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In February 1979 a note by L. G. Khachiyan indicated how an ellipsoid 
method for linear programming can be implemented in polynomial time. This 
result has caused great excitement and stimulated a flood of technical papers. 
Ordinarily there would be no need for a survey of work so recent, but the 
current circumstances are obviously exceptional. Word of Khachiyan's result 
has spread extraordinarily fast, much faster than comprehension of its signif- 
icance. A variety of issues have, in general, not been well understood, 
including the exact character of the ellipsoid method and of Khachiyan's 
result on polynomiality, its practical significance in linear programming, its 
implementation, its potential applicability to problems outside of the domain 
of linear programming, and its relationship to earlier work. Our aim is to help 
clarify these important issues in the context of a survey of the ellipsoid 
method, its historical antecedents, recent developments, and current re- 
search. 

1. INTRODUCTION 

IN FEBRUARY 1979 the note "A Polynomial Algorithm in Linear 
Programming" by L. G. Khachiyan appeared in Doklady Akademiia 

Nauk SSSR. Several months later it first came to the attention of 
operations researchers, computer scientists, and mathematicians in the 
West in informal discussions. By the end of 1979 Khachiyan's note had 
become front-page news, not only for researchers, but for readers 
of major daily newspapers in the United States, Europe, and Japan 
(see Wolfe [1980]). 

The Theoretical Result 

The immediate significance of Khachiyan's article was the resolution 
of an important theoretical question concerning the computational com- 
plexity of linear programming. Most of the basic discrete optimization 
problems in operations research have been known for a number of years 
either to be solvable in polynomial-time (e.g., the shortest path problem 
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1040 Bland, Goldfarb and Todd 

with nonnegative arc lengths), or to be X9/Y-complete (e.g., the traveling 
salesman problem, and the shortest path problem with arbitrary arc 
lengths). (Appendix A provides an informal discussion of the notions of 
polynomial boundedness and X97-completeness for the unacquainted 
reader. For a rigorous treatment see Aho et al. [1976], Garey and Johnson 
[1979], Karp [1972, 1975].) Yet linear programming, the most studied of 
all optimization problems in operations research, resisted classification. 
Most researchers considered it very unlikely that linear programming 
might be theoretically as difficult as the X9-complete problems, but no 
one had managed to prove its membership in , the class of problems 
solvable by polynomial-time algorithms. Finally, Khachiyan indicated 
how one could adapt the ellipsoid method for convex optimization devel- 
oped by the Soviet mathematicians N. Z. Shor, D. B. Iudin, and A. S. 
Nemirovskii to give a polynomial-time algorithm for linear programming. 
This algorithm differs dramatically from the simplex method: it is not a 
pivoting method; it uses metrical properties of IRn; and it does not depend 
directly upon linearity of the objective function or the constraints. 

Proofs of the claims in Khachiyan's note were provided by Gacs and 
Lova'sz [1981] under the assumption of exact arithmetic, for ease of 
exposition. (In a more recent paper Khachiyan [1980] gives proofs of his 
earlier claims.) The presentation by Gacs and Lovasz at the International 
Symposium on Mathematical Programming in Montreal in August of 
1979 began a widespread investigation of the ellipsoid method. 

The Ensuing Commotion 

The resolution of this major theoretical question concerning linear 
programming resulted in great (and deserved) excitement among re- 
searchers. The ensuing commotion in the popular press resulted from an 
unusual combination of circumstances. The great importance of linear 
programming and the simplex method (see Dantzig [1963]) as decision- 
making tools in government and industry led people to conclude correctly 
that a major practical improvement in our ability to solve linear program- 
ming problems could have substantial impact. In spite of disclaimers 
from theoretical researchers, journalists inferred that the theoretical 
efficiency (polynomial-boundedness) of the ellipsoid method must im- 
mediately translate into a major practical advance: "Shazam!" exclaimed 
the New York Times (November 11, 1979). The initial articles on Kha- 
chiyan's paper in some of the popular science magazines were mostly 
accurate, though some were potentially misleading. As those stories were 
digested (indigested?) by newspaper writers, the tale became so distorted 
that one familiar with Khachiyan's note could have legitimately wondered 
whether some of the newspaper articles were discussing a different paper 
by him. These articles characterized the new result as a profound break- 
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through in the solution of real-world problems, went on to suggest that 
the work was likely to result in efficient new algorithms for the traveling 
salesman problem, and ultimately some even declared the traveling 
salesman problem well-solved. For details concerning these accounts see 
the note by Lawler [1980], who compares the treatment of Khachiyan's 
paper in the popular press to the children's whispering game, "telephone." 

Theoretical vs. Practical Considerations 

In order to develop means for formal comparisons of algorithms and of 
problems, the theory of computational complexity builds upon certain 
notions such as polynomial boundedness. These ideas have produced a 
rich theory that has also yielded some important practical advances in 
algorithms. However an algorithm that is superior according to theoret- 
ical criteria is not necessarily superior in practice. 

Suppose algorithms s? and a4 solve problem J, -4p is polynomial-time, 
and s? is not. Then there is some family {Qn} of instances of J such that 
the running time of s4 on (Qn,} increases faster than any polynomial 
function of n, while the running time of sip on {Qn4 is bounded by some 
polynomial function f (n). For "large enough" values of n, sp is guaranteed 
to run faster on Qn than s?, and as n grows the discrepancy increases 
rapidly. But this is an asymptotic result; how large is "large enough"? 
For any positive integer n', one can easily construct a function g that is, 
say exponential in n, and such that f (n) > g (n) for all n c n'. Thus it is 
possible that our nonpolynomial algorithm s? might be preferable to the 
polynomial algorithm sip for all instances of J of the size that we expect 
to encounter in practice, although we must take care that our expectations 
are not too modest. Certainly before accepting a polynomial-time algo- 
rithm sip as a useful practical tool, we would at least want to examine the 
particular polynomial function that bounds its computational perform- 
ance. For example the known polynomial bound on the Dijkstra algorithm 
for computing shortest paths in directed graphs with nonnegative arc 
lengths and n nodes (see Lawler [1976]), is a small multiple of n2. Since 
such a graph may have as many as ?/2(n2 - n) arcs, Dijkstra's algorithm 
appears to be an attractive practical procedure. An examination of the 
known polynomial bound on the ellipsoid method for linear programming 
does not lead so readily to a promising conclusion, as we shall see. 

We must also keep in mind that polynomial boundedness is a worst- 
case criterion; the most perverse problem instances determine this mea- 
sure of an algorithm's performance. How likely are we to encounter in 
practice problem instances like those in {Qn4 that cause algorithm A to 
behave badly? Are they pathological, contrived? This has been claimed 
of those known families of problems that lead to exponential behavior of 
the standard simplex pivoting rules. 
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Researchers in computational complexity are very well aware of these 
limitations to the practical significance of polynomiality. However, most 
known polynomial-time algorithms for problems of interest to operations 
researchers are, in fact, efficient in practice as well as in theory, perhaps 
leading some to attach greater significance to polynomiality than is 
merited. 

Outline 

Ordinarily there would be no need for a survey of work so recent as 
that prompted by Khachiyan's note. The current circumstances are 
obviously exceptional. Word of Khachiyan's result has spread extraordi- 
narily fast, much faster than comprehension of its significance. A variety 
of issues have been so muddled by accounts in the press that even a 
technicaly sophisticated reader may be uncertain of the exact character 
of the ellipsoid method and of Khachiyan's result on polynomiality, its 
practical significance in linear programming, its implementation, its po- 
tential applicability to problems outside of the domain of linear program- 
ming, and its relationship to earlier work. Our aim here is to help clarify 
these important issues in the context of a survey of the ellipsoid method, 
its historical antecedents, recent developments, and current research. 

In Section 2 we describe the basic ellipsoid algorithm for finding a 
feasible solution to a system of linear inequalities. We outline the modi- 
fications introduced by Khachiyan and the arguments used by him to 
prove that the feasibility or infeasibility of such a system can be deter- 
mined in polynomial time with this algorithm. The extension to linear 
optimization is discussed in Section 5. 

In Section 3 we present a detailed account of the research that led up 
to the ellipsoid algorithm. We show that it was a fairly natural outgrowth 
of the relaxation and subgradient algorithms of Agmon, Motzkin and 
Schoenberg, and Shor, the method of central sections of Levin and 
Newman and the methods of space dilation of Shor. In particular, we 
observe that the ellipsoid algorithm was first introduced by the Soviet 
mathematicians D. B. ludin and A. S. Nemirovskii and then clarified by 
N. Z. Shor; all three were interested in its application to convex, not 
necessarily differentiable, optimization. Khachiyan modified the method 
to obtain a polynomial-time algorithm for the feasibility problem for a 
system of linear inequalities. 

If the ellipsoid algorithm is to be more than just a theoretical tool, it 
must be implemented in a numerically stable way and modified to 
increase its rate of convergence. In Section 4 three modifications to the 
basic algorithm are described. These are the use of deep cuts (i.e., violated 
inequalities), surrogate cuts (i.e., valid cuts formed by combining several 
inequalities), and parallel cuts (i.e., the use of two parallel inequalities, 
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one of which is violated). The numerical implementation of the ellipsoid 
method is considered in Section 6. Although several possibilities are 
discussed, we recommend the use of a Cholesky or LDL T factorization of 
the positive definite matrix which determines the metric corresponding 
to each ellipsoid. 

Section 5 describes three methods to adapt the ellipsoid algorithm of 
Section 2 to solve linear programming problems. The first method com- 
bines the primal and dual constraints and the weak duality inequality 
with its sense reversed. The second uses bisection to find the optimal 
value, while the third (closely related to the algorithms of ludin and 
Nemirovskii, and Shor) is a sliding objective function method. A final 
subsection outlines how (in polynomial time) an exact solution to the 
linear programming problem can be obtained from the approximate one 
produced by the ellipsoid algorithm. 

In Section 7 we discuss the relationship of the ellipsoid algorithm to 
other methods including the simplex method. Extensions to convex 
optimization and linear complementarity problems are also cited. 

Section 8 concerns combinatorial applications of the ellipsoid method 
from the point of view of Grotschel et al. [1981]. This exceptionally 
interesting paper examines the ellipsoid method in greater generality, 
establishes theoretical results based on the general form of the algorithm, 
and uses those results to develop polynomial-time algorithms for a 
number of combinatorial optimization problems. We illustrate the ap- 
proach of Grotschel, Lova'sz, and Schrijver in the context of examples 
familiar to many operations researchers, and relate it to the technique of 
column generation. 

Section 9 consists of a few brief concluding remarks. 
Three appendices are included. In the first we present, rather infor- 

mally, some of the main ideas of computational complexity, including 
discussion of polynomial solvability and the classes of problems Y and 

. In the second appendix we give a proof that the ellipsoid constructed 
by the deep cut version of the ellipsoid method has the smallest volume 
among all ellipsoids containing the portion of the current ellipsoid on the 
appropriate side of that cut. In the third appendix we present an example 
which shows that convergence of the ellipsoid algorithm can be extremely 
slow, even if deep cuts are used. This example also demonstrates that the 
ellipsoid method, without the modifications introduced by Khachiyan, 
may converge to an infeasible point when applied to a system of inequal- 
ities whose solution set is nonempty, but not full-dimensional. 

The paper is designed so that fairly complete coverage of essential 
aspects of the algorithm can be obtained without reading every section. 
The reader interested merely in the basic form of the algorithm and its 
application to linear programming should read Sections 2 and 5 (possibly 
omitting the last subsection) and the concluding remarks. 
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2. THE ELLIPSOID ALGORITHM 

In this section we describe the ellipsoid method for determining the 
feasibility of a system of linear inequalities, and outline arguments that 
establish that the method can be made polynomial. We follow the 
interpretation by Gaics and Lovasz of Khachiyan's arguments. 

Suppose we wish to find an n-vector x satisfying 

ATx b (2.1) 

where AT ism x n and b is an m-vector. The columns of A, corresponding 
to outward normals to the constraints, are denoted a,, a2, ... , am, and 
the components of b are denoted fl1, /2, * 8, /m. Thus (2.1) can be 
restated as 

aiT x Bi, i=1, 2, * ,m. 

We assume throughout that n is greater than one. 

The Basic Iteration 

The ellipsoid method constructs a sequence of ellipsoids Eo, 
E1, * , Ek, *. , each of which contains a point satisfying (2.1), if one 
exists. On the (k + 1)st iteration, the method checks whether the center 
Xk of the current ellipsoid Ek satisfies the constraints (2.1). If so, the 
method stops. If not, some constraint violated by Xk, say 

aTx:c/8 (2.2) 

is chosen and the ellipsoid of minimum volume that contains the half- 
ellipsoid 

{x E EkIaTx ' aTxk} (2.3) 

is constructed. (See Figure 1 (a).) This new ellipsoid and its center are 
denoted by Ek+l and Xk?1, respectively, and the above iterative step is 
repeated. 

Except for initialization, this gives a (possibly infinite) iterative algo- 
rithm for determining the feasibility of (2.1). In essence Khachiyan 
showed that one can determine whether (2.1) is feasible or not within a 
prespecified (polynomial) number of iterations by: (i) modifying this 
algorithm to account for finite precision arithmetic, (ii) applying it to a 
suitable perturbation of system (2.1), and (iii) choosing Eo appropriately. 
System (2.1) is feasible if and only if termination occurs with a feasible 
solution of the perturbed system within the prescribed number of itera- 
tions. 

Algebraically, we can represent the ellipsoid Ek as 

Ek = {X 6 E |1 (X - Xk)T B (x - Xk) C 1} (2.4) 
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where xk is its center and Bk is a positive definite symmetric matrix. In 
terms of this representation the (k + 1)st iterative step of the ellipsoid 
method is simply given by the formulas 

Xk+1 X Xk - T(Bka/ la)TBka) (2.5) 

and 

Bk+l = 6(Bk- a(Bka(Bka)T/(aTBka))) (2.6) 

where 

= 1/(n + 1), a = 2/(n + 1), and 8 = n2/(n 2-1). (2.7) 

That Ek+i determined by xk+i and Bk+i as in (2.4)-(2.7) is the ellipsoid of 
smallest volume that contains the half-ellipsoid (2.3) is proved in Appen- 
dix B. We call , a, and 8 the step, dilation, and expansion parameters, 
respectively. Note that if Bk is a multiple of the identity so that Ek is a 
ball, then Ek+i is shrunk in the direction a by the factor 

E/ 

b)<f 
Figure 1. The ellipsoid method: (a) without deep cuts, (b) with deep 

cuts. 
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A/8(1-a) = n/(n + 1) and expanded in all orthogonal directions by the 
factor v1 = n//n2 - 1. (See Figure 2.) 

It is intuitively clear that a smaller ellipsoid E[+1 can be employed 
since it is only necessary that the new ellipsoid contain the section of Ek, 

{x E EkI a x C/,}, (2.8) 

rather the entire half-ellipsoid (2.3). (See Figure 1 (b).) This is indeed 
true, but we defer discussion of these "deep" cuts until Section 4. 

Note that if Ek is a ball, then it is also possible to construct a ball S 
that contains the set (2.8) and is smaller in volume than Ek. Such a ball 
can have its center xk+i on the open line segment (xk, xk + 2(xk -x)), 

where xk is the projection of xk onto the hyperplane {x E R' IaTx = ,8. 
(See Figure 3.) The ball S will be smallest if xk+l is Xk. As we shall see in 
the next section such "ball" methods are well-known and predate the 
ellipsoid method. 

aTx~~~V XkaTX 

\ ~~~~~\1 I 

k 

Figure 2. Geometric interpretation of the parameters. 

.le 

Figure 3. The ball method. 
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Polynomial Solvability 

We now outline arguments that can be used to prove that the feasibility 
or infeasibility of (2.1) with integer data can be determined in polynomial 
time. For proofs see Gaics and Lovisz, or, for greater detail, see Padberg 
and Rao [1980a]. These analyses are based on the simplifying assumption 
that all computations are performed in exact arithmetic. In Padberg and 
Rao [1980b], Grotschel et al., and Khachiyan's recent paper [1980], proofs 
are supplied for the case of finite precision arithmetic. 

We assume that the entries of A and b are integers. Then the length L 
of the input can be described in terms of the number of symbols required 
to encode it, i.e., 

L = 
E1?i?m,1:?j?n,aj=AO 

LlogIaijaj + 
Eij?im,1,i#qO Llog I/I J (2.9) 

+ Llog nj + Llog m] + 2mn + 2m + 4. 

(See the explanation of (A.2) in Appendix A. The encoding involves four 
distinct symbols: +, -, 0, and 1; so the actual number of bits required is 
2L. Henceforth we take the liberty of using the term "bit" interchangeably 
with "symbol.") 

We need to show that the number of steps is polynomial in L. There 
are two main issues in the proof. First, the formulas (2.5)-(2.7) for Xk+1 

and Bk+i assume exact arithmetic. To perform an algorithm in polynomial 
time with accepted models of computation one must use finite-precision 
arithmetic. Khachiyan indicated that 23L bits of precision before the 
point and 38nL after suffice. Note that if the values of Xk+j and Bk+, are 
rounded to this specified number of bits, the ellipsoid Ek+1 may not 
contain the required half-ellipsoid. Khachiyan showed that if Bk+1 is 
multiplied by a factor slightly larger than one before being rounded, then 
Ek+1 Will stil contain this half-ellipsoid. Khachiyan uses the factor2l/4n; 
Grotschel et al. replace 8 in (2.6) by (2n2 + 3)/2n2 to achieve the 
same effect. Unless otherwise noted we will assume throughout that exact 
arithmetic is used. 

Second, we must provide a polynomial bound on the number of 
iterations required. We start by examining a special case in which for 
some known aO E IRn and R > r > 0, and unknown a * E IRn 

S(a*, r) C P C S(ao, R), (2.10) 

where P is the solution set of (2.1) and S (y, p) denotes the ball of radius 
p centered at y. In this case we initialize with Eo = S(ao, R). We now use 
the fact that when the formulas (2.4)-(2.7) are employed, 

vol Ek+?/vol Ek = (n/(n + 1))(n2/(n2 - 1))(n-1)/2 < e-1/2(n +l ) (2.11) 

Suppose k > 2n(n + 1)log(R/r). Then, assuming the ellipsoid algorithm 
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continues this far, the volume of Ek wil have shrunk to less than (rIR )f 
times its original value; thus it cannot contain a ball of radius r. But, as 
we have remarked above, the sequence of ellipsoids generated satisfies 
S (a *, r) C P C Ek for all k. This contradiction proves that the algorithm 
must terminate with Xk E P for some k ' 2n (n + 1)log(R/r). Hence if R 
and r in (2.10) are regarded as part of the input, or log(R/r) is polynomial 
in L, then the number of steps required is polynomial. 

In many practical problems, a priori bounds as in (2.10) may be 
available and should be used. However, to provide a polynomial algorithm 
we must assume that nothing is known about the system (2.1) other than 
its description in terms of A and b. In this case Khachiyan proved that, 
if P is nonempty, then 

P n S(O, 2L) $ 0; (2.12) 

thus 2L can play the role of R in (2.10), and we can initialize the algorithm 
with Eo = S (0, 2L). Clearly, however, P need not contain a ball of any 
positive radius. Therefore let us perturb (2.1) to obtain the system of 
inequalities 

2LaiTx ' 2L,8i + 1, i = 1, 2, * , m (2.13) 

with solution set P'. Khachiyan proved that P is nonempty if and only if 
P' is. Moreover, a solution to (2.1) can be obtained (in polynomial time) 
from a solution of (2.13) (one method for obtaining exact solutions from 
approximate solutions is described at the end of Section 5), and the 
number of bits needed to represent (2.13) is at most (m (n + 1) + 1)L, 
hence polynomial in L. The reason for considering (2.13) is that if (2.1) 
has a feasible solution, say x, then S (xS, 1/maxi 12Lai II) is contained in P'. 
Since 11 ai C 2L, we obtain 

S(A 2L2L) C p' (2.14) 

if x E P. Note that the bound in (2.12) can be improved-certainly P 
contains a point within 2L - 2 2L of the origin if it is nonempty, and we 
can choose such a point for x. Thus, if (2.1) is feasible, 

S(X, 2-2L) C P' n S(O, 2L) C S(0, 2L). (2.15) 

Now by applying the arguments given above, if (2.1) is feasible and if the 
ellipsoid algorithm is applied to (2.13), then it must terminate with a 
feasible solution within 2n(n + 1)log(2L/2-2L) = 6n (n + 1)L iterations. 
Hence if it fails to terminate in this many iterations, we can conclude 
that (2.1) is infeasible. 

It has been convenient for exposition of the arguments above to apply 
the ellipsoid method to the perturbed system (2.13), as in Gacs and 
Lova'sz. However, it is not necessary to implement the ellipsoid method 
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in this way; indeed, Khachiyan's approach, although essentially the same, 
does not explicitly perturb the original system (2.1). 

A constraint 2LaiTx < 2L18 + 1 of (2.13) is satisfied at the current iterate 
Xk if and only if the corresponding constraint aiTx c< fi of (2.1) has residual 
aiTx -i - 2-L. The procedure outlined above in terms of (2.13) can be 
described in the context of the original system (2.1) by merely requiring 
that the next cut be chosen from the constraints having residual larger 
than 2-L at Xk. The half-ellipsoid (2.3) is the same whether the cut 
aTx - a TXk is viewed as aiTx < aiTXk from (2.1) or 2LaiTx c 2LaiTxk from 
(2.13); hence Ek+1 and Xk+j are also the same. If the iterate Xk has 
maximum residual O(Xk) maxi aiTXk -,i < 2-L then Xk satisfies (2.13), 
and, as noted above, (2.1) must also have a solution. 

Khachiyan works directly in terms of (2.1), using the condition 
O(Xk) < 2-L to test for feasibility of (2.1). He generates the next cut from 
the constraint having maximum residual O(Xk), which must be larger than 
2-L if feasibility has not been detected. So Khachiyan's condition for 
recognizing feasibility of (2.1) and his choice of cuts implicitly test 
whether Xk satisfies (2.13), and, if not, then selects the next cut to 
correspond to a constaint 2LaiTx C< 2Lf8 + 1 of (2.13) violated at Xk. 

Therefore the proof above that at most 6n (n + 1)L iterations are required 
when cuts are generated from (arbitrary) violated constraints of (2.13) 
implies the same polynomial bound for Khachiyan's choice of a cut from 
an inequality with maximum residual (again assuming exact arithmetic). 

3. HISTORICAL DEVELOPMENT 

The publicity that arose from Khachiyan's announcement that a poly- 
nomial algorithm exists for linear programming has tended to blur the 
facts that the basic ellipsoid algorithm is not due to Khachiyan and arose 
in connection with convex, rather than linear, programming. In this 
section we describe the development of the method and give some 
perspective on its place in mathematical programming. We shall see that 
it is closely related to three earlier methods, two of which are quite well 
known. These antecedents are the relaxation method for linear inequali- 
ties, the subgradient method and the method of central sections for 
convex minimization. 

The Relaxation Method 

Relaxation algorithms for inequalities were introduced simultaneously 
by Agmon [1954] and Motzkin and Schoenberg [1954]. For the problem 
(2.1) they produce a sequence {Xk} of iterates. At iteration k + 1, if Xk is 
feasible the algorithm terminates; otherwise a violated constraint, say 
(2.2), is chosen and we set 

Xk+1 = Xk - Xka(a TXk - 3)/aTa, (3.1) 
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where Ak = 2 in Motzkin and Schoenberg's method and 0 < Ak < 2 in 
Agmon's method. The choice Xk = 1 corresponds to projection of Xk onto 
the hyperplane {x E IR' I aTx = ,B). It can be seen that this method, with 
O < Ak < 2, corresponds to the "ball" method of Section 2-see Figure 3. 
Of course, it is unnecessary to have an a priori bound to define Eo in 
order to implement the algorithm; however, if such a bound were available 
it would be straightforward to define a corresponding sequence {Ek} of 
balls. Agmon showed that if (2.1) is feasible, if at each iteration the 
chosen constraint (2.2) is most violated in the sense of the Euclidean 
norm, and if Ak is bounded away from 0 and 2, then his method converges 
linearly (i.e., at the rate of a geometrical progression). Indeed, he showed 
that each iterate comes closer by some fixed ratio to the set of feasible 
solutions than its predecessor. This ratio translates into a bound on the 
ratio of the volumes of the balls Ek?1 and Ek. The main difference from 
the ellipsoid method is that this ratio depends on the data of the problem 
rather than just the dimension. Bounds on the ratio have been provided 
by Agmon, Hoffman [1952], Goffin [1978] and Todd [1979]. Todd [1979] 
and Goffin [1979a] demonstrate that an exponential (in the data) number 
of steps may be required. 

The Subgradient and Space Dilation Methods 

The subgradient method for minimizing a convex, not necessarily 
differentiable, function f:IR' --> IR was, apparently, first introduced by 
Shor [1964]. It has the general form 

Xk+1 = Xk - Ilk gkl/jgk 1 (3.2) 

where g, is a subgradient of the function f at Xk. Note that if we wish to 
solve (2.1) we can minimize 

f(x) = max{maxi{aiTx - /i, 0); (3.3) 

then a = ai is a subgradient of f at xk if aiTx ' /8i is a most violated 
constraint from (2.1). Thus (3.2) includes as a special case a version of 
(3.1) in which a constraint with largest residual is chosen. Ermolev [1966] 
and Polyak [1967] give choices for /k that ensure global convergence; for 
example, Ilk -* 0 and >2/k = oo suffice. However very slow convergence 
results. Polyak [1969] and Shor [1968] demonstrate linear convergence 
for certain choices of the step lengths /1 under suitable conditions on f. 
However, the rate of convergence is still heavily dependent on the 
function f. 

Shor [1970a, b] was the first to realize that improvements could be 
made by working in a transformed space. The idea is exactly that which 
leads from the steepest descent algorithm (with linear convergence, the 
rate depending on the function) to. Newton's method (with quadratic 
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convergence for smooth functions) and quasi-Newton algorithms (with 
superlinear convergence for smooth functions). The iteration now takes 
the form 

gk =jk gk || j gk ||, 

Xk+1 = Xk - akJkgk, (3.4) 

Jk+l = Jk(I - /kgkgk), 

for suitable parameters ak, 8k. The update of the matrix Jk corresponds 
to "space dilation" in the direction of the subgradient gk. Shor [1970b] 
describes precisely the difficulties with the linear convergence rate of his 
earlier subgradient method [1968]. His modified algorithm (3.4), when f 
satisfies certain conditions allowing the parameters ak and 8k to be 
estimated, provides linear convergence whose rate depends on the func- 
tion f, but is invariant with respect to linear transformations. When f is 
quadratic and strictly convex, the parameters can be chosen so that the 
method becomes a method of conjugate gradients (see Shor [1970a]). For 
this algorithm, the minimum value of f must be known; Shor's later 
method [1970b] relaxes this requirement. Shor and Zhurbenko [19711 
perform the "space dilation" in the direction of the difference yk= gk+ 

- gk between successive subgradients; this method is even more reminis- 
cent of quasi-Newton minimization methods. This paper contains results 
of some limited computational experiments. 

The Method of Central Sections 

A third method on which the ellipsoid algorithm is based is that 
developed independently by Levin [1965] and Newman [1965], who 
addressed the problem of minimizing a convex function f over a bounded 
polyhedron P0 C 1W. The method produces a sequence of iterates {xk) 
and polytopes {Pk} by choosing xk as the center of gravity of Pk and 

Pk+= {x E PkI gkhx C gkXk), 

where again gk is a subgradient of f at Xk. Since f is convex, Ph+, contains 
all points of Pk whose objective function value is no greater than that of 
Xk. In this case, the volume of Pk+1 is at most (1 - e-1) times that of Pk. 
However, calculating the centers of gravity of polytopes with many facets 
in high dimensional spaces is an almost insuperable task. Levin proposed 
some simplifications for n = 2. 

The Ellipsoid Method 

The ellipsoid method was first described, rather cryptically, in a paper 
of ludin and Nemirovskii [1976b]. In two papers [1976a, b] they discuss 
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the question of the "computational complexity" of convex programming 
problems: given a limited number of function and/or subgradient calls, 
with unlimited side calculations, how close can one get to the optimal 
value? To obtain upper bounds on such a deviation from optimality, 
specific methods must be proposed. ludin and Nemirovskii [1976a] use a 
variant (the method of centered cross-sections) of the method of Levin 
and Newman; the burdensome "side calculations" of the centers of gravity 
are not counted in their analysis. For problems with parallelepipeds as 
their feasible regions, this method uses only a constant factor more 
iterations than an optimal method to obtain a given quality of solution. 
In their second paper, ludin and Nemirovskii [1976b] discuss the com- 
putational difficulties of Levin's method and describe the modified 
method of centered cross-sections, using ellipsoids instead of polyhedra. 
The modified method is described for minimizing a convex function f 
with convex constraints; however, for the unconstrained problem of 
minimizing f in (3.3) it becomes the ellipsoid method of Section 2. This 
modified method may take n times as many iterations as the unmodified 
method to obtain a given quality of solution, but it is computationally 
implementable. ludin and Nemirovskii describe the ellipsoid method 
implicitly in terms of a sequence (Ok} of systems of coordinates. They 
also point out the rather surprising fact that the ellipsoid method is a 
special case of Shor's algorithm (3.4) with space dilation in the direction 
of the subgradient, when the parameters ak and /8k are suitably chosen 
(in fact, ak = 3k/2T, /k = 1 - (1 _ a)1/2). Shor [1977a] gives the first 
completely explicit statement of the ellipsoid method as we know it. 

As we have seen, one of the keys to the ellipsoid method is the ratio of 
volumes of successive ellipsoids. Iudin and Nemirovskii [1976b] state a 
geometrical lemma concerning an ellipsoid containing that portion of the 
unit ball in En with a "x < cos p IIxII, where h1ail = 1 and 0 c p < /2. If 
0 = 7/2, this part is precisely half the ball and the new ellipsoid is that 
given in Section 2. For 0 < 7T/2, it is the unit ball with a pointed circular 
cone cut out, and the new ellipsoid contains more than half the unit ball. 
Thus ludin and Nemirovskii consider cuts that are "shallower" than cuts 
through the center but not cuts that are "deeper." (See Figure 1 (b) for 
a deep cut; these will be discussed in Section 4.) However, their formulas 
are valid for 0 < 0 (i.e. deep cuts) also. (They used the shallower cuts in 
algorithms where subgradients are not available and must be approxi- 
mated by using function values. By cutting off less than half the current 
ellipsoid they could still guarantee that the desired solution was contained 
in the new ellipsoid in spite of the use of approximate subgradients.) 

Khachiyan's [1979] contributions were precisely those described in 
Section 2. He gave a modified form of the ellipsoid algorithm for the 
feasibility problem of (2.1) with integer data and showed that feasibility 
or infeasibility could be determined in polynomial time by this algorithm. 
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We conclude this section by mentioning other related papers in the 
Soviet literature. For surveys on nondifferentiable optimization see Shor 
[1976, 1977b] and Polyak [1978]. Shor [1977b] states that computational 
comparisons of subgradient algorithms, subgradient algorithms with 
space dilation in the direction of the subgradient (Shor [1970a, b]) or in 
the direction of the difference of successive subgradients (Shor and 
Zhurbenko) and the "conjugate subgradient" methods of Lemarechal 
[1975] and Wolfe [1975] tend to favor the method of Shor and Zhurbenko, 
at least for dimensions up to 200-300. For higher dimensions, storing and 
updating the extra space dilation matrix becomes too expensive, and 
subgradient or conjugate subgradient methods become preferable. The 
paper also demonstrates the application of the ellipsoid algorithm to 
computing saddle points. 

The interesting paper by Nemirovskii and ludin [1977] concerns an 
application of the ellipsoid method where the "effective" dimension may 
be much less than n. In this case a projection method can lead to faster 
convergence. Finally we note that, for Shor's earlier method [1970a, b], 
Skokov [1974] suggested updating the symmetric matrix Bk = JkJk' to 
save storage and reduce computation. His formulas are analogous to 
those of Gadcs and Lovasz which we have given as (2.5)-(2.7). We will 
show in Section 6 some of the dangers of this approach. 

4. MODIFICATIONS OF THE BASIC ALGORITHM 

In this section we describe several simple modifications to the basic 
algorithm to improve its rate of convergence. The most obvious way to 
do this is to use deep or, possibly, "deepest" cuts at each iteration to 
generate smaller ellipsoids. As already mentioned in Section 3, Iudin and 
Nemirovskii's [1976b] description of the ellipsoid algorithm allows for 
cuts that do not pass through the center of the ellipsoid. Although they 
were interested in "shallow" cuts, their formulas apply to deep cuts as 
well. Shor and Gershovich [1979] were the first to propose the use of 
deep cuts to speed up the ellipsoid method. Because both of these papers 
were unknown to most researchers, much of the recent work on improving 
the ellipsoid algorithm has involved the rediscovery of their formulas. 

Deep Cuts 

As before, suppose that xk violates constraint (2.2). The ellipsoid Ek+1 

determined by formulas (2.5)-(2.7) contains the half-ellipsoid {x E Ekl a TX 

c aTxk}. As we only require that Ek+1 contain the smaller portion of Ek, 

{x E EklaTx c ,B}, it seems obvious that we can obtain an ellipsoid of 
smaller volume by using the "deep cut" aTx -< , instead of the cut aTx 
c aTXk, which passes through the center of Ek. This is illustrated in 
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Figure 1 (a) and (b). The smallest such ellipsoid is given by x*+1 and Bk?l 

as in (2.5)-(2.6) with the parameters T, a, and 6 chosen as 

T = (1 + na)/(n + 1), a = (2(1 + na))/((n + 1)(1 + a)), (4.1) 

and 8 = (n2/(n - 1))(1 - a2) 

where 

a = (aTxk-/8)/ aTBka. (4.2) 

For a proof of this see Appendix B. 
The quantity a which now appears in the updating formulas represents 

the (algebraic) distance of Xk from the half-space H = {x E IR nI aTx -< /} 
in the metric corresponding to the matrix B (i.e., 11 yll = 

(yTB-ly)1/2). Another way of viewing a is to represent the ellipsoid Ek as 

Ek = {x E IRE x = Xk + JkZ, iZil < 1) (4.3) 

where Jk is an n X n nonsingular matrix. This is the representation used 
by Khachiyan [1979]. Observe that l1 zl < 1 is equivalent to 11 J-1(x -X) xk 

<1; hence it follows from (2.4) and (4.3) that Bk = JkJk. In terms of the 
z variables, Ek is the unit ball and H is the half-space H = {z E 1Rt I 
a TZ < -a) , where a = JkTa/ II JkTa II. Consequently, in this transformed 
space I a I is the ordinary Euclidean distance of the bounding hyperplane 
of H from the origin. If a > 0 then, clearly, the origin lies outside of H, or 
in the untransformed space, Xk lies outside of H. If a < -1 Ek is contained 
in H; if -1 < a ? 1 the set Ek n H is nonempty; and if a > 1 the set 
Ek n H is empty, implying that (2.1) is infeasible. The same statement 
holds if Ek and H are replaced by the unit ball {z E IRl In 11Zl < 1) and H, 
respectively. 

Formulas (2.5), (2.6), (4.1) and (4.2) are only valid for determining Ek+1 
for -1/n < a < 1; if a < -1/n the smallest ellipsoid containing Ek fl H is 
Ek. Moreover, for -1/n -< a < 1 the ratio of the volume of Ek+1 to that of 
Ek iS 

r(a) = ((n2(1 - a2))/(n2 _ 1))(n1l)/2(n(1 - a)/(n + 1)). (4.4) 

This ratio decreases monotonically from one, when a = -1/n and 
Ek+1 Ek, to zero, when a = 1 and Ek+j degenerates to a point. For 
-1/n a a < 0 the cut aTx c ,8 is "shallow," i.e. Ek n H contains more 
than one-half of Ek including xk. Clearly such shallow cuts need never be 
used. 

By computing a for each inequality in (2.1) we can select the deepest 
cut possible; that is, the cut corresponding to the largest a. If this or any 
other a is greater than one, then the system (2.1) is infeasible. Using deep 
cuts should help to speed up the ellipsoid algorithm. However, as we shall 
show in Appendix C, the improvement obtained can be rather disappoint- 
ing. 
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Krol and Mirman, and Goffin [1979b] give relaxations of the deep-cut 
version of the ellipsoid method by allowing different formulas for , a and 
S. Krol and Mirman hypothesize that such a choice may result in a faster 
algorithm, since a locally optimal strategy for volume reduction is not 
necessarily globally optimal. 

Surrogate Cuts 

By combining inequalities in (2.1) one can sometimes obtain cuts that 
are deeper than any cut generated by a single constraint in (2.1). Any cut 
of the form UTATx C u'b, (i.e. aTx c /8, with a = Au and /8 = uTb) is 
valid as long as u - 0, for then no points that satisfy (2.1) are cut off by 
this inequality. In Goldfarb and Todd [1980], where the term "surrogate" 
cut was introduced, and in Krol and Mirman the idea of using such cuts 
with the ellipsoid method was proposed. Clearly the "best" or "deepest" 
surrogate cut is one which can be obtained by solving 

maxu2: uT(ATXk - b)/(uTA TBAu) 1/2, 

which is equivalent to solving a quadratic programming problem. Let 

ATx -< b (4.5) 

be any subset of the constraints (2.1), where the columns of A are linearly 
independent and at least one of the constraints in this subset is violated 
by Xk. One can easily prove (see Goldfarb and Todd) that if 

u = (ATBA)-l'(Axk - b) (4.6) 

is nonnegative, then the surrogate cut UTA T dT6 is deepest with 
respect to that subset. It is shown in Goldfarb and Todd, and Todd 
[1979], that if A TB,A has nonpositive off-diagonal entries-i.e., the con- 
straint normals in A are mutually obtuse in the metric given by Bk-and 
if Xk violates all constraints in (4.5), then the u- given by (4.6) is non- 
negative. 

Solving a quadratic programming problem or computing ui by (4.6) for 
a large subset of constraints may be too high a price to pay to obtain the 
deepest or nearly deepest surrogate cut. Consequently in Goldfarb and 
Todd it is recommended that only surrogate cuts which can be generated 
from two constraints be considered. 

Krol and Mirman give necessary and sufficient conditions for forming 
a surrogate cut using a deepest cut together with another less violated- 
possibly even satisfied-constraint. These conditions indicate whether or 
not the u in (4.6) for the 2-constraint case is nonnegative. Since the 
surrogate cut is deeper than either of the cuts from which it is generated, 
the process can be repeated iteratively using the newly formed surrogate 
cut and a regular cut. If a valid surrogate cut cannot be formed, then 
either the point on the current deepest (surrogate) cut closest to the 
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center of Ek in the metric Bk is a solution to the system of linear 
inequalities (2.1), or that system is infeasible. The iterative procedure 
described in Krol and Mirman which is based upon these observations 
can be viewed as a relaxation method for solving the feasibility problem 
for (2.1) independent of the ellipsoid algorithm. This is illustrated in 
Figure 4. If implemented efficiently the main computational cost on each 
step comes from the computation of the inner products of all m constraint 
normals with the normal to the current deepest (surrogate) cut in the 
metric Bk. If deepest cuts are to be found efficiently, the quantities 
aJTBkaj, i = 1, * , m should be updated on each iteration as described 
in Goldfarb and Todd. 

Parallel Cuts 

If the system of linear inequalities (2.1) contains a parallel pair of 

constraints 

aTx ' fi and -aTx-<-, 

it is possible to use both constraints simultaneously to generate the new 
ellipsoid Ek+l. Let a = (aTxk - 8)T/%aTBka and& = ('a - aTxk)/ra7Bka, 
and suppose that acx < 1/n and a c -a' c 1. Then formulas (2.5)-(2.6) 
with 

a= (l/(n + l))(n + (2/(a-a (1- aa&-p/2)) 

T = ((oa -a/)/2), = (n/(n (a2 + a2 - p/n)/2), 

and p = J4(1 - CX2)(1 -_ 2) + n2( 2 - a2)2 

generate an ellipsoid that contains the slice {x E Ek j/3 c aTx c /3} of Ek. 

Whenf, = fi, i.e., aTx = f8 for all feasible x, 'a = -a and we get T = a, 

A~~~ 

first surrogate / 
,. 

a 
/ 

a +', 

a'uu1a1tU2o3>/ / c 1 2 
3wy ~~~a3 

second surrogate 
a +u2a2 2 Os 02 

Figure 4. Krol and Mirman's iterative procedure for generating 
surrogate cuts. 
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a = 1, and 8 = (n2/(n2 - 1))(- a2); that is, rank (Bk+1) = rank (Bk) - 1 

and Ek+1 becomes flat in the direction of a. 
As in the case of deep cuts, Shor and Gershovich were the first to 

suggest the use of parallel cuts and provide formulas for implementing 
them. They also derive formulas for circumscribing an ellipsoid (of close 
to minimum volume) about the region of a unit ball bounded by two or 
more hyperplanes which intersect in the interior of this ball and whose 
normals are mutually obtuse. The formulas for parallel cuts were also 
derived independently by Konig and Pallaschke, Krol and Mirman (pri- 
vate communication), and Todd [1980]. Proofs that they give the ellipsoid 
of minimum volume can be found in Konig and Pallaschke, and Todd 

[1980]. 
Given a violated constraint, say ax c , Konig and Pallaschke show 

how to generate a parallel constraint -aTX c-, which does not cut off 

any points in Ek that satisfy (2.1) and which yields a slice {x E Ek* c 
acT'x C 1} of Ek that has minimum volume. Whenever there is a constraint 
whose (outward) normal makes an obtuse angle with a in the metric 
defined by Bk and whose bounding hyperplane intersects the semi-infinite 
open line segment 5 = {xIx = Xk - TBka/v'YIBka, T < 1} this can be 
done; see Figure 5 (a) and (b). Formulas for the appropriate / and 
corresponding 'a are given in Konig and Pallaschke. Note that the case 
g> ,B can occur, as illustrated in Figure 5 (c), indicating that the set {x 
E EEkaTx cx ,} is empty. 

5. SOLVING LINEAR PROGRAMMING PROBLEMS 

So far we have considered only the feasibility problem for systems of 
linear inequalities. Here we address the linear programming problem, 
which we write in inequality form as 

X t 9- o~~~~~~~~~~~~~~~~- 
Xi a awxB 

(a) (b) (c) 

Figure 5. Generation ot parallel constraint for the case Bk = I. (a) 
Parallel constraint derived from the better of two candidates. (b) No 
parallel constraint possible. (c) Parallel constraint indicating an empty 
slice. 
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maximize CTX subject to ATx b, x >- 0, (5.1) 

where AT is m x n. There are several ways this problem can be attacked 
by the ellipsoid algorithm. We discuss each approach both from a theo- 
retical viewpoint, to establish the existence of a polynomial algorithm for 
(5.1), and from a practical viewpoint. We conclude this section with a 
discussion of how to compute in polynomial time an exact optimal 
solution from a sufficiently accurate approximation. 

Simultaneous Solution of the Primal and Dual in IRm+n 

The problem dual to (5.1) is 

minimize bTy subject to Ay > c, y > 0. (5.2) 

By strong duality, (5.1) has a finite optimal solution if and only if (5.2) 
does, in which case the objective function values are equal. For any 
primal feasible x and dual feasible y we have cTx c bTy by weak duality. 
Thus x * and y * are optimal solutions to (5.1) and (5.2) respectively if 
and only if they solve the system of linear inequalities 

ATx' b 

-x' 0 

-Ay '-c (5.3) 

-yS0 
-cTx + bTy : 0. 

Hence we may apply the ellipsoid method to (5.3) to solve (5.1) and (5.2) 
as pointed out by Gaics and Lova'sz. Clearly, a polynomial algorithm for 
linear inequalities yields in this way a polynomial algorithm for linear 
programming problems. In addition this method directly produces an 
optimal dual solution. 

From a practical viewpoint there are several disadvantages to this 
approach. The ellipsoid algorithm is applied to a system of linear ine- 
qualities in IRm'+; the high dimensionality slows convergence. In many 
practical problems the feasible region of (5.1) is bounded and explicit 
bounds are known; thus a method working only in primal space can be 
initialized with an ellipsoid of large but not astronomical volume, speeding 
convergence. Bounds on the dual variables may be harder to obtain and 
hence the initial ellipsoid for (5.3) may be much larger than necessary. 
Next, all solutions to (5.3) lie in the hyperplane cTx = bTy; hence, even if 
(5.3) is feasible, the feasible set has zero volume. Thus perturbation of 
the right hand sides in (5.3) (or a related modification of the algorithm) 
is necessary. Moreover, even if (5.3) is feasible, the volume of the feasible 
set of the perturbed problem will be very small; thus the number of 
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iterations is likely to be very large. Another disadvantage is that if the 
algorithm determines that (5.3) is infeasible, yet no feasible primal or 
dual solution is produced, it is not clear whether (5.1) is infeasible or 
unbounded. 

Some of these difficulties can be mitigated by the strategy used to 
choose constraints of (5.3) to generate cuts for the ellipsoid algorithm. 
Note first that, except for its final constraint, (5.3) separates into two 
subsystems. Thus if no cut is based on this last constraint, the matrix Bk 

defining the ellipsoid Ek remains block diagonal, with two blocks corre- 
sponding to the x- and the y-variables. When such a matrix Bk is updated, 
as long as the final constraint is not used as the cut, only one of the blocks 
is (nontrivially) updated, and only one of Xk and yk changes. Thus the 
high dimensionality is not too drastic a problem until feasibility is 
reached. It seems reasonable to base cuts only on the primal constraints 
until a primal feasible x is generated, then only on the dual constraints 
until a dual feasible y is generated. (A similar strategy can be used for 
problems with block angular structure, i.e. block diagonal constraints 
with coupling constraints; note that staircase systems can be permuted 
to this form. In this case, Bk remains block diagonal until a cut based on 
a coupling constraint is used-such cuts should be postponed as long as 
possible.) Suppose that, before perturbation of (5.3) as in Section 2, L 
bits are necessary to define the system. Then one can show that, using 
the strategy above, if no primal feasible solution (to the perturbed system) 
is generated in 6n(m + n + 1)L steps, (5.1) is infeasible; if a primal 
feasible solution is generated in k steps but then no dual feasible solution 
is generated after a further min {k + 6m(m + n + 1)L, 6(m + n)(m + n 
+ 1)L - k} steps, (5.1) is unbounded. 

Jones and Marwil [1980a] present a variant of this approach of simul- 
taneously solving the primal and dual using the complementary slackness 
conditions for (5.1) and (5.2) to reduce the dimensionality of the problem 
as iterations are performed. If a, given by (4.2), is less than -1 for one of 
the constraints of (5.1) or (5.2), then the ellipsoid Ek is contained in the 
interior of the halfspace associated with that constraint; hence, one can 
conclude that the complementary constraint must be binding at any 
solution to (5.3). Consequently, -when such a situation occurs, Jones and 
Marwil project the current iterate Xk onto this binding constraint and 
collapse the ellipsoid into its intersection with that constraint. All con- 
straints with a < -1 can be temporarily eliminated. When a solution to 
(5.3) excluding these constraints is found, if they are satisfied by that 
solution we are done. Otherwise it is necessary to continue iterations 
after reintroducing any violated constraints into the problem. 

It can be shown from (4.4) that for a given a, r(a), the ratio of the 
volumes of Ek+i and Ek, increases with the dimension n. The volume 
reduction from a cut based on the primal constraints will therefore be 
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smaller in the product space JRn+ than in the primal space 1R'. Hence it 
is desirable to handle the objective function of (5.1) without increasing 
the dimension of the problem. We now discuss two such approaches 
based upon systems of linear inequalities of the form 

ATx c b, -x 'O, -cTx c _D (5.4) 

for various values of t. These methods do not directly yield optimal dual 
solutions. 

Bisection Method 

This method initially applies the ellipsoid algorithm to the constraints 
of (5.1) to obtain a feasible solution x if one exists; if there is none, we 
terminate. Then D = cTx is a lower bound on the optimal value of (5.1). 
Next we obtain an upper bound on this value. If the feasible region of 
(5.1) is bounded and contained in the current ellipsoid Ek given by (2.4) 
then - = cTxk + (cTBkc)l/2 is such an upper bound. Otherwise, we may 
apply the ellipsoid algorithm to the constraints of (5.2) to obtain a dual 
feasible solution y if one exists, and set f = bTy; if (5.2) is infeasible, 
we terminate. From now on, each major iteration starts with an interval 
[D, D] that contains the optimal value, where = cTx for some known 
feasible solution x, and applies the ellipsoid algorithm to (5.4) with D = 

(D + t)/2. If a feasible solution Xk is generated, we set x <- Xk, D - CTXk 

and proceed to the next major iteration. If it is determined that (5.4) is 
infeasible, we set D <- D and proceed to the next iteration. The process 
stops when f - D is sufficiently small. This approach has the advantage 
of operating only in R' (except for possibly one application in IRl'). 
Polynomial-time algorithms combining bisection with the ellipsoid 
method are given by Padberg and Rao [1980a] for linear programming, 
and by Kozlov et al. [1979] for convex quadratic programming. 

From a practical viewpoint, the main disadvantage of bisection is that 
the systems (5.4) with D too large will be infeasible and may take a large 
number of iterations. It is therefore imperative to use the deep cuts of 
Section 4 and the resulting tests for infeasibility to allow early termination 
in such cases. Note that when a major iteration is started with a new D 

greater than the old (i.e., a feasible solution x has just been generated), 
the final ellipsoid of the previous major iteration with center x can be 
taken as the initial ellipsoid of the new major iteration. If, instead, D has 
just been decreased, we can initialize with the last recorded ellipsoid with 
a feasible center-the algorithm backtracks. Avoiding such backtracking 
leads to the final method that we shall consider. 

Sliding Objective Function Method 

We start as before by generating a feasible solution x to (5.1). We next 
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consider (5.4) with D D = cx. Although x is feasible in this problem, we 
may proceed with the ellipsoid algorithm using the cut cTx>-cTx = , 
since the next ellipsoid can be defined even when the current iterate lies 
on the chosen cut. Hence in this method, we are always considering 
feasible systems (except possibly the first). Whenever a feasible iterate Xk 
satisfies cTXk > cTx = we set x-- Xk and -- cTxk and proceed as 
above. 

This method is probably the most efficient for practical implementa- 
tion. It always considers feasible systems and never backtracks. All 
computation takes place in IR'. If the feasible region of (5.1) is bounded 
and known to lie in Eo, then upper bounds k can be found; 

Dk= mint {k_, cTXk + (CTBkc)/1}". 

Computation can be terminated when D and Dk are sufficiently close. A 
refinement to the method to improve its performance is to set x<-- xk + 
Os whenever Xk is feasible; here s is an ascent direction (e.g., s = c or s = 

Bkc) and 0 is as large as possible so that x is feasible. 
We mention briefly the modifications required to obtain a polynomial 

algorithm using this strategy. First we use the ellipsoid algorithm to 
determine whether (5.1) is feasible. If so, we next determine whether it is 
unbounded, by applying the ellipsoid algorithm either to the constraints 
of (5.2) or to the system 

ATx O 

-x 'O 

-CTX <-1; 

any solution to these inequalities yields an unbounded ray for (5.1). 
Suppose we have determined that (5.1) has a finite optimal solution. Let 
this, as yet unknown, solution be x* and have value t*. Let us assume 
that the feasible region of (5.1) contains a ball S(ao, r); otherwise we 
ensure this by making suitable perturbations. Then the feasible region 
also contains the "cone" C with vertex x* and this ball as its base. For 
any D < t*, we can easily obtain a large enough lower bound on the 
volume of C =C n {x E IR' I cTx 2 t} so that the "sliding objective 
function" method for (5.1) obtains feasible solutions with objective func- 
tion values within E of '* in a number of steps polynomial in L, I log 1/r I 
and log(1/E). Note that C assumes the role played by the ball S(ao, r) in 
the inequality case. From these solutions optimal solutions can be ob- 
tained when E is sufficiently small. 

The sliding objective function method was first proposed by Iudin and 
Nemirovskii [1976b] and Shor [1977a]. Grotschel et al. use it as a tool for 
demonstrating polynomial equivalence of certain combinatorial optimi- 
zation problems. Goldfarb and Todd add the refinement of stepping as 
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far as possible in a steepest ascent or Newton-like direction, while still 
remaining feasible, before effecting an objective function cut. Pickel 
[1979] proposes stepping to a vertex by a simplex-like approach before 
effecting an objective function cut. 

Exact Solutions from Approximate Solutions 

Thus far we have only addressed the approximate solution of linear 
programming problems. For e> 0, x is defined to be an E-approximate 
solution of (5.1) if there exist a feasible solution y and an optimal solution 
x* of (5.1) such that IIy - xi c E and cT(x* - x) c <. A nice technique for 
obtaining an exact solution from an E-approximate solution in polynomial 
time is discussed in Grotschel et al. It involves choosing an appropriately 
small E> 0 and rounding an E-approximate solution, as we shall explain. 
We will assume that (5.1) is known to have an optimal solution-we have 
already observed that primal and dual feasibility can be checked in 
polynomial time. 

Suppose that A is a positive integer and x* is a rational vector of the 
form 

(pil/qi ***XPnlqn ; (5.5) 

Pi, qi integer and I qi A i, i = 1, * ,n. 

Given x E aRn such that x* is in the interior of the ball S(x, 1/(2A 2)), then 
x* is the unique rational vector of form (5.5) in this ball. For y E 

S(x, 1/(2A2)) implies that 11 y -x* 11_ 1/A2, but if y is also of the form 
(5.5) and for some j, yj #& xj*, then I yj-Xj* x > 1/A2 implying that 11 y 
- x* 11-1/i2. Therefore if x, x* are as above, x is known, and x* is 
unknown, we can obtain x* by rounding each component of x to the 
nearest rational p/q having I q I C A by the method of continued fractions 
(see Niven and Zuckerman [1966]). 

We will be interested in the situation where x* is an optimal extreme 
point of the linear programming problem (5.1), and x is obtained from 
the ellipsoid method. Grotschel et al. point out that one can replace the 
objective function vector c of (5.1) by a perturbed vector d = ync + 

? , n-l)T such that the problem 

maximize dTx subject to ATx ' b, x ? 0 (5.6) 

has a unique optimal solution at an extreme point x*, and x* also solves 
(5.1); for example we can set y - 2Ln+L+. It is important to note that log 
-y is polynomial in L and n, so that the size of (5.6) is a polynomial 
function of the size of (5.1). By Cramer's Rule x* is of the form (5.5) for 
A greater than or equal to the absolute value of the largest determinant 
of any n x n submatrix of the constraint matrix of (5.1); in particular we 
can take A = 2L. Now we would like to be able to guarantee that for 
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sufficiently small E > 0 

lIx* - xlI < 1/(2A2) (5.7) 

for every E-approximate solution x of (5.6). If, in addition, E can be chosen 
so that 

log(1/E) is polynomial in n and L, (5.8) 

then an E-approximate solution x of (5.6) can be computed by the ellipsoid 
method in time polynomial in n and L. It follows from a derivation in 
Grotschel et al. that one can specify E as a function of n, L, and 11 c so 
that (5.7) and (5.8) are satisfied. With A = 2L and -y = 2Ln+L+1 one can set 
l/E=- n3/2 2(f2+2f+2)L+2f+5 + 1c lIn"' 22nL+3L+5 Since xj < 2L for each compo- 
nent xj of x, the rounding of x by continued fractions requires at most 
O[n(p + L)] arithmetic operations each involving numbers with at most 
p + L binary digits, where p is the number of binary digits of precision 
maintained in the ellipsoid method. 

Continued fractions are also used by Kozlov et al. to round an approx- 
imate optimal objective function value to the exact optimal value in 
polynomial time. (See Section 7.) 

6. IMPLEMENTATION 

In our description of the ellipsoid algorithm, we have followed Gacs 
and Lovasz in representing an ellipsoid Ek by its center Xk and a positive 
definite symmetric matrix Bk. This representation results in particularly 
simple updating formulas for determining, Xk+1 and Bk+1, and hence Ek+l. 

Unfortunately, however, if these formulas are used to implement the 
ellipsoid algorithm on any currently available finite precision computer, 
roundoff errors will almost invariably cause the computed matrices Bk to 
become indefinite. Consequently, the quantity aTBka, whose square root 
is required, may turn out to be zero or negative. 

To avoid such numerical difficulties one must implement the ellipsoid 
algorithm in a numerically stable way. One approach that can be used is 
to represent the ellipsoid Ek as in (4.3)-i.e. by its center Xk and a 
nonsingular matrix Jk which transforms the unit ball into Ek shifted to 
the origin. Recall that 

Bk = JkJk * (6.1) 

If we make this substitution in formulas (2.5)-(2.6) and define ak = 

Jk a/ii JkTa || and Wk = Jkak, we obtain 

Xk+1 = Xk - TWk (6.2) 

and Bk+1 = S(JkJkT - UJkakakk 'JkT) 

= Jk(I - Uakak )Jk 

= Jk(I - Takak )(Ia- akakT)Jkk 
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where I - = -( _ a)112. From this we obtain that 

Jk+1 = 8 a Jk(I vakakT). (6.3) 

It is evident from (6.1) that Jk can be replaced by JkQk, where Qk is an 
n x n orthogonal matrix, (i.e. QkTQk = I) without any effect on the 
ellipsoid Ek. Consequently, although Bk in (2.4) is unique, Jk in (4.3) is 
not. This also follows from the observation that replacing Jk by JkQk in 
(4.3) corresponds to first rotating the ball {z E IRn R I 1I Z 1 1) before 
applying Jk to it. If one chooses Qk+l to be an orthogonal matrix whose 
first column is the vector ak, one obtains 

Jk1l= Jk+lQk+l (6.4) 

81- Jk(I - vTacAka)Qk+l 

- Jk4 / (Qk+1 - rTakelT) = JkQk+lAk (6.5) 

where e1 denotes the first column of I and Ak= diag(3112(1 -r), 81/2 

.**, 81/2). Except for a factor of 21/8n2 introduced by Khachiyan to 
compensate for roundoff effects, (6.5) is the updating formula given in 
Khachiyan [1979] along with (6.2). 

Since Bk is symmetric positive definite, we can always choose Jk to be 
a lower triangular marix-i.e. Bk = JkJk is the Cholesky factorization of 
Bk. By properly choosing Qk+i in (6.4) one can ensure that Jk?i is also 
lower triangular. This approach has the advantage of saving approxi- 
mately one-half of the memory locations and one-third of the operations 
required for storing and updating a nontriangular Jk. 

Even better yet, one can work with the factorization 

Bk = LkDkLk 
T (6.6) 

where Lk is a unit lower triangular matrix and Dk is a (positive definite) 
diagonal matrix. Formula (2.6) involves only a rank-one change to Bk. 

Hence Xk, Lk and Dk can be updated in 2n2 + 0(n) operations. Some care 
has to be exercised in how this is done since we are subtracting rather 
than adding a rank-one term to Bk, and roundoff errors may cause 
diagonal elements of Dk to vanish or become negative. A specific numer- 
ically stable algorithm which ensures that Dk+l is positive definite is given 
in Gill et al. [1975]. On the other hand, we note that formula (6.3) can 
result in Jk losing rank as a result of roundoff errors. 

It is possible to keep Jk in (6.3) and Lk in (6.6) in product form. Indeed 
such implementations are analogous to the product form of the inverse 
and the Bartels-Golub LU factorization for the basis matrix in the simplex 
method (see Bartels [1971]). 

7. RELATIONS TO THE SIMPLEX METHOD AND OTHER METHODS 

In this section we indicate some of the relations of the ellipsoid method 
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to the simplex method and other computational procedures. Extensions 
to optimization problems other than linear programming are also cited. 

Some interesting observations are contained in the paper by Halfin. 
His view of the ellipsoid algorithm is similar to the analyses originally 
taken by both Shor [1970a], ludin and Nemirovskii [1979b] and more 
recently by Krol and Mirman, and Jones and Marwil [1979]. In effect, all 
of these authors consider the space 1R to be transformed at each iteration 
so that the current ellipsoid is a sphere. Recall from (4.3) that the ellipsoid 
Ek C En is transformed by z = T(x)-- Jk1(x - Xk) into the unit sphere. 
If one performs this "space dilation," to use the terminology of Shor, then 
instead of the ellipsoid shrinking in volume on each step, the feasible set 
(2.1) in the "dilated" space of the z variables, Pk = {zl (A)Tz bk, 

where Ak = JkTA and bk = b - ATxk, expands. If the feasible set has a 
nonempty intersection with the initial ellipsoid, a unit ball, then, since 
this set expands and is contained in the unit ball after each transforma- 
tion, after a polynomially bounded number of steps 0 E Pk, indicating 
feasibility. 

One can of course view simplex pivoting in a similar way. If one uses it 
to find a feasible point satisfying the constraints Ax = b, x- 0, given in 
standard form, then each simplex pivot (on an infeasible row) can be 
thought of as an affine transformation from one space of nonbasic 
variables to another obtained by exchanging one nonbasic and basic 
variable. Partitioning A and x into basic and nonbasic parts A = [B I N] 
and XT = [XBT, XNT], it is clear that simplex steps are performed until 
XN = 0 is contained in the transformed polytope P = {XN I XN ! 0, 

B-1NXN c B-1b), or infeasibility is detected. 
Unlike the other authors who keep an explicit form of the operator Jk 

and update it as in (6.3) on each iteration, Halfin applies the "space 
dilation operator" V1'2[I - ra Wa(k)T] (cf. (6.3)) to Ak to obtain Ak+l, while 
simultaneously updating bk to b kl. Here a(kl is a column of Ak corre- 
sponding to a violated constraint normalized by its length. Computation- 
ally there is little to recommend this approach to that of updating Jk, 

just as in the simplex method there is little to recommend the standard 
tableau version over the revised simplex method using an explicit inverse. 
In the second variant of the ellipsoid method given by Krol and Mirman, 
both the matrix Jk and the constraint data Ak and bk in the affine- 
transformed space are updated on each iteration. 

Halfin also remarks that there is a similarity between the update of 
Ak_i.e, a (k+l) = o1/2(a (k) 

- (7ra )T a (*)/a )Ta(k) )a Mk)), j - 1, j .., m-and 
a simplex pivot. Whether this observation will lead to further understand- 
ing of the relationship of the ellipsoid algorithm to the simplex method 
remains unclear. In fact, the above iterative formula appears to bear a 
closer resemblance to Gram-Schmidt orthogonalization (S = a= 1) than 
to a simplex pivot. Although this resemblance is not mentioned in Halfin, 
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it is shown that a (k) becomes "more orthogonal" to al of the other a (*'s 

after a space dilation based upon a (k). However, in Goldfarb and Todd it 
is observed that if ap , a(*) and a(*) are mutually obtuse, then as a 
consequence of such an ellipsoid step a(k) and a(k) will become more 
obtuse, even though they become more orthogonal to a (k). For the special 
case of a full-rank system of linear equations Goffin [1979b] proves that 
ABknAT _ (n(1- _))k(D + t2), where D is a positive definite diagonal 
matrix, t2 is a matrix with elements whose order of magnitude is 
(1 - a)k, when the cuts are chosen cyclically. Thus in the metric corre- 
sponding to Bk the constraint normals progressively become more and 
more orthogonal. Goffin also shows that in this special case not only does 
the volume of the ellipsoid shrink, but each of its axes shrinks as a 
geometric series, and the iterates xk converge to the solution A-lb at a 
geometric rate which depends only upon n. 

Just as in the simplex method, there are many ways to implement the 
ellipsoid method. These include using and updating: (i) the positive 
definite matrix Bk as described in Section 2 (see Gacs and Lovisz, 
Padberg and Rao [1980a], Grotschel et al.); (ii) the matrix Jk which 
transforms a sphere into the ellipsoid Ek translated to the origin (see 
Shor [1970a], Khachiyan [1979], Krol and Mirman); (iii) the Cholesky or 
LDLT factorization of Bk (see Jones and Marwill [1979], Goldfarb and 
Todd); and (iv) the problem data under the transformation induced by 
Jk (see Halfin, Krol and Mirman). A product form version of (iii) is 
discussed in Goldfarb and Todd. One of the principal computational and 
practical drawbacks of the ellipsoid method is that it is not possible to 
implement it and take advantage of any sparsity in the problem data 
other than block diagonal structure. To save work, it also has been 
suggested that the ellipsoid and relaxation methods be combined into a 
hybrid algorithm (Goldfarb and Todd, Telgen [1980]. If a is large enough 
one can simply scale Bk; i.e., set T = a, 8 = 1 - a2 and a = 0 in (2.5) and 
(2.6). If a >- 1/n the volume ratio is <(1 - (1/n2))n'2 < e-&12n; hence such 
an algorithm is polynomial. A hybrid algorithm which combines the 
ellipsoid method with the simplex method is proposed in Pickel. 

Although relatively little computational experience with the ellipsoid 
method has been reported, at present, the general consensus is that it is 
not a practical alternative to the simplex method for linear programming 
problems. A list of papers reporting computational results appears in 
Wolfe [1980]. In fact the only mildly encouraging results are those 
reported by Krol and Mirman. (However, at the Spring 1980 ORSA 
meeting, Krol and Mirman expressed pessimism about the practicality of 
the method.) Our own computational experience indicates that the slow 
convergence exhibited in the example analyzed in Appendix C is typical. 
We found that in spite of using deepest cuts, surrogate cuts of several 
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types, and other refinements, on the average the parameter a (see 4.2) 
was approximately 1/n. Thus, unless further breakthroughs in implemen- 
tation occur, it is unlikely that the ellipsoid method will replace the 
simplex method as the computational workhorse of linear programming. 

It is also important to mention that the ellipsoid method can be applied 
to problems other than systems of linear inequalities and linear programs. 
As stated in Section 3, the ellipsoid method was developed for solving 
convex (not necessarily differentiable) optimization problems (Shor 
[1970a], ludin and Nemirovskii [1976b]). Clearly much of our discussion 
in the preceding sections is applicable to this more general setting. More 
is said in the next section about the full generality of the method. It is 
more likely that the ellipsoid method will be found to be of greater 
practical value for nonlinear and nondifferentiable problems than for 
linear programming. In particular, as the subgradient algorithm has been 
used successfully to generate bounds for certain combinatorial optimiza- 
tion problems (e.g. the traveling salesman problem, see Held and Karp 
[1970, 1971]), the ellipsoid method may be useful in this context. 

Kozlov et al. [1979] describe a polynomial-time algorithm based upon 
the ellipsoid method and the bisection method for solving convex quad- 
ratic programming problems. After obtaining an approximate optimal 
value, they round it to the exact optimal value f (x*) tls in polynomial 
time using a continued fraction expansion. To obtain an exact optimal 
point for the quadratic programming problem, they first find Im, the index 
set of the constraints which are active at an optimum. This is accom- 
plished by determining the compatibility of a sequence of m systems of 
theformaiTX=fA, iEEIkU {k},aiTx 3i, i=k+ 1, ...,m and f(x)< 
t/s, where Io = 0 and Ik = Ik-i U {k}, k = 1, * , m, if the kth system is 
compatible, and Ik = Ik-i if it is not. They then find a point x which 
minimizes f(x) over these active constraints. Adler et al., Chung and 
Murty [1979], and Jones and Marwil [1980b] have also used the ellipsoid 
method to attack the linear complementarity problem. 

8. COMBINATORIAL IMPLICATIONS 

It is intriguing that the overall approach of the ellipsoid method does 
not depend directly on the availability of an explicit list of the defining 
inequalities, or even on linearity. In a very interesting paper, Grotschel, 
Lova'sz and Schrijver examine the ellipsoid method in a general frame- 
work, establish theoretical results based on the general form of the 
algorithm, and use those results to design polynomial-time ellipsoid 
algorithms for a number of combinatorial optimization problems. (Be- 
cause of the history of misleading and fallacious conclusions concerning 
the ellipsoid method and its relationship to combinatorial problems, we 
hasten to add that the combinatorial problems solved in Grotschel et al. 
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are not among the A2-hard problems, unless - = AY.) In this section we 
will attempt to portray the interesting way in which Grotschel et al. have 
applied the ellipsoid method to combinatorial optimization problems. 
(We recently learned of work by Padberg and Rao [1980c] which deals 
with the same general approach as Grotschel et al.) 

Consider the problem 

maximizecTx, xEPCR'. 

The basic operations of the ellipsoid method can be divided between two 
routines. The master, or optimization routine (Opt) performs the calcu- 
lations associated with updating xk and Bk, and testing for termination. 
It then calls (with z = Xk) a separation routine (Sep) which solves the 
separation problem: 

given z E IR determine that z E P, or find a hyperplane 

that separates z from P, i.e. find a vector 7T E Rn (8.1) 

such that rTz > gTy, Vy Ep 

The separation routine supplies the optimization routine either with the 
information that Xk E P, or with 7 as in (8.1). In the former case a, the 
outward normal to the next cut, is set to -c; in the latter case it is set to 
v. The optimization routine can then calculate xk+l and Bk+1. The essential 
character of Opt is as described in Sections 2 and 5, although certain 
important technical details (e.g., the use of factorizations) can vary; Sep 
is less predictable. In standard implementations of the ellipsoid method 
for conventional linear programming problems, e.g., as described in 
Sections 2 and 5, Sep is provided with a list of all defining inequalities 
aiTx C 8i of P, which it searches for violations at x= Xk. However the 
updates of xk and Bk in Opt depend only on the specific inequality 
reported by Sep, not on the manner in which it was computed, nor on 
any further information concerning the feasible region P. So Sep need 
not work by exhaustive search; any method of solving the separation 
problem (8.1) will do. We will see in a moment why it might be interesting 
in certain kinds of problems to use a separation routine not based on 
exhaustive search of the defining inequalities. 

An Example: Network Synthesis 

The character of the combinatorial results of Grotschel et al. can best 
be explained with the help of an example. Although the following network 
synthesis problem (see Gomory -and Hu [1961, 1962, 1964]) is not dis- 
cussed by Grotschel et al., it nicely illustrates their approach in attacking 
combinatorial problems with the ellipsoid method, and its context is 
familiar to most operations researchers. The data for any instance of this 
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problem consist of a positive integer n and two lists of n' = n(n - 1)/2 
nonnegative integers: dij and r1j for all 1 c i < j c n. The problem is to 
design at minimum cost an undirected communication network with n 
nodes and prescribed two-terminal flow values. We denote the set of 
nodes by N = {1, * ., n}. In the n'-vector x = (xij) of nonnegative 
decision variables each component xi1 represents the capacity of the link 
{i, j} between nodes i and j # i. (In the discussion of this example we 
will denote the center of the kth ellipsoid by xk rather than Xk, so that x 
is the {i, j}-component of xk.) The network must have sufficient capacity 
to accommodate a flow rate of rij units between nodes i and j # i when 
they act as the unique source-sink pair. The cost of providing capacity xij 
on link ti, j} is dij . xij, and the objective is to provide sufficient capacity 
to meet all n' requirements r1j at minimum total cost dTx = 1lstCi<j<n dijxij. 
Note that the decision variables are permitted to assume noninteger 
values. For example when n = 3 and d = r = (1, 1, 1)T, the unique optimal 
solution is x = (1/2, 1/2, 1/2)T 

In the special case where all dj = 1 (or d is constant over all links) 
Gomory and Hu [1961] (see Ford and Fulkerson [1962]) give a beautifully 
simple procedure for solving the synthesis problem. Gomory and Hu 
[1962] also point out that the general problem, although not solvable by 
their simple procedure, is at least a linear programming problem, one 
which unfortunately has an enormous number of defining inequalities. 
From the Max-Flow Min-Cut Theorem of Ford and Fulkerson we know 
that a given x E IRn' satisfies the single requirement rij if and only if the 
capacity of every i - j cutset is at least rij, i.e., if and only if for every 
Y c N having i E Y, jE Y N\Y 

X(Y, Y) -EheY,k(=- Xhk ~> rij. (8.2) 

Thus the set of all feasible solutions x of our synthesis problem can be 
described as the polyhedron P consisting of all x - 0 satisfying (8.2) for 
all 1 - i < j - n. A large number of the conditions (8.2) can obviously be 
discarded. If n > 3 then for a given 0 # Y c N there will be different pairs 
ti, j} and ti', j'} such that i, i' E Y and j, j' E Y, so one of the constraints 
x(Y, Y) > rij and x(Y, Y) - rij is implied by the other. Hence we can 
write the network synthesis problem as the linear programming problem 

minimize dTx (8.3a) 

subject to x(Y, Y) ry for all X 5, Y i N, (8.3b) 

x : 0 (8.3c) 

where ry = max{rij: i E Y, i E Y}. This still leaves us with 2n - 1 
distinct inequalities of the form (8.3b), each involving only n' = n(n - 1)/ 
2 variables. Moreover all of the conditions (8.3b) having ry > 0 define 
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facets of P; none can be deleted without properly relaxing the feasible 
set. To apply the ellipsoid method in the standard way directly to (8.3) 
would result in two overwhelming problems caused by the large number 
of inequalities (8.3b) relative to the size 

1 = llog nj + L1Si<jsn,rij#O [log ri>j 

+ ElXi<j-n,dc41o llog dijj + 2(n2 - n + 1) 

of the problem encoding. 
The first difficulty concerns the performance of the optimization rou- 

tine, Opt. The size L of an explicit encoding of our linear programming 
problem (8.3) is not bounded by a polynomial function of 1. If the 
parameters that prescribe the number of iterations, the number of digits 
of accuracy, etc., are set at values based on L, as in Sections 2 and 5, then 
the amount of work performed by Opt will be at least proportional to L, 
which can be larger than 2n-1. As noted in Section 2, we can help ourselves 
here if we can provide x0 E P, R > 0, p > 0 such that S(xo, p) 5 P C 
S(x?, R), and log R and log(1/p) are bounded by polynomials in 1. 

Note that (8.3) is obviously feasible-we can set x r, or for an initial 
interior point of P we can set x??; = rij + 1 for all 1 c i < j ' n. Now let 
rm = max{rij: 1 < i <jc n} and let R = NI (rm + 2). The ball S(x0, R) 
of radius R about xo is an appropriate initial ellipsoid. Any x E 1R' not 
in S(x?, R) has at least one component less than zero or strictly larger 
than rm; in the former case x - P, in the latter either x 0 P or there 
exists x E P n S(x, R) such that dTi T< d Tx for all nonnegative d. (It is 
easy to see from the nonnegativity of all constraint coefficients in (8.3) 
that S(x?, R) in fact contains all extreme points of P.) Furthermore 
S(x?, R) n P contains S(x?, 1). Because log R is bounded by a polyno- 
mial function of 1, this initialization guarantees that the number of 
iterations to compute an E-approximate solution of (8.3) and the number 
of digits of accuracy can be set to values bounded by polynomials in I and 
log(1/E). 

Our second major obstacle concerns the performance of the separation 
routine. Given a class A'of optimization problems in En in which the 
feasible region of each K E Kis described in the problem encoding by a 
list of defining inequalities, then exhaustive testing of those inequalities 
is a straightforward algorithm that solves the separation problem in time 
obviously bounded by a polynomial function of the size of the encoding. 
In combinatorial problems such as our network synthesis problem the 
description of the feasible region in the problem encoding is not in terms 
of the explicit list of defining inequalities (8.3), and, as we have seen, 
enumeration of such a list cannot be performed in time bounded by a 
polynomial function of 1, the size of the encoding. Therefore, we must 
provide an efficient subroutine for the associated separation problem that 
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somehow generates a violated inequality if the current test point is not 
feasible. This is especially easy for the network synthesis problem; in fact 
the separation routine that we will now describe was suggested by 
Gomory and Hu [1962] for another purpose, as we shall see later. 

Suppose that x E 1E", and we wish to solve the separation problem for 
(8.3) at x. Clearly if any component Xij < 0, then the nonnegativity 
constraint x-1 > 0 separates x from P. Suppose x >- 0. Let us solve for 
each 1 c i < j 5 n the i - 'maximum flow problem in the complete graph 
on N with capacity function x; let vij be the computed i - j maximum 
flow value. If vij3 rij for all 1 - i < j c n, then x E P. If some vij < r2j, 
then the flow algorithm produces an i - j cutset (Y, Y) having 
x(Y, Y) = vij < rij, so x(Y, Y) > rij is a violated inequality. Thus we can 
solve the separation problem for (8.3) in at most n' = n(n - 1)/2 
repetitions of a maximum flow routine. (In fact Gomory and Hu [1961] 
have shown that we will need only n - 1 repetitions, since one can quickly 
determine n - 1 "dominant requirements" whose satisfaction implies 
satisfaction of all n' requirements.) There are several polynomial-time 
implementations of the maximum flow algorithm; the flow algorithm of 
Malhotra et al. [1978] will solve each of our flow problems in 0(n3) 
computations, each involving numbers with at most (p c log[(2R + 2)n] 
+ p binary digits, where p is the number of digits of accuracy maintained 
in the updates. 

Based on the comments above it should now be evident that we can 
compute an E-approximate optimal solution of (8.3) in time polynomial in 
1 and log(1/E). We can then round our E-approximate solution to an exact 
solution as described in Section 5. For this to be done in time polynomial 
in 1, we need to choose A and E so that log(1/E) is bounded by a polynomial 
in 1, (not L, the size of the encoding of the linear programming formulation 
(8.3) of the problem). That our linear programming basic solutions can 
arise from nonsingular systems with 2n-1 - 1 rows and columns looks 
discouraging. Note however that all but q c n' basic columns are slack 
(unit) vectors. So the values assumed by the basic xij-variables arise from 
a q x q subsystem Ax = b, where A is a submatrix of the (0,1)-constraint 
matrix of (8.3). It follows that det A c [n(n - 1)/2]! < (n2)! < n2n, 

permitting us to select A = n2n2 , which allows E to be chosen so 
that log(1/E) is polynomial in 1. (One suitable choice is 1/E = 

2n?4n2n4+4n3?4n2?n + 25lidiIn4n3+6n2+/2.) Thus we achieve a polynomial-time 
algorithm for the network synthesis problem. 

This approach may seem a roundabout attack on a straightforward 
problem. One could have deduced immediately that the network synthesis 
problem is solvable in polynomial time, since it can be posed as a linear 
programming problem whose size is a polynomial function of 1, as noted 
in Gomory and Hu [1964]. First form the directed graph G = 
(N, E), where E is the set of all n' ordered pairs (i, j), 1 c i < j 5 n. Now 
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for each of the n' possible source-sink pairs s, t define n' flow variables 
flS, one for each (i, j) E E. The network synthesis problem can be posed 
as 

minimize dTx 

subject to: for every s, t E N, s # t 

Xi?+1j-n fAS PZ- 1ii ft = 0 for all i E N\{s, t) (8.4) 

Zs+1-j-n <nf,:t- E,1,s-_1 f'j, 
t 

r8t 

-xi; c f1dJ cxij for all 1 c5 i < j c< n. 

The size of the linear programming formulation (8.4) is evidently poly- 
nomial in 1, so direct application of the ellipsoid method to (8.4) yields a 
polynomial-time algorithm. However, while (8.3) has approximately 2n-1 

rows and n2 columns, the numbers of rows and of columns in (8.4) are 
both 0(n4). (Gomory and Hu's [1961] result on dominant requirements 
permits this to be reduced to 0(n3).) The significance of the development 
above is that while the total size of the formulation (8.3) is much larger 
than the total size of (8.4) for large n, the smaller number of columns in 
(8.3) yields a much better bound on the number of ellipsoid computations. 
In particular it illustrates that the ability to generate violated constraints 
efficiently can result in polynomial behavior, even if the total number of 
defining constraints is exponential in the size of the problem description. 

Most combinatorial optimization problems can, like the network syn- 
thesis problem, be recast as linear programming problems in which the 
number of defining inequalities is exponential in the size of the original 
problem encoding (although it is usually very difficult to find an explicit 
description of the defining inequalities). In many of these problems, 
including many A&-complete problems, one can specify values of xo, R, 
p, p, and A that guarantee a polynomial bound on the number of 
computations performed in the optimization routine of the ellipsoid 
method. In the terminology of complexity theory, the ellipsoid algorithm 
provides a polynomial Turing reduction from the optimization problem 
to the separation problem (see Garey and Johnson [1979]). To solve such 
problems in polynomial time it suffices to give a polynomial-time sepa- 
ration routine. Grotschel et al. have indicated how to accomplish this for 
a variety of problems including: optimum branching, undirected Chinese 
Postman tour, minimum weight perfect matching, maximum weight 
matching, minimization of a submodular set function, and stability num- 
ber in a perfect graph. For the latter two problems no polynomial 
algorithm was previously known. Though the others were known to be in 
P, the approach of Grotschel et al. is new, and the ease with which it 

embraces a variety of problems is provocative. 
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The casual reader should resist any temptation to conclude that one 
should be able to immediately show that Y = A by exhibiting a 
polynomial-time separation routine for, say, the traveling salesman prob- 
lem. Certainly one can use the approach of Grotschel et al. to establish 
that separation problems associated with some -hard problems are 
also .4'9-hard, as in the example that follows. But it might be naive to 
expect it to be any easier to find a polynomial-time algorithm for such a 
separation problem than for the problems previously known to be A5f- 
complete. 

The forthcoming example of an AY-Lhard separation problem is a special 
case of the problem of finding an optimum extreme point of a (possibly 
unbounded) polyhedron. 

Optimal Extreme Points of Polyhedra 

First consider the problem 

maximize (cTx: x E Ext(P)}, (8.5) 

where P C JRn is a polytope (bounded polyhedron) given by a list of 
defining inequalities, c E IRn is given, and Ext(P) is the set of extreme 
points of P. The ellipsoid method, since it is a polynomial-time algorithm 
for linear programming, provides a polynomial-time algorithm for (8.5). 
However if we remove the condition that P be bounded, problem (8.5) is 
ADI-complete. If P is unbounded, we cannot simply solve (8.5) by employ- 
ing the ellipsoid method (or the simplex method) on the associated linear 
programming problem 

maximize (cTx: x E P}. (8.6) 

The difficulty is that (8.6) may have no (finite) optimal solution even 
when (8.5) does-i.e., cx may assume arbitrarily large values over x E 
P-as occurs in the example of Figure 6. 

To see that the general (i.e., possibly unbounded) form of (8.5) is A?- 
hard, consider the special case of a directed graph G = (V, E) with 
distinct vertices s and t, and let PG be the polyhedron given by the 
solutions x: E -> IR of 

>(i,j)eE X(i, i) -(h,i),E x(h, i)= -1,i=t 
O, i E V\{s, t} 

x(i, j)-O V (i, j) E E. 

The extreme points of the unbounded polyhedron PG are precisely the 
incidence vectors of directed s - t paths in G. Thus the unbounded 
version of (8.5) includes as a special case the problem of finding a longest 
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directed s - t path in a directed graph G. The latter problem is -A'P- 
complete; it includes as a special case the Hamiltonian path problem and 
is, therefore, very closely related to the traveling salesman problem. 

Example: An A4YHard Flow Decomposition Problem 

To illustrate how the ideas of Grotschel et al. can be used to show that 
certain combinatorial problems are -A'Y-hard, we consider application of 
the ellipsoid method to the linear programming problem 

maximize (cTx: x E PG}, (8.7) 

where PG is the convex hull of the extreme points of PG, and the problem 
description provides only the facets of PG, not those of PG. This is clearly 
equivalent to the longest path problem, which is A9-complete. Yet there 
is no difficulty in overcoming the technical considerations needed to 
ensure that the computations performed by the optimization routine will 
be polynomial-bounded. The inherent difficulty of this problem must 
therefore be a reflection of an.inherently difficult separation problem. 

The separation problem for (8.7) concerns.flow decompositions in two- 
terminal directed networks. Given a vector x: E -E JR one must decide 

X2 

PI 

p3 

p2 

Xi 

Figure 6. The two-dimensional unbounded polyhedron P has three 
extreme points; Ext(P) = {p 'p2, p3}. With respect to the maximization 
of x2 both p' and p3 are localy optimal among the points in Ext(P). 
Should the locally optimal solution pl be discovered by the ellipsoid 
method, or the simplex method, that it is globally suboptimal would not 
be deducible without backtracking. 
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whether x E PG. It is easy to determine if x E PG; one simply checks 
x 2 0 and the conservation of flow conditions. This is equivalent to 
determining whether x decomposes into a sum of directed s - t path 
flows and conservative flows around directed cycles. However member- 
ship in PG is more complicated. Given that x E PG, answering if x E PG 
is equivalent to answering whether the s - t flow x can be decomposed 
into a sum of directed s - t path flows only. It follows that the problem 
of determining whether a nonnegative s - t flow in a directed network 
decomposes into a sum of directed s - t path flows is A-hard; there 
exists a polynomial-time algorithm for this problem only if =. 

Polynomial Equivalence of Optimization and Separation 

Our comments thus far have not fully conveyed the strength of the 
results of Grotschel et al. Suppose that -kis a class of polytopes K each 
with known x? and 0 < p < R such that 

S(x?, p) C K C S(x?, R}. (8.8) 

We have observed so far that the existence of a polynomial separation 
algorithm for Y implies the existence of a weak (i.e., E-approximate) 
optimization algorithm that is polynomial in log R, log(l/p), log(l/E) and 
L, the size of the encoding. Grotschel et al. show that it suffices to have 
a polynomial algorithm for all K E kfor the weak separation problem: 

given z E IRn either determine that there exists y E K 

such that liz - Yfl C E, or give a vector 7T E Rn, 

1LvT11 > 1, such that TTZ> 7Ty - E, Vy E K. 

Furthermore they establish the converse of this result, namely, if the 
optimization problem is weakly solvable for X then so is the separation 
problem. These results formalize a notion that underlies much previous 
work in combinatorial optimization: the idea that a good characterization 
of a class of polytopes seems to go hand in hand with a good optimization 
algorithm over that class. As Lovasz [1980] points out, the absence until 
Khachiyan [1979] of a known polynomial-time linear programming al- 
gorithm was a prominent challenge to this notion. Recent work by Karp 
and Papadimitriou [1980] also deals with the relationship between opti- 
mization and separation in general combinatorial optimization problems, 
under different assumptions than Grotschel et al. 

Grotschel et al. demonstrate the polynomial equivalence of weak 
separation and weak optimization for any class Yof convex (not neces- 
sarily polyhedral) bodies satisfying (8.8), and they use this additional 
generality in solving the stability number problem for perfect graphs in 
polynomial time. Since Khachiyan's work was motivated by the work of 
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Shor [1970a], and ludin and Nemirovskii [1976b] in convex optimization, 
it should not be surprising that these results go beyond the polyhedral 
domain. However, the rounding arguments that establish the equivalence 
of weak and strong (exact) optimization depend on polyhedral structure. 

Grotschel et al. give an interesting algorithmic application of their 
result that polynomial-time optimization algorithms yield polynomial- 
time separation algorithms. The well known greedy algorithm is a poly- 
nomial-time algorithm for the maximum weight independent set problem 
in matroids. Thus one gets a polynomial-time algorithm for the related 
separation problem. Now given k matroids our ability to solve the 
separation problems in each, immediately yields a polynomial-time sep- 
aration algorithm for k-matroid intersections, and hence one for (frac- 
tional) maximum weight independent vectors in the intersection of k 
matroids. When k = 2 the vertices of the intersection of the two matroid 
polyhedra will be integer, and thus Grotschel et al. provide an alternative 
to the algorithms of Edmonds [1968], and of Lawler [1976] for the (2-) 
matroid intersection problem. 

As with the application of the ellipsoid method to general linear 
programming, one must be careful not to confuse the lovely results of 
Grotschel et al. concerning theoretical efficiency with practical consid- 
erations. They do not suggest that their polynomial-time combinatorial 
algorithms should be used, as is, in the practical solution of such problems. 
Even in the network synthesis example which has a reasonably modest 
bound on the number of iterations and a very easy separation routine, 
the required number of bits of accuracy to guarantee the polynomial 
bound is orders of magnitude beyond what one would be willing to 
maintain in practice. 

A Connection with Column Generation 

It is also interesting from a practical point of view to note that the 
general approach of Grotschel et al. has a dual relationship with a well- 
known technique in linear programming, that is, column generation. In 
the same sense that one can iterate the ellipsoid method without explicit 
knowledge of all of the rows of the constraint matrix, so can one iterate 
the simplex method without explicit knowledge of all columns. Moreover 
while the amount of work performed by the ellipsoid method seems much 
more sensitive to the number of columns than the number of rows, 
experience with the simplex method has been exactly the reverse. That 
the network synthesis problem can have an enormous number of rows, 
but a manageable number of columns, coupled with our ability to easily 
generate rows by a flow algorithm, makes the ellipsoid method seem well 
suited for this problem. Note that the linear programming dual of the 
network synthesis problem (8.3) has few rows and many columns. Fur- 
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thermore the same separation routine that generates rows for the ellipsoid 
method could be used to generate columns for the simplex method 
(applied to the dual of (8.3)). Indeed Gomory and Hu [1962] proposed 
exactly that. (Note the substantial advantages of using column generation 
to solve the dual of (8.3) as opposed to solving (8.4), or the 0(n3) version 
of (8.4).) Clearly any combinatorial problem that is solvable by the 
ellipsoid method in conjunction with a polynomial time separation algo- 
rithm Y'can also be solved (in its dual form) by the simplex method using 
92to generate columns. And the same problem characteristics that make 
the ellipsoid method well suited also commend the simplex method. Of 
course the simplex method (in its conventional implementations) is not 
polynomial. But from a practical standpoint we might not expect to 
achieve any better performance from the ellipsoidal approach to these 
problems. 

9. CONCLUDING REMARKS 

We conclude the main body of this paper with some remarks on the 
potential value of the ellipsoid method, and we address several questions 
raised by Khachiyan's result. 

From a practical point of view, analytical and computational investi- 
gations of the ellipsoid method have not been encouraging. There are 
two principal reasons for this. First, the rate of convergence of the 
ellipsoid method, even with the use of deep cuts and surrogate cuts, is 
rather slow, especially when compared to practical experience with the 
simplex method. The worst-case bound for the simplex method, in any of 
its several implementations, is an extremely poor indicator of the 
method's actual performance; in fact, practitioners have observed that 
the number of iterations tends to be proportional to the number of 
constraints, m. On the other hand, testing thus far indicates that the 
worst-case bound for the ellipsoid method appears to be a better measure 
of the dependence of its computational effort on problem size. 

Second, the ellipsoid method does not seem to be able to exploit 
sparsity. Thus, even if the number of iterations could be reduced signif- 
icantly, the ellipsoid method would still not be a practical algorithm for 
solving large sparse linear programming problems unless this drawback 
could also be overcome. The method may be of greater interest in the 
solution of convex, not necessarily differentiable, optimization problems. 

One criticism directed against the ellipsoid method is that it does not 
provide optimal dual variables and it does not lend itself to sensitivity 
analysis or to the addition or deletion of constraints or variables. How- 
ever, once a problem has been solved by the ellipsoid method, this 
information can readily be obtained by conventional techniques. 

It is important to point out that because of the limitations of finite 
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precision arithmetic it is unlikely that any reasonable implementation of 
the method would be polynomial. Indeed some researchers have been so 
distressed by the presence of L, the length of the problem encoding, the 
bound on the number of iterations, that they are unwilling to consider 
the algorithm to be polynomial even with full precision. The presence of 
L is certainly unpleasant from a practical point of view, but is perfectly 
natural to the accepted Turing machine model of computation. Also, note 
that L is bounded by (mn + m + n) (2 + log a), where a is the magnitude 
of the largest number in the data. Even in such elementary polynomial- 
time algorithms as Dijkstra's 0(n2) shortest path algorithm (see Lawler 
[1976]), the total computational effort depends on log a, in that each of 
the 0 (n 2) steps involves operations on numbers with as many as 1 + log 
a bits. Because log a appears in the bound on the number of iterations in 
the ellipsoid method, the bound on its total computational effort is a 
function of (log a)2. If log a is well accepted, (log a)2 should cause no great 
distress. 

It should be clear from our discussion of Grotschel et al. in Section 8 
that the ellipsoid method is a powerful theoretical tool and a unifying 
element in the analysis of the computational complexity of combinatorial 
optimization problems. This is especially striking given the noncombi- 
natorial nature of the method. One of the most important and long- 
lasting effects that Khachiyan's result may have is to expand our per- 
spective of linear programming and related combinatorial problems. 
Given the extensive use of the simplex method, it is ironic that many 
fundamental questions concerning its computational behavior remain 
unanswered. Perhaps the excitement caused by the ellipsoid method will 
generate further research in this area. 

APPENDIX A: COMPUTATIONAL COMPLEXITY AND LINEAR 
PROGRAMMING 

For the reader unfamiliar with computational complexity we will 
attempt to convey some of the background relevant to the question of 
the existence of a polynomial-time linear programming algorithm. The 
discussion will be informal; the reader is encouraged to consult Aho et 
al., Garey and Johnson, and Karp [1972, 1975] for rigorous treatments of 
computational complexity. Note that in these references the problems 
that go under the familiar names linear programming, traveling salesman, 
etc., are not the usual optimization problems from the operations research 
literature, but related "yes-no" decision, or feasibility, problems. For 
example, the decision problem of determining whether there exists a 
traveling salesman tour of length no greater than k, a constant specified 
in the input, replaces the usual problem of finding a minimum length 
traveling salesman tour. However, for the traveling salesman problem, 
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linear programming, and most of the problems of interest here, the 
optimization and decision versions are equivalent in a certain sense. It is 
easy to solve the optimization problem in polynomial-time, given a 
polynomial-time subroutine for the decision problem, and vice versa. (See 
the discussion of Turing reducibility in Garey and Johnson.) Thus the 
results on L and AY9described in the aforementioned papers, though they 
explicitly deal only with decision problems, yield information about the 
computational difficulty of the associated optimization problems. 

In order to evaluate the effectiveness of an algorithm we might examine 
how its running time varies with problem size. Running time can be 
represented by the total number of elementary arithmetic operations: 
comparisons, additions, multiplications, etc. The size of a problem is 
taken to be the length (number of symbols) of an encoding of the problem 
data in which integers are represented in, say, binary form. (It is always 
assumed that a method of encoding the problem data is part of the 
problem definition.) For example the m x n linear programming problem 

maximize cTx subject to ATx< b, x> 0 (A.1) 

can be encoded by a list of integers: n, m, and the entries ai1 of A, /i of b, 
and cj of c in some specified order, separated by sign bits. The binary 
expansion of a nonnegative integer p has 1 + Llog pj bits if p is positive, 
and 1 bit if p = 0, where logarithms are base 2 and LxJ is the greatest 
integer less than or equal to x. So the length of such an encoding of the 
linear programming problem (A.1) is 

L = (2 + Llog nj) + (2 + Llog mi) 

+ (2mn + c Llog I ai jij) (A.2) 

+ (2m + EX1iim,#i o Llog 18i11J)+ (2n + 
Ej5n,cj0 Llog I cjIJ). 

Let J denote a (generic) problem, i.e. an infinite family of (specific) 
problem instances Q E S. For example J might represent the linear 
programming problem (A.1), and each choice of n, m, A, b, and c 
constitutes an instance Q E J. Let - be an algorithm that solves S. For 
every Q E Q denote by fI(Q) the running time of s' in solving Q, and let 

I Q I denote the length of the encoding of Q. In order to claim that v is 
efficient we would like to be able to exhibit for each positive integer s a 
"guarantee" 

f,(Q) - g(s) for all Q EC9 such that I Q I c s (A.3) 

with the property that g does not grow too rapidly as a function of s. We 
might be displeased if the best possible guarantee g had g(s + 1) : 2g(s) 
for all s (or even g(s + k) - Xg(s) for all s ? t, where X > 1, and k and t 
are positive integers) indicating exponential growth in the number of 
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computations performed by 4 as problem size increases. sl is said to be 
a polynomial-bounded or polynomial-time algorithm if there exists a 
polynomial function g(s) satisfying (A.3). Problem 9 is called polyno- 
mially solvable if there exists a polynomial-time algorithm for J. The 
class of all polynomially solvable (decision) problems is denoted by 9. 
Note that in the determination of whether a problem is polynomially 
solvable it does not matter whether we encode integers in their binary 
expansions, or decimal expansions, or expansion in any base { larger than 
1, since such a change increases the length of the encoding by at most a 
factor of log 4. 

Polynomial boundedness was proposed by Edmonds [1965] and inde- 
pendently by Cobham [1965] as a theoretical criterion for algorithmic 
efficiency, and has been widely studied. Among the problems for which 
there are known polynomial-time algorithms are the assignment, shortest 
path, maximum flow, and minimum cost flow problems. There are a large 
number of classical optimization problems in operations research for 
which there is no known polynomial-time algorithm. These include the 
traveling salesman problem, integer linear programming, and various 
production scheduling problems. No one has managed to show that there 
exists no polynomial-time algorithm for these problems, but the theory 
of A2-completeness offers substantial evidence of their difficulty. It 
implies, roughly, that there exists a polynomial-time algorithm for, say, 
the traveling salesman problem if and only if every problem solvable by 
a polynomial-depth branch-and-bound algorithm is solvable by a poly- 
nomial-time algorithm. 

The decision form of each of the problems noted above is a member of 
the class . Informally we can regard AY to be the class of all (decision) 
problems solvable by a backtrack search (or branch-and-bound) algo- 
rithm for which the depth of the search tree and the number of compu- 
tations at each node (subproblem) can be bounded by fixed polynomials 
in the size of the problem encoding. (So for every "yes" (feasible) instance, 
there is some sequence of branches that leads to a "yes" answer in 
polynomial time.) -41A includes a large number of well-known problems; 
indeed it should be clear that l C 4aY since a polynomial-time algorithm 
is trivially a polynomial-depth backtrack search algorithm (that never 
backtracks). Of course the breadth of a polynomial-depth tree may grow 
exponentially, as unfortunately occurs in the obvious backtrack search 
algorithms for the traveling salesman problem, so we might well imagine 
that there could be problems in A'Y not in M. The question of whether 
9 4 or e = A0 is unresolved; it is often called the "biggest" open 
problem in theoretical computer science. Most researchers consider it 
very unlikely that 9= Y. 

Although the < AY question is unresolved, problems that must be in 
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,VY\g, if Y #4 7A have been identified. Among these are the AY-com- 
plete problems first examined by Cook [1971]. Essentially, Cook showed 
how to devise from a polynomial-depth backtrack search algorithm for 
any problem 9, a polynomial-time algorithm ,w that transforms instances 
of -9 into equivalent instances of the satisfiability problem in the propo- 
sitional calculus. Every problem . in A2 is in this way polynomially 
reducible to satisfiability, which is itself in A'?. Hence satisfiability can 
be regarded to be as hard as any problem in A2; it is said to be complete 
in 4, or 14-complete. In particular a polynomial-time algorithm a? for 
satisfiability would yield for each Q in 1 a polynomial-time algorithm 
for &9, which first performs , and then a?. 

Now suppose that a problem 9 is known to be 49-complete, e.g. the 
satisfiability problem, and suppose further that there is a polynomial- 
time reduction that takes instances of -9 to instances of problem ?2'. Then 
?2' is said to be 1Y-hard. (The terms "A4-hard" and "AY-complete" are 
used in several different senses, corresponding to different notions of 
reducibility. The use of "149-hard" in Section 8, as in Garey and Johnson, 
is in the weaker sense of Turing reducibility. A problem that is 14-hard 
in any of these senses has no polynomial-time algorithm unless 7 = 

-4/9.) If the 147k-hard problem 2' can be shown to be in AY, then .9' is 
149-complete. Cook's Theorem thereby simplifies the requirements for 
demonstrating that additional problems are also A7-complete. He showed 
in this way that the clique problem for graphs is 47-complete. Karp 
[1972] used Cook's Theorem to show that many well-known optimization 
problems, including the traveling salesman problem, are 47-complete. A 
host of researchers have since contributed to the list of 1Y-complete 
problems, which includes many familiar to all operations researchers. 
(More than 300 of these problems are collected in Garey and Johnson.) 
In fact the decision versions of most of the standard (deterministic) 
discrete optimization problems in the operations research literature were 
shown to be in ?, or to be 147k-complete, some time ago. However, one 
problem that until recently resisted classification was linear program- 
ming, perhaps the most widely studied of all of the problems in operations 
research. 

Although Dantzig's simplex algorithm, in its usual implementations, 
has been overwhelmingly successful in the solution of real-world linear 
programming problems, these implementations are not polynomial- 
bounded. Klee and Minty [1972] gave the first example of an infinite 
family of linear programming problems in which the number of simplex 
pivots (with the "approximate steepest ascent" pivoting rule) grows like 
2n, while problem size grows like a polynomial function of n. Jeroslow 
[1973], Avis and Chvital [1976], and Goldfarb and Sit [1979] have shown 
that similar behavior can occur with other pivoting rules. Edmonds (in 
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an unpublished note), Zadeh [1973], and Cunningham [1979] have shown 
that even within the special class of network flow problems, simplex 
pivoting rules can exhibit such nonpolynomial behavior. 

On the other hand, it was considered extremely unlikely that linear 
programming might be -4"Y-complete, because the duality theorem of 
linear programming would then yield an unlikely duality for all problems 
in -A2. Some researchers felt that linear programming must occupy a 
middle position in -I', neither in 3 nor -4'Y'complete. Many believed 
linear programming to be in 3, but failed to provide a proof. Khachiyan 
[1979] reported how to implement the ellipsoid method to solve the linear 
programming problem in polynomial time, and thus settled the issue of 
where linear programming resides in the 9 - 4A' hierarchy. 

APPENDIX B: MINIMUM VOLUME ELLIPSOIDS 

Here we show that the formulas given in (2.5)-(2.7) and (4.1)-(4.2) 
yield an ellipsoid Ek+j of minimum volume containing the appropriate 
part of Ek. Since affine transformations multiply volumes by a constant 
factor, we may assume Ek is the unit ball and a E R' is a multiple of the 
first unit vector. We denote the jth unit vector by ej, j = 1, 2, , n. 

Hence suppose 

E={xEERIIIxII C1} and H=f{xEIRnI e,Tx5 --a) 

and consider the general ellipsoid 

E+ = {x E P' 1Jl(-o 1<1 (B.1) 
= {x E IR'I (x-xo)TBl(x-xo) c 1) 

where B = jjT. 

THEOREM B.1. If -1/n c a < 1, the minimum volume ellipsoid con- 
taining E n H is E+, where 

xo = -Tei and B = - eelT) (B.2) 

and 

T= (1 + na)/(n + 1), a= 2(1 + na)/((n + 1)( + a)) 

and 8 = (n2/(n2 - 1))(1 - a2) (B.3) 

The theorem will follow from Lemmas B.3 and BA4 below, but first we 
need to prove 

PROPOSITION B.2. (Hadamard's Inequality). Let Y be an n x n nonsin- 
gular matrix. Then 

I det Y H c XIi=, 1I YejI 

with equality if and only if the columns of Y are orthogonal. 
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Proof. Since Y is nonsingular A = yTy is positive definite and has a 
Cholesky factorization A = LL T where L is lower triangular. By definition 

ajj= Ej-Xl 12i + 12j (B.4) 

Thus 

(det Y)2 = det A = (det L)2 = fIJ=1 1l_JP a11 = =Yej2. 

Equality holds if and only if ji = 0 for all] j 7 i by (B.4), i.e., if and only 
if A = yTy is diagonal or, equivalently, the columns of Y are orthogonal. 

Now we come to the first lemma. Note that E n H contains the 2n - 

1 points -ei and -aei ? (1-? a2)112ei i = 2, e , n. Let -y ( - a2)1/2. 

LEMMA B.3. If-I < a < 1, the ellipsoid of minimum volume containing 
the points -e1 and -aeoe1 + yei, i = 2, * * , n, is E+ given by (B.1)-(B.3). 

Proof Let Y = J` with columns yi, y2, * * *, yn and let yo = J-lxo. 
Suppose E+ in (B.1) contains the specified points. Then 

1-y - yol1 (la)yi + (ay, + yo) 1 (B.5) 

and 

II-ayl ? yyi -you = j?yyi + (ay, + yo) c 1 (B.6) 

for i = 2, , n. 
From (B.6) we deduce that 

j81 ayi + yol (B.7) 

and from (B.7) 

(1 (- a)yi 11 '5 1 + ,8. (B.8) 

Since one of ?yyi makes an acute angle with ayi + yo, (B.6) gives 

1 _YYi 112 + 1 Iayl + yo 112 ' 1 

or (B.9) 

-lyyll 11 _#2)1/21 ...** 

Now (B.8) and (B.9) with Hadamard's inequality yield 

I det Y I -< I-I',=, lYlyj1 (B.lO) 
C5 ((I +'8 )(I _ 

82)(n-l)/2)/((l - a)(I _ .2) (n-l)/2) = f(fi8) f(_a), 

where f(q) =(1 + q)(1 - 72)(n)/2 It is easy to check that f'(f8) = 

(1 - f2)(n-3)/2 X (1 - n,8)(1 + ,G); thus f(f8) is maximized for 0 c 8 c 1 by 
8= 1/n. Hence, assuming E+ contains the specified points, we have 

vol E+/vol E = I det J I = 1/I det Y I > (f(-a))/f(1/n) 

-(n/(n + 1))(n2/(n2 - 1))(n-l)/2(1 - a)(1 - 2)(n-l)/2 
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Now equality is achieved if and only if we have equality in (B.8), (B.9) 
and Hadamard's inequality in (B.10), and ,B = 1/n. Thus yi, Y2, * * , Yn 
are mutually orthogonal, whence B1 =J-J- = YTY and B are 
diagonal. Furthermore 

ejTB-lej=yTyj= f{(n + 1)2/(n2(1 - a)2) for 1= 1 

11 n 2 
- 1)/(n'(1 - a 2)) for ~> 1 

from equality in (B.8) and (B.9) and,8 = 1/n; thus B is as given in (B.2)- 
(B.3). Finally, equality in (B.8) implies equality in (B.5) and that yo is 
parallel to yi with IYo -= 1 ? Y11. Then (B.7) implies that the negative 
sign must be taken, so that 

yo ((1 -lIY1P)/IIY1IP)Y1 -Ty 

with T = (1 + na)/(n + 1). Thus xo = Jyo =-TJyl = -Tee and the proof 
is complete. 

LEMMA B.4. If -1/n c a < 1, the ellipsoid E+ given by (B.1)-(B.3) 
contains E n H. 

Proof. Let xT= (i, * * , (n) and note that 

B- =diag((n + 1)2/(n2(1 - a)2), (n2 - 1)/(n2(1 -a2)) 

, (n2 - 1)/(n 2(1 - a) 2)). 

Hence 

(x - xo)TB1(x - Xo) = ((n2 _ 1)/(n2(1 - a2))) 1X 112 

+ ((n + 1)2/(n2(1 - a)2) 

- (n2_ 1)/(n2(1 -a2))) 12 

+ 2((n + 1)(1 + na)/(n2(1 - a)2)) 41 

+ (1 + na)2/(n2(1 - a)2) 

= ((n2 - 1)/(n2(1 - a2))) (liX 112 ) 

+ (2(n + 1) (1 + na)/(n2(1 

- a2) (1 -a)))4i2 

+ (2(n + 1) (I + naf)/(n 2(1- ab)2)) (, 

+ 2(n + 1)(1 + na)a/(n2(1 

- a2)(1 - a)) + 1 

= ((n2- 1)/(n2(1 - a 2)))(11 X12- 1) 

+ (2(n + 1) (1 + na)/(n2(1 -a )( 

- 
a))){t 1~ +a) ({i 1) + 1. 
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Thus if -1/n c a < 1, -1 < ( -a and 1 x I < 1, the above expression is 
at most one, and x E E+. 

The uniqueness of the minimum volume ellipsoid containing E n H is 
a special case of a result of K. Lowner (see Danzer et al. [1963], p. 139): 
every compact set in Rn with positive volume has a unique circumscribing 
ellipsoid of minimum volume. See also John [1948]. Konig and Pallaschke 
give another proof of Theorem B.1 using this uniqueness result. 

A more general version of Theorem B.1 involving cuts by two parallel 
hyperplanes is given in Shor and Gershovich, Konig and Pallaschke, and 
Todd [1980]; according to Shor and Gershovich this result originated 
with Gulinski and Polyak. 

APPENDIX C: AN EXAMPLE 

We describe an example where the iterates {Xk} and {Bk} can be given 
explicitly and which demonstrates that convergence can be very slow 
even when the deep (or even deepest) cuts of Section 4 are used. This 
example also shows that the iterates {Xk} need not converge to the 
feasible set if that set has zero volume. If the feasible set is empty, then 
even an infinite sequence of iterations employing deepest cuts will not 
necessarily reveal infeasibility. 

We again use ej for the jth unit vector, and denote the components of 
x (Xk) by (j ((k,j). Suppose we are trying to find x E Rn satisfying 

(jc 0, -(j- 0 for j= 1, 2, ... , n; (C.1) 

even though the solution set has zero volume, suppose we ignore the 
perturbations of Section 2. 

Let us start with 

xO =(1,1,..,1)T and Bo=n2I. 

The outward normals to the constraints are ?e1, j = 1, 2, ..., n, and 
(+ej)TBo(+ee) = n2 for all i. Thus the a corresponding to each constraint 
is ?1/n. 

The algorithm chooses one of the violated constraints, say (i _ 0, as 
the cut; thus from (4.1) T = 2/(n + 1), a = 4n/(n + 1)2 and 8 = 1. It 
follows that 

x= (-(n - 1)/(n + 1), 1, , 1)T and 

B1 = diag(n2((n - 1)/(n + 1))2, n2, ... , n2). 

Note that again each a is ?1/n. 
Suppose that after k iterations, our algorithm has made ikj cuts based 

on j > 0 and i*j cuts based on (j _ 0, where i*j are nonnegative integers 
with i-j -i,j = 0 or 1 and f']=, (ikj + i-j) = k. Then one can show by 
induction that 

k,j = (-(n - )/(n + l))iIj+iki j-1, * . n 
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and Bk is the diagonal matrix 

Bk = n2 ,j=1 ((n - 1)/(n + k))2(iti+ik,)ejeyT; 

hence again each a is ?1/n. 
If the algorithm always chooses the (deepest) cut with the lowest index 

j-i.e., it alternatively chooses 4, c 0 and -, c 0-then k,k -* 0 but 
~k,2 = =k,n =1 for all k; hence the sequence {xk} does not converge 
to the feasible set. Moreover, if the same algorithm is used on the 
infeasible problem obtained by replacing the constraint-(n - 0 by -$ 

-1/2, the same sequence of iterates {;xk} is generated, and infeasibility 
is not detected, a is always less than one, no matter how many iterations 
are performed (assuming exact arithmetic is used). This example dem- 
onstrates the significance of perturbing the feasible set, if it is not known 
to have positive volume. (See Section 2.) 

Choosing the coordinates in turn in the example results in a sequence 
of cuts compatible with perturbation. Hence the arguments of Section 2 
guarantee that feasibility will be detected after at most 6n(n + 1)L 
iterations. Even so, the convergence is still extremely slow being only 
linear with ratio ((n - 1)/(n + 1))l/n. This is not a great improvement 
over that obtained when cuts through the center are employed. With 
a = 1/n, the volume reduction achieved using a deep cut is equivalent 
to that obtained with 4 to 5 iterations with cuts through the center; thus 
we might expect the total number of iterations to be reduced by a 
factor of four or five. Indeed, with r(a) denoting the volume reduction 
using a deep cut (see (4.4)), it can be shown using Taylor expansions 
of ln[r(1/n)/(r(0))4] and ln[r(1/n)/(r(0))5] that (r(O))5 c r(1/n) = 

(n - 1)/(n + 1) c (r(O))4 for n - 2. 
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