctness
of A.

We now give the lower bound for cake cutting.

THEOREM 2.4. The complexity of any deterministic protocol for cake cutting is
�(n(log n − log c)), even with exact queries and only c-approximate fairness is required.
Note that this bound is �(n log n) even when c = n1−δ.

PROOF. We give an adversarial strategy against an arbitrary deterministic protocol
A. Let Q be an arbitrary query made by A. Assume that query Q is addressed to player
p. Let Q1, . . . , Qk be the previous queries made by A to player p. Then, the adversarial
strategy answers Q in the same way that the adversarial strategy for the thin-rich
game in Lemma 2.3 would have answered query Q given prior queries Q1, . . . , Qk. Now
assume to reach a contradiction that A stops before it has asked at least n/2 of the
players �(log n − log c) queries (the lower bound for the thin-rich game from Lemma
2.3). If at least half the pieces that A assigns the players are not thin, then this is
not a feasible solution since some pieces must intersect. Otherwise, consider a player
that was assigned a thin piece, but whom was queried less than �(log n − log c) times
(the lower bound for the thin-rich game from Lemma 2.3). By the correctness of the
adversarial strategy from Lemma 2.3), there is value function consistent with all of
the query answers for this player, but for which this piece is not rich. This contracts
the correctness of A.

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 51, Publication date: September 2011.

51:8 J. Edmonds and K. Pruhs

3. THE RANDOMIZED LOWER BOUND

This section is devoted to proving an �(n log(n/c)) lower bound for randomized cake
cutting algorithms that only receive approximate answers to their queries. We first use
Yao’s technique to give a �(log(n/c)) lower bound for the thin-rich game. Yao’s technique
states that it is sufficient to exhibit an input distribution on which the average-case
complexity of every deterministic protocol is at least the lower bound that one wants to
prove. Our input distribution, chooses independently for each player a random value
tree from which to derive his value function. This is done by choosing independently
for each node in the tree, one of its outgoing edges to be heavy. We again then reduce
cake cutting to the thin-rich game.

As in the deterministic lower bound, we may restrict our attention to normal thin-
rich protocols, that is, those that return a leaf in the value tree. We now introduce a
game, the path and triangle game, that we show captures the complexity of finding
path in the value tree that is sufficiently rich in heavy edges to give a rich leaf.

Definition of the Path and Triangle Game. The protocol is given a value tree, except
that it does not know the value of the labels. The protocol makes a sequence of queries,
where each query is either a path query or a triangle query. Both types of queries specify
a node u in the tree. In response to a path query, the labels on all of the edges incident
to a node on the path from the root to u are revealed to the protocol. In response to a
triangle query, the labels on all the edges, on all the paths leading from u to descendants
of u, up to depth γ = 2+ log2(1

ε
), in the subtree rooted at u, are revealed to the protocol.

The protocol’s goal is to find a rich path, that is, one with at least (4/10)L − log2 c
heavy edges. The complexity of a particular protocol is the number of path and triangle
queries needed to accomplish this goal.

We now show how to reduce the thin-rich game to the path and triangle game.

LEMMA 3.1. If the complexity of the path and triangle game is lower bounded by
T (n) for a random value tree, then the complexity of thin-rich game is �(T (n)) when the
value function is derived from a random value tree.

PROOF. We will prove the contrapositive, that is, a thin-rich protocol Awith complex-
ity T (n) implies the existence of a protocol B for the the path and triangle game with
complexity O(T (n)). We construct B by simulating A.

Suppose that protocol A makes the query AEval(ε, x1, x2). We will graciously provide
protocol A with an answer to the exact query Eval(x1, x2). Protocol B then makes two
path queries: one query to the leaf containing x1 and one query to the leaf containing
x2. The value V (x1, x2) can then be computed by Lemma 2.2, and is then returned to A
as the result to the Eval query.

Suppose that protocol A makes the query ACut(ε, x1, α). Let x2 denote the point that
Aseeks, that is the point such that V (x1, x2) = α. Note that at this point in time, neither
A nor B may know the exact value of x2, but nevertheless we wish to reason about x2.
Protocol B then makes at most two path queries and at most one triangle query. After
these queries, protocol B will have enough information to provide protocol A with a
point y such that V (x1, y) is sufficiently close to α. We now define these three queries.
Figure 1 may be useful in understanding the queries.

The First Path Query. Let u0, u1, . . . , uL be the sequence of nodes along the path from
the root to the leaf containing x1 in the tree. The first path query is to the node uL. If
both x1 and x2 are in uL then B may return x2. If x2 is not in the leaf uL, then B makes
a second path query.

The Second Path Query. Using Lemma 2.2, Protocol B computes the least common
ancestor ur of the leaf containing x1 and the leaf containing x2. All of the children of

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 51, Publication date: September 2011.

Cake Cutting Really is Not a Piece of Cake 51:9

= ux1 L mv

v

root = u0

ur

s

v = v 0u
r+1

2x

wt

Fig. 1. The two path queries and one triangle query associated with an approximate cut.

ur must be revealed since ur+1 is on the revealed path from the root to x1. Let v be the
child of ur containing x2. The second path query is to the leftmost leaf vm in the subtree
rooted at v. Let v = v0, v1, . . . , vm be the nodes along the path from v to vm.

The Triangle Query. Again, using Lemma 2.2, Protocol B computes the least common
ancestor vs of vm and the leaf containing x2. The triangle query is to the node vs.

Computing the Result. If the height of vs ≤ γ , then the leaf containing x2 is known to
B. The value of x2 can then can be computed by Lemma 2.2 and is returned to protocol
A. Otherwise, let w1, w2, . . . , w2γ be the descendants of vs of depth γ in the subtree
rooted at vs. Let wt be the node such that x2 is in the subtree rooted at wt. The point y
returned by protocol B will any point in the interval wt.

We now argue the correctness of the result returned by protocol B. Because both
x2 and y are under wt, the error V (x1, y) − α will be at most V (wt). We have V (wt) ≤
(1/2)γ V (vs), since wt is γ edges below vs and every edge has a label of at most 1/2.
We have V (vs) ≤ 4V (l(v2s), because the edge to the left child l(vs) of vs has a label
of at least 1/4. We have 4(1/2)γ ≤ ε, by the definition of γ = 2 + log2(1/ε). We have
V (l(v2s) ≤ α, since the interval under l(vs) is totally contained in the interval of value
α to the right of x1. Combining these gives that V (wt) ≤ εα. This completes simulation
of the ACut(ε, x1, α) query.

In the end, protocol Afinds a rich leaf, which provides protocol B with a rich path.

We now wish to prove that with probability �(1) the complexity of every randomized
protocol for the path and triangle game is �(log n

c / log 1
ε
) if the input is a random value

tree. Let Det be the set of nodes u which have been revealed, that is, labels on path
to u are known. We define a potential function F(u) on a node u by ((11/4)q(u) − d(u)).
Note that for every node, it is the case that in a random value tree, q(u) = (1/3)d(u) and
F(u) = (11/4)(1/3)d(u) − d(u) = −(1/12)d(u), but for a rich path q(u) ≈ (4/10)d(u) and
F(u) ≈ (11/4)(4/10)L−L = (1/10)L. We define a potential function F for the state of the
game by F = maxu∈Det F(u). Initially, Det consists of only the root. As d(root) = 0, and
q(root) = 0, it is the case that initially F(root) = 0. Also note that F(u) is nonnegative
for every node. We now bound the expected change in the value of the potential function
as the result of a single query.

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 51, Publication date: September 2011.

51:10 J. Edmonds and K. Pruhs

LEMMA 3.2. There exists a constant β, such that the expected change in F as the
result of one query is at most 2γ + β.

PROOF. First, consider the path operation. The player specifies one leaf x and learns
the labels on the path U from the root to x (plus the labels on the other edges that lead
from a node y on U to a child of y). Let u be the last node in U that was in Det before
the path query. Let v be the node for which F is maximized after the path query. When
F changes, there are two cases. First, assume that v is in on the path U . Let d′ be the
number of edges from u to v and q′ be the number of these which are heavy. Hence,
F ′, the amount that F increases by, is (11q′/4) − d′. Note that F ′ ≥ f is equivalent to
q′ ≥ (4 f ′/11) + (4l′/11). We then use this to bound the expected value of F ′.

E[F ′] =
∫

f ≥0
f · Pr[F ′ = f]

=
∫

f ≥0
Pr[F ′ ≥ f]

≤
∫

f ≥0

∑
m≥ f

Pr
[
d′ = m and q′ ≥ 4 f ′

11
+ 4m

11

]

=
∫

f ≥0

∑
m≥ f

Pr
[
d′ = m and q′ ≥

(
1 +

(
12 f
11m

+ 1
11

))
m
3

]

If d′ is fixed to be m, then q′ is binomially distributed with mean m/3. Using a Chernoff
bounds we know that Pr[q′ ≥ (1 + δ)(m/3)] ≤ e−δ2m/6. In our case, δ = ((12 f /11m) +
(1/11)). Hence,

E[F ′] ≤
∫

f ≥0

∑
m≥ f

exp

(
−

(
12 f
11m

+ 1
11

)2

· m
6

)

=
∫

f ≥0

∑
m≥ f

exp
(−24 f 2

121m

)
· exp

(−4 f
121

)
· exp

(−m
726

)

=
∑
m≥0

exp
(−m

726

)∫
0≤ f ≤m

exp
(−24 f 2

121m

)
· exp

(−4 f
121

)

=
∑
m≥0

exp
(−m

726

)
· O

(
exp

(−24
121m

))

=
∑
m≥0

exp
(−m

726

)
· O(1)

= O(1)

This completes that case when the node v for which F is maximized is in on the
path U . The only remaining case is when v is a child of a node on the path U . For
such nodes, q(v) can be at most one more than the value of F on v’s parent. Thus, the
expected change of F of siblings of nodes in U is at most an additive constant more
than the expected change on the nodes in U .

Now consider a triangle operation to a node u. The protocols learns all the labels to a
depth γ below u. For any node v, this increases q(v) by at most γ . The increase in d(v) has
to be at least the increase of q(v). Thus, F can increase by at most ((11γ /4)−γ) ≤ 2γ .

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 51, Publication date: September 2011.

Cake Cutting Really is Not a Piece of Cake 51:11

We are now ready to establish the lower bound for the path and triangle game.

LEMMA 3.3. Any protocol for the path and triangle game that makes fewer than
T (n) = �(log n

c / log 1
ε
) queries fails with probability at least 3

4 to find a rich path.

PROOF. Finding a rich path involves finding a leaf u with q(u) ≥ ((4/10)L − log2 2c),
l(u) = L, and F(u) = (11/4)q(u) − l(u) ≥ (11/4)((4/10)L − log2 2c) − L = ((1/10)L −
(11/4) log2 2c). However, Lemma 3.2 proves that at each time step, the expected change
in F, is at most 2γ +β. Therefore, after fewer than T (n) queries, E[F], the expected value
of F, is at most (2γ + β)T (n). By Markov’s inequality, the probability that F ≥ 4E[F]
is at most 1/4. Hence, setting T (n) = 1/4(2γ + β)((1/10)L − 11/4 log2 2c) gives a con-
tradiction. Plugging in γ = 2 + log2(1/ε) and β = O(1) gives T (n) = �(log n/c/ log 1/ε)
as required.

And finally, we give the lower bound for cake cutting.

THEOREM 3.4. If a protocol can only make 1 + ε approximate queries, and c-
fairness is required, then the complexity of any randomized protocol for cake cutting
is �(n log n/c/ log 1/ε).

PROOF. We again use Yao’s technique. We assume that each player has a value func-
tion specified by an independent random value tree. Let T (n) be defined as in the
statement of Lemma 3.3. Because the random value trees are independent, we can
conclude as in the proof of Lemma 3.3 that if a player receives fewer than T (n) queries,
then he fails to obtain a thin-rich piece with probability 3/4. If the cake cutting protocol
makes fewer than 1

4 nT (n) queries, then this is the case for more than 3
4 n of the players.

Hence, the expected number of players that do not obtain a thin-rich piece is at least
(9/16)n and because these events are independent, with high probability more than
half the players fail to get a thin-rich piece. We can then conclude as in the proof of
Theorem 2.4 that this contradicts the correctness of the protocol.

We finish with a few comments on the tightness of our lower bounds with approximate
queries. If exact queries are replaced by 1+ε-approximate queries, then the �(n log n)
time divide and conquer protocol returns only (1+ε)log(n)-fair pieces, because the error
accumulates multiplicatively at each of the log(n) levels of recursion. Doing the same
for the �(n2) time protocol introduces only 1 + ε error to the final fairness. If the
model allows only 1+ε-approximate queries, for some constant ε, but requires only
(1+ε)log(n) 	 n1−δ-fairness, then our lower bound of �(n log n) is tight. If the model
allows only 1+1/log n-approximate queries and requires O(1)-fairness, then our lower
bound of �(n log n/ log log n) is off by at most a log log n term.

4. CONCLUSION

The most obvious open question arising from this paper is the randomized complexity
to achieve exact fairness with exact queries.

Note that cut queries seem to be more powerful than evaluation queries. For example,
the randomized lower from Section 3 holds even if the evaluation queries are allowed to
be exact, but breaks down if cut queries are allowed to be exact. An interesting question
is whether one can achieve exact fairness deterministically with O(n) exact cut queries
and O(n2) exact evaluation queries. Also while our definition of approximate queries
seems to be the most natural one, some further investigation of alternative definitions
and their relationship might be interesting.

Subsequent to this work, we obtained a randomized algorithm that achieves ap-
proximate fairness for honest players with O(n) queries [Edmonds and Pruhs 2006;

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 51, Publication date: September 2011.

51:12 J. Edmonds and K. Pruhs

Edmonds et al. 2008]. The outstanding open question in this area is what is the ran-
domized complexity to achieve exact fairness with exact queries.

REFERENCES

BRAMS, S. AND TAYLOR, A. 1996. Fair Division—From Cake Cutting to Dispute Resolution. Cambridge Univer-
sity Press.

EDMONDS, J. AND PRUHS, K. 2006. Balanced allocations of cake. In Proceedings of the IEEE Symposium on the
Foundations of Computer Science. 623–634.

EDMONDS, J., PRUHS, K., AND SOLANKI, J. 2008. Confidently cutting a cake into approximately fair pieces. In
Proceedings of the International Conference on Algorithmic Aspects in Information and Management.
155–164.

EVEN, S. AND PAZ, A. 1984. A note on cake cutting. Disc. Appl. Math. 7, 285–296.
KRUMKE, S. O., LIPMANN, M., DE PAEPE, W. E., POENSGEN, D., RAMBAU, J., STOUGIE, L., AND WOEGINGER, G. J. 2002.

How to cut a cake almost fairly. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms.
263–264.

MAGDON-ISMAIL, M., BUSCH, C., AND KRISHNAMOORTHY, M. 2003. Cake cutting is not a piece of cake. In Proceedings
of the Symposium on Theoretical Aspects of Computer Science. Lecture Notes in Computer Science Series,
vol. 2607. 596–607.

ROBERTSON, J. AND WEBB, W. 1995. Approximating fair division with a limited number of cuts. J. Combinat.
Theory, Ser. A 72, 340–344.

ROBERTSON, J. AND WEBB, W. 1998. Cake-Cutting Algorithms: Be Fair If You Can. A.K. Peters, Ltd.
SGALL, J. AND WOEGINGER, G. J. 2003. A lower bound for Cake Cutting. Lecture Notes in Computer Science

Series, vol. 2461. Springer-Verlag.
STEINHAUS, H. 1948. The problem of fair division. Econometrica 16, 101–104.
WOEGINGER, G. J. 2002. An approximation scheme for cake division with a linear number of cuts. In Proceed-

ings of the European Symposium on Algorithms. Springer-Verlag, 896–901.

Received September 2008; revised September 2009; accepted September 2009

ACM Transactions on Algorithms, Vol. 7, No. 4, Article 51, Publication date: September 2011.

