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Abstract. The Laguerre Voronoi diagram, also called the power diagram, is one
of the important generalizations of the Voronoi diagram in the plane, in which the
generating points are generalized to circles and the distance is generalized to the
Laguerre distance. In this paper, an analogue of the Laguerre Voronoi diagram is
introduced on the sphere. The Laguerre distance from a point to a circle on the
sphere is defined as the geodesic length of the tangent line segment from the point
to the circle. This distance defines a new variant of the Voronoi diagram on the
sphere, and it inherits many characteristics from the Laguerre Voronoi diagram
in the plane. In particular, a Voronoi edge in the new diagram is part of a great
circle (i.e., the counterpart of a straight line), and the Voronoi edge is perpendic-
ular to the great circle passing through the centers of the two generating circles.
Furthermore, the construction of this diagram is reduced to the construction of a
three-dimensional convex hull, and thus a worst-case optimal O(n log n) algorithm
is obtained. Applications of this diagram include the computation of the union of
spherical circles and related problems.
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1. Introduction

The Voronoi diagram is one of the most fundamental concepts in computational geometry,
and has been generalized in many directions [5, 8, 10, 17, 19]. One of the directions is
the generalization of the distance. The Euclidean distance can be replaced by a variety of
distances, including the Lp distance [14], the convex distance [13], the additively and/or
multiplicatively weighted distances [1] and the boat-sail distance [20].

However, many good properties disappear in such generalized Voronoi diagrams. For
example, the Voronoi edges are complicated curves in the generalized Voronoi diagrams while
they are portions of straight lines in the ordinary Voronoi diagram.
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An exception is the Laguerre Voronoi diagram [11], which is also called the power dia-

gram [3, 4]. In this diagram the Voronoi edges are portions of straight lines, and they are
perpendicular to the line segments connecting the centers of the associated two generating
circles.

In this paper we will show that an analogue of the Laguerre Voronoi diagram can be
defined on the sphere. This diagram inherits good properties in that the Voronoi edges are
portions of great circles (counterparts of straight lines) and they are perpendicular to the
geodesic arcs connecting the associated two generators. We will also propose an algorithm for
constructing this diagram via the three-dimensional convex hull; it runs in O(n log n) time,
where n denotes the number of generators, and this time complexity is worst-case optimal.

It should be emphasized that this diagram is different from that obtained from the planar
Laguerre Voronoi diagram through the stereographic projection of the plane onto the sphere.
The stereographic projection defines a correspondence between a sphere and a tangent plane
using the lines that pass through the antipole of the tangent point [6]. By this projection, a
circle on the plane is mapped to a circle on the sphere, but a straight line is not mapped to
a great circle.

2. Brief review of the Laguerre Voronoi diagram in the plane

Let G = {c1, c2, . . . , cn} be a set of n circles in the plane R2, and let Pi and ri be the center
and the radius of the circle ci. For point P and circle ci, let us define

dL(P, ci) = d(P,Pi)
2 − ri

2, (1)

where d(P,Pi) denotes the Euclidean distance between P and Pi. We call dL(P, ci) the La-

guerre distance from P to ci.
The above misuse of the term ‘distance’ is intentional. Actually dL(P, ci) has the dimen-

sion of the square of the distance. However, we do not take the square root of this value
because we want to define the ‘Laguerre distance’ even when the point P is inside the circle
ci, in which case the right-hand side of equation (1) is negative. Thus, the Laguerre distance
is not a kind of the distance in a mathematical sense; it just represents a ‘degree of farness’.

We define
R(G; ci) = {P ∈ R2 | dL(P, ci) < dL(P, cj), j 6= i}, (2)

and call it the Laguerre Voronoi region for ci. The plane is partitioned into the regions
R(G; c1), R(G; c2), . . . , R(G; cn) and their boundaries. This partition is called the Laguerre

Voronoi diagram for G, and the elements of G are called the generating circles (or generators

in short).
As shown in Fig. 1, suppose that P is outside ci, and let l be the line that passes through

P and that is tangent to ci. The Laguerre distance dL(P, ci) is the square of the distance
between P and

the point of contact of l to ci. Hence, if generating circles are mutually disjoint, a point
on an edge of the diagram has the tangent line segments with equal lengths to the associated
two generating circles.

Fig. 2 shows an example of the Laguerre Voronoi diagram in the plane.
If two generating circles touch at a point, the Voronoi edge is on the common tangent

line passing through the point. If two generating circles cross each other, the Voronoi edge
is on the line passing through the two cross points. The region R(G; ci) may be empty for
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Figure 1: Geometric interpretation of the Laguerre distance

Figure 2: Laguerre Voronoi diagram in the plane

some ci. Even if R(G; ci) is not empty, this region may not contain ci. These properties are
direct consequences of the definition of the Laguerre Voronoi diagram. We can also see these
properties in the example diagram in Fig. 2.

3. Spherical Laguerre distance and the associated Voronoi diagram

The Voronoi diagram can be defined also on the sphere [7, 15], where the distance is measured
along the shortest arc connecting two points. In this section we will generalize the Voronoi
diagrams on the sphere in the way analogous to the generalization of the ordinary Voronoi
diagram to the Laguerre Voronoi diagram in the plane.

Here we consider the geometry on a sphere. Without loosing generality we assume that



72 K. Sugihara: Laguerre Voronoi Diagram on the Sphere

the radius of the sphere is 1. Let (x, y, z) be the Cartesian coordinate system, and U be the
unit sphere with the center at the origin (0, 0, 0). The intersection of U and a plane containing
the center is called a great circle. A connected portion of a great circle is called a geodesic

arc.

Suppose that P and Q are two points on U such that the line segment connecting P and
Q is not a diameter of U . Then, there is a unique great circle that passes through both P and
Q. The length of the shorter geodesic arc connecting P and Q is called the geodesic distance

of P and Q, and is denoted by d̃(P,Q). Since U is the unit sphere, d̃(P,Q) is equal to the
angle subtended at the center by the geodesic arc connecting P and Q, that is, the angle
formed by the two lines OP and OQ, where O is the center of the sphere U .

A

B C

U

c b
a

O

Figure 3: Spherical triangle

As shown in Fig. 3, let A,B,C be three points on U . The figure composed of the three
geodesic arcs connecting A and B, B and C, and C and A is named the spherical triangle

ABC. Let a, b, c be the geodesic length d̃(B,C), d̃(C,A), d̃(A,B), respectively. Note that
a, b, c are equal to the angles subtended by the arcs at the center of U , as shown in Fig. 3.

Suppose that the angle at C is equal to π/2; in other words the two edges cross perpen-
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Figure 4: Interpretation of the Laguerre proximity
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dicularly at C. Then

cos c = cos a. cos b (3)

holds [16]. This equation is the counterpart of the Pythagoras’ theorem for the right-angled
planar triangle in the sense that it represents the relation among the three edges of the
right-angled triangle.

Let Pi be a point on U and 0 ≤ ri < π/2. The subset of U defined by

{P ∈ U | d̃(P,Pi) = ri} (4)

is called a circle on U with the center Pi and the radius ri. Throughout the paper, we denote
this circle by c̃i.

For any point P on U , let us define

d̃L(P, c̃i) =
cos d̃(P,Pi)

cos ri

. (5)

We call this value the Laguerre proximity. We use the term “Laguerre” because d̃L(P, c̃i)
can be interpreted as the cosine of the length of the geodesic arc that emanates at P and is
tangent to c̃i. Actually, as shown in Fig. 4, let Q be the point on c̃i at which the geodesic
arcs between P and Q and between Pi and Q cross in the right angle. Then, from equation
(3) we get

cos d̃(P,Pi) = cos d̃(P,Q) · cos d̃(Pi,Q). (6)

Since d̃(Pi,Q) = ri, we get

cos d̃(P,Q) =
cos d̃(P,Pi)

cos ri

, (7)

which means d̃L(P, c̃i) = cos d̃(P,Q).
We chose the term “proximity” instead of the “distance”. This is because d̃L(P, c̃i) is

monotone decreasing in the geodesic distance from the center of c̃i to P. Indeed,

d̃L(P, c̃i) = 1/ cos ri if d̃(P,Pi) = 0,

= 1 if d̃(P,Pi) = ri,

= 0 if d̃(P,Pi) = π/2,

= −1/ cos ri if d̃(P,Pi) = π.

Suppose that we place the center of the spherical circle c̃i at the North Pole, and that we
move the point P from the North Pole to the South Pole along a longitudinal great circle.
When P is at the North Pole, d̃L(P, c̃i) is the largest. When P crosses the circle c̃i, d̃L(P, c̃i)
crosses 1. When P crosses the equator, d̃L(P, c̃i) crosses 0 from positive to negative. When P
reaches the South Pole, d̃L(P, c̃i) becomes the smallest.

For two circles c̃i and c̃j, we define

BL(c̃i, c̃j) = {P ∈ U | d̃L(P, c̃i) = d̃L(P, c̃j)}, (8)

and call it the Laguerre bisector of c̃i and c̃j. The next theorem holds.

Theorem 1 The Laguerre bisector BL(c̃i, c̃j) is a great circle, and it crosses the geodesic arc

connecting the two centers Pi and Pj at the right angle.
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Figure 5: Laguerre bisector

Proof. As shown in Fig. 5, let c̃i and c̃j be two circles on U , and let Q be the point on
the geodesic arc connecting Pi and Pj such that

cos d̃(Q,Pi)

cos ri

=
cos d̃(Q,Pj)

cos rj

(9)

is satisfied. From equation (5) we can see that Q is on the Laguerre bisector of c̃i and c̃j.
Next let c̃ij be the great circle that crosses the geodesic arc connecting Pi and Pj perpen-

dicularly at point Q, and let S be any point on c̃ij other than Q. Since the spherical triangle
PiQS is right-angled, we get

cos d̃(S,Pi) = cos d̃(Q,Pi). cos d̃(Q, S), (10)

and consequently we get

d̃L(S, c̃i) =
cos d̃(S,Pi)

cos ri

=
cos d̃(Q,Pi). cos d̃(Q, S)

cos ri

. (11)

Similarly for the right-angled spherical triangle PjQS, we get

d̃L(S, c̃j) =
cos d̃(S,Pj)

cos rj

=
cos d̃(Q,Pj). cos d̃(Q, S)

cos rj

. (12)

Equations (9), (11), (12) altogether imply that

d̃L(S, c̃i) = d̃L(S, c̃j), (13)

and hence the great circle c̃ij coincides with the Laguerre bisector.
It might be interesting to note that Theorem 1 implies that the Laguerre bisector always

divides the sphere into two regions with the same area, that is, the areas of the two regions
do not depend on the sizes of the circles. When the sizes of the circles change, the location
of the bisector changes, but the sizes of the resultant regions do not change. This property
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Figure 6: Laguerre Voronoi diagram on the sphere

can be interpreted intuitively in such a way that a larger circle has greater influence in its
neighborhood but less influence in the other side of the sphere than a smaller circle.

Suppose that we are given a set G̃ = {c̃1, c̃2, . . . , c̃n} of n circles on U . We define

R̃(G̃; c̃i) = {P ∈ U | d̃L(P, c̃i) < d̃L(P, c̃j), j 6= i}. (14)

R̃(G̃; c̃i) represents the region composed of the points that are nearer to c̃i than to any other
circles in G̃ in terms of the Laguerre proximity. The regions R̃(G̃; c̃1), R̃(G̃; c̃2), . . . , R̃(G̃; c̃n)
and their boundaries define the partition of U , which we call the spherical Laguerre Voronoi

diagram for G̃.
Theorem 1 implies that any edge of the spherical Laguerre Voronoi diagram is a geodesic
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arc.
Figure 6 shows an example of the spherical Laguerre Voronoi diagram. This is a cross-type

stereo pair of the diagrams; if we see the right diagram by the left eye and the left diagram
by the right eye, we can perceive the three-dimensional structure. The upper pair of the
diagrams represent the front hemisphere and the lower pair represent the rear hemisphere.

From this figure we can see that many properties of the Laguerre Voronoi diagram in the
plane are inherited by this spherical version. If two circles contact at a point, the Laguerre
bisector goes through that point and is perpendicular to the geodesic arc connecting the
centers of the two circles. If two circles intersect at two points, the Laguerre bisector contains
these two points. A Laguerre Voronoi region does not necessarily contain the associated
generating circle. Moreover, some of the Laguerre Voronoi regions may be empty.

From the spherical Laguerre Voronoi diagram, we can construct another diagram through
duality. Let us draw the geodesic arc connecting Pi and Pj if and only if the regions R(G̃; c̃i)
and R(G̃; c̃j) share a common boundary arc. The resultant diagram is called the spherical

Laguerre Delaunay diagram for G̃. The edge sets of the two diagrams admit the one-to-one
correspondence through duality, and the corresponding edges are mutually orthogonal (recall
Theorem 1).

4. Algorithms

For circle c̃i on U , let π(c̃i) be the plane containing c̃i, and let H(c̃i) be the half space bounded
by π(c̃i) and including the center O of U . Let, furthermore, lij be the line of intersection of
π(c̃i) and π(c̃j), as shown in Fig. 7; this figure shows the cross section obtained when we cut
the sphere U by the plane containing Pi, Pj and the center O of U .

Theorem 2 The bisector BL(c̃i, c̃j) is the intersection of U and the plane containing lij and

O.

Proof. Let πij be the plane containing Pi,Pj and O. As shown in Fig. 7, let Q be the
point of intersection of the plane πij and the line lij. Next, let Si be a point of intersection of
c̃i and πij, and Sj be the point of intersection of c̃j and πij. Furthermore, let T be the point
of intersection of U and line OQ. Suppose that αi = d̃(Pi,T) and αj = d̃(Pj,T). Then we get

d(O,Q) cosαi = d(O, Si) cos ri, (15)

and hence
cosαi

cos ri

=
d(O, Si)

d(O,Q)
. (16)

Similarly we get
cosαj

cos rj

=
d(O, Sj)

d(O,Q)
. (17)

Since d(O, Si) = d(O, Sj), we get from equations (15) and (16)

cosαi

cos ri

=
cosαj

cos rj

, (18)

which implies that

d̃L(T, c̃i) = d̃L(T, c̃j). (19)
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Figure 7: Planes containing generating circles

This equation means that T is on the Laguerre bisector of c̃i and c̃j. Since the line lij is
perpendicular to the plane πij, the Laguerre bisector BL(c̃i, c̃j) is exactly the great circle
defined by the plane containing O and lij.

Theorem 2 immediately implies the next algorithm.

Algorithm 1 (spherical Laguerre Voronoi diagram).

Input: set G̃ = {c̃1, c̃2, . . . , c̃n} of n circles on U .

Output: spherical Laguerre Voronoi diagram for G̃.

Procedure:

1. Compute the intersection I(G̃) of all the half spaces H(c̃i), i = 1, 2, . . . , n.

2. Project the edges of I(G̃) onto the sphere U by the central projection with the center at
O.
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Figure 8: Dual transformation between a plane and a point with respect to a sphere
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Step 1 requires O(n log n) time [19] and Step 2 requires O(n) time. Hence the Laguerre
Voronoi diagram on the sphere can be constructed in O(n log n) time. This time complexity
is worst-case optimal because the following facts are known. First the spherical Laguerre
Voronoi diagram includes the ordinary Voronoi diagram on the sphere; actually the former
diagram reduces to the latter when all the generating circles have the same radius. Secondly
there is a one-to-one correspondence between the ordinary Voronoi diagram on the sphere and
that in the plane through the stereographic projection [6] or other transformations [2, 9, 18].
Thirdly, the construction of the ordinary Voronoi diagram in the plane requires Ω(n log n)
time [8, 19].

Next let us consider an algorithm for direct construction of the spherical Laguerre De-
launay diagram. The intersection I(G̃) of all the half spaces H(c̃i) is a convex polyhedron.
As we have seen in Algorithm 1, the edge structure of I(G̃) is isomorphic to the spherical
Laguerre Voronoi diagram in a graph-theoretic sense. Consequently, the edge structure of the
dual of I(G̃) is isomorphic to the spherical Laguerre Delaunay diagram. Hence, what we have
to do is to construct the dual of I(G̃). It is known that the dual of a convex polyhedron can
be obtained as the convex hull of the ‘dual points’ in the following way.

As before, suppose that the center O of the sphere U is at the origin of the (x, y, z) coordi-
nate system. Let the coordinates of the center Pi of the circle c̃i be (xi, yi, zi). Let t = cos ri,
where ri is the geodesic radius of ci. As shown in Fig. 8, t represents the (Euclidean) distance
from O to the plane π(c̃i). We introduce new point P

∗

i with the coordinates (xi/t, yi/t, zi/t),
and define G̃∗ as

G̃∗ = {P∗

1
,P∗

2
, . . . ,P∗

n}.

Let C(G̃∗) be the convex hull of G̃∗. It is known that the edge structure of C(G̃∗) is the dual
of the edge structure of I(G̃). Hence, we obtain the next algorithm.

Algorithm 2 (spherical Laguerre Delaunay diagram).

Input: set G̃ = {c̃1, c̃2, . . . , c̃n} of n circles on U .

Output: spherical Laguerre Delaunay diagram.

Procedure:

1. Generate the point set G̃∗.

2. Construct the convex hull C(G̃∗).

3. Project the edges of C(G̃∗) onto the sphere U by the central projection with the center at
O.

This algorithm also runs in O(n log n) time, because the three-dimensional convex hull
can be constructed in this order of time by the divide-and-conquer method [19].

5. Applications

The Laguerre Voronoi diagram in the plane can be applied to many problems concerning a
collection of circles [11]. Similarly, the spherical Laguerre Voronoi diagram can be applied to
problems concerning a collection of spherical circles. In this section we list typical applications.

Problem 1. Given n circles on the sphere, determine whether a query point P is included
in their union.
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Suppose that we constructed the spherical Laguerre Voronoi diagram for the set G̃ =
{c̃1, c̃2, . . . , c̃n} of n circles in the preprocessing stage. Then, what we have to do to answer
Problem 1 is just to find the Voronoi region R̃(G̃; c̃i) containing P and to check whether P
is contained in c̃i. The answer is “yes” if P is contained in c̃i, and “no” otherwise. This is
because, if P is not contained in c̃i, then d̃L(P, c̃j) ≥ d̃L(P, c̃i) > 0 for any j and therefore P
is not in any circle.

The spherical Laguerre Voronoi diagram can be constructed in O(n log n) time. To find
the Voronoi region containing the query point can be done in O(log n) time and O(n) storage
with O(n log n) preprocessing if we apply the planar-case technique [12] to the longitude-
latitude coordinate system. Therefore we can solve Problem 1 in O(log n) time and O(n)
storage with O(n log n) preprocessing.

Problem 2. Given n circles on the sphere, find the boundary of their union.

To solve this problem, we first construct the spherical Laguerre Voronoi diagram for the
set G̃ = {c̃1, c̃2, . . . , c̃n} of n circles, and next collect the part of c̃i contained in R̃(G̃, c̃i) for
all i. Recall that, if c̃i and c̃j intersect, the Laguerre bisector BL(c̃i, c̃j) passes through both
of the points of intersection. This means that the part of c̃i outside R̃(G̃, c̃i) is contained in
other circles. Hence the collection of all the parts of c̃i contained in R̃(G̃; c̃i) for i = 1, 2, . . . , n
constitute the boundary of the union of the circles.

A circle intersects each of its Voronoi edges at most twice, and there are only O(n) Voronoi
edges. Therefore, once we construct the spherical Laguerre Voronoi diagram, we can collect
all of the circular arcs contained in their own Voronoi regions in O(n) time; this also means
that the boundary of the union of n circles consists of at most O(n) circular arcs. Thus,
Problem 2 can be solved in O(n log n) time through the spherical Laguerre Voronoi diagram.

Problem 3. Given n circles on the sphere, classify them into the connected components.

This problem arises in availability of mobile-telephone communication. Suppose that
circle c̃i represents the region in which we can use a mobile telephone via a telephone station
located at the center of c̃i. We want to know whether we can move from a point inside c̃i to a
point inside c̃j while keeping in touch with some other person using a mobile telephone. The
answer is “yes” if and only if c̃i and c̃j belong to the same connected components.

To solve Problem 3, we construct a graph whose vertices are the given n circles and whose
edges are pairs of circles such that they share a common Voronoi edge and that they intersect
each other. Then the connected components of this graph give the solution of Problem 3.
Since the connected components of a graph can be computed in O(n) time, Problem 3 can
be solved in O(n log n) time through the spherical Laguerre Voronoi diagram.

6. Concluding remarks

We have shown that an analogue of the Laguerre Voronoi diagram in the plane can be defined
on the sphere, and that this analogue inherits many good properties possessed by the planar
diagram. In particular, Laguerre Voronoi edges are geodesic arcs that are orthogonal to the
corresponding Delaunay edges. This property enables us to efficiently construct the newly
introduced diagrams through the intersection of half spaces or the three-dimensional convex
hull of points. Because of its simplicity, this diagram can be a basic tool for geographic
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analysis such as facility layout and environment accessment on the earth.
It has been known that many kinds of Voronoi diagrams can be constructed through the

three-dimensional convex hull. They include the ordinary Voronoi diagram in the plane or on
the sphere, the farthest-point Voronoi diagram in the plane, the Laguerre Voronoi diagram in
the plane and the elliptic Voronoi diagram in the plane [2, 5, 8, 9, 17, 18]. This paper adds
one new diagram to this list.

Algorithm 2 was implemented in FORTRAN, and the source code is made open for public
use in the web page:

http://www.simplex.t.u-tokyo.ac.jp/ s̃ugihara/

Actually Fig. 6 was drawn by this program.
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