
New cryptographic election protocol with

best-known theoretical properties... and seems

good enough for practical use

Warren D. Smith

Email: warren.wds@gmail.com;

URL: math.temple.edu/∼wds/homepage/works.html

(paper=#89 there; see also the voting+crypto survey paper 80)

There are (now) two practical good-security approaches to running

crypto-secure secret-ballot elections... BB-homo methods based on

Bulletin Boards and homomorphic encryption, and our new

method.

1

BB-homo New scheme

No double, fake, or invalid votes X X

Only listed authorized voters vote X X

Get correct election result X X

Provides NIZK proofs of above claims X X

Can prove did/didn’t vote X

“Coercion-resistant” X

Work (# modular expntns) O(N + V) O(N + V)

Storage (if V votes by N voters) O(N) O(N + V)

Communctn (above voting+BB downlds) O(1) O(N + V)

Heavily studied X

Applicable if votes are... additive anonymizable

Uses homomorphic encryption/mixnets Homo.E. Mixnets

2

How BB-homo works (simplified):

0. Prepare list of authorized voters & keys to read their signatures.

1. Voters post signed encrypted vote, & ZK-validity proof, on BB.

2. Except: BB reencrypts vote before posting (provides voter with

designated-verifier ZK-proof it validly did so).

3. Votes summed in encrypted form by multiplying encryptions.

4. Decryption key is immaculate shared secret. Sharers

cooperatively decrypt total.

Encryption of vote V (g, h, t fixed public random elements in fixed

public elliptic curve group of prime≈ 2256 order; t = gℓ;

ℓ =immaculate shared secret; r =secret variable random integers):

V → (gr, hV tr)

.

3

How JCJ works (simplified):

0. Initially assume have pre-prepared list of authorized voters &

their encrypted credentials. (No individual knows en/decryption

transform; each voter’s credential is private bitstring.)

1. Collect, mix & encrypt votes. (Votes include timestamps,

credentials, & ZK-validity proofs; decryption key is immaculate

shared secret but encryption key is public.)

2. By self-comparison of vote-list credentials via Plaintext Equality

Testing (PET) remove all but one of each equivalence-class of

identically-credentialed votes. [This one could (optionally) be the

chronologically last.]

3. Remove timestamps from votes.

4. Re-mix & re-encrypt resulting pruned timestamp-free vote list.

5. Compare votes via PET to (mixed & encrypted) official

credential list; remove bogus-credentialed votes. Mix+re-encrypt.

6. Cooperatively-decrypt, post, & then count (plaintext) votes.

4

Disadvantages of JCJ

1. Quadratic time - slow!:

• Self-comparison:
(

V
2

)

comparisons via PET for V votes.

• Comparison of V votes to N -voter credential list: V N PETs.

2. In addition to being slow, the total communication of ZK-proofs

that the PETs were done right, is uadratic in size. Unacceptable if

V ≥ N ≥ 108.

3. Anything much slower than O(V + N) permits “denial of service

attacks” – submitting many bogus votes effectively cancels election.

Tools/ideas for fix:

1. Can we use hashing of credentials to perform self-comparison

and official-list comparison tasks in only O(V + N) steps?

2. “Secret encryptions” = no individual knows either the

encryption or decryption process. (Some mutually distrustful

people cooperatively know, but won’t reveal since distrust.)

5

Development of idea

Yes, the 2 ideas can be made to work. First realized using Secure

General MultiParty Computation (SGMPC) as “big gun.” But

SGMPC=extremely slow; resulting “O(V + N)” scheme slower

than O(V 2 + V N) quadratic scheme if V < 109. Impractical!

Next devised special purpose MPCs to speed up & simplify

computation. Result: total work≈ 100(V + N) exponentiations in

an elliptic curve group and total communication ≈ 100(V + N)

packets (each, say, 1Kbit) taking 30 hours to transmit even over

single 1 GHz line if V + N ≈ 109.

Dan Bernstein ECC exponentiation software: 1.4M pentium cycles

max, so < 0.35msec at 4GHz. Then 1000 computers (costing

$106 ≪ $0.01 per voter) do it in < 10 hours even without special

hardware. Now start long details detour...

6

ElGamal public-key Encryption & Decryption

Secret message M . Decryptor publishes two fixed random group

elements g, h in elliptic curve group of prime order P ≈ 2256.

Decryptor secretly knows ℓ where h = gℓ. If elliptic curve discrete

log problem is hard, infeasible for anybody else to determine ℓ.

Can encrypt M as 2-tuple (gr, hrM) where r is a random nonzero

integer mod P . (Note: because of r, encrypt same M twice ⇒

different encryptions.)

Decryption: divide hrM by (gr)ℓ to get M .

Reencryption: (gr, hrM)→ (gr+s, hr+sM).

7

ZK proofs of same exponent (DL=)

Peter Prover: knows two publicly known quantities x = gℓ and

y = hℓ have same discrete logarithms ℓ (to public bases g and h).

Wishes to convince Vera Verifier of this – but without revealing

what ℓ is. Procedure (Chaum&Pedersen, early 1990s):

1. Peter chooses random r mod P (but keeps it private);

2. Peter computes & prints a = gr & b = hr;

3. Vera chooses random challenge c mod P & tells it to Peter;

4. Peter computes & prints z = r + ℓc mod P ;

5. Vera verifies that gz = axc & hz = byc.

[And protocol can be made non-interactive (NI) by Fiat-Shamir

hash trick: make challenge

c =standard-secure-hash(x, g, y, h, a, b), which Peter computes

& publishes, & Vera merely verifies.]

8

ZK proofs of: encryption, knowledge of plaintext,

and exponentiation validity

1. Using above NIZK DL= protocol, Peter can convince Vera that

he’s produced an ElGamal encryption (gℓ, hℓM) of a message M

provided by Vera, but without revealing the secret key ℓ (the group

elements g and h are public keys). Or he can show that

(gr+ℓ, hr+ℓM) is an ElGamal reencryption of the original

encryption, without revealing r.

2. Peter can prove knowledge of ℓ in the encryption (gℓ, hℓM), thus

proving knowledge of the plaintext M , but again without revealing

either ℓ or M .

3. Peter can compute Xz and prove he used the same z as for a

previous Y z.

9

ANDing and ORing (NI)ZK proofs

ZK-prove logical AND of two claims: simply present ZK-proofs of

both. Indecomposable AND of two NIZK proofs involves

“challenges” inside it that are constructed from a secure hash

function of both component proofs. The point: some enemy cannot

now surgically excise component NIZK proofs and glue them

together with other components to get his own NIZK ANDed proof

of something else – well, can, but the resulting proof will not have

hashing property and hence obviously produced by surgery by

somebody unauthorized, not by original authorized prover.

ZK-prove logical OR of two claims [not revealing which]:

ZK-proofc(A ∨B) ≡ ZK-proofd(A) ∧ ZK-proofe(B) ∧ {d⊕ e = c}

where the subscripts c, d, e of the proofs denote the integer

“challenges” presented to the prover by the verifier. (Prover can

“forge” one proof...)

10

“Designated verifier” ZK proofs

...A brilliantly simple idea.

To ZK-prove statement X in such a way that only Bob will believe

your proof:

ZK-prove: “X OR (proof of knowledge of Bob’s secret key).”

Bob: “of course, this person does not know my secret key, so X

must be true.”

Alice: “Bob could have told this person his key (actually in typical

use ‘this person’ is Bob). So I have no reason to believe X.”

Note Bob cannot re-use the proof he is given to convince anybody

else of X.

11

Bitstring “commitments”

Can commit n bits of information by publishing an AES-like

encryption of a (n + 2s)-bit message consisting of those n bits

padded with s one-bits followed by s random bits (s is a security

parameter). Can later reveal the committed bits by revealing

(s-bit) secret encryption/decryption key.

(Other schemes also possible, e.g. commit x by publishing gxhr

where r random and g, h fixed public random group elements.)

Verifiable Shamir Secret sharing

Dealer who wants to share secret S selects random polynomial

F (x) = S + r1x + r2x
2 + · · ·+ rt−1x

t−1

of degree < t, & privately gives Sj = F (j) to sharer j for

j = 1, 2, . . . , Q. Here S & the rk are random integers mod P ...

12

Verifiable Shamir Secret sharing (continued)

...for some public prime P . Any t sharers can reconstruct F (x) &

hence determine S by polynomial interpolation mod P , but t− 1

sharers cannot. “Linear.” Immaculate shared secrets S can be got

by having each sharer generate own random secret, then (acting as

dealer) deal it out, & then the sum of all of them is S...

As described, scheme vulnerable to cheating dealers (who distribute

bogus shares & thus do not really reveal their secret) or cheating

sharers (who “reveal” bogus shares to learn the secret while honest

players do not). “Verifiable” secret-sharing schemes

[Gennaro-Rabin2, Hirt-PhD] don’t have those weaknesses. They

require dealer to commit secret before dealing it out, & commit to

all the shares he deals out, & ZK-prove the share-commitments

correspond to the committed secret; also require the sharers who

decide to reveal their shares, to open the share commitments, thus

proving share validity.

13

Threshold-t multiparty cooperative decryption

Decryption exponent K is constant term P (0) of a degree-(t− 1)

polynomial where decryptor j knows Kj = P (j) but nobody

individually knows P (0). Then P (0) deducible by Lagrange

polynomial interpolation from ≥ t values of P (x). Lagrange interp.

is weighted sum K =
∑

j KjLj (weights Lj =Lagrange interp.

coefficients= public integers); can do exponentiation to power K via

xK = x
P

j
LjKj =

∏

j

(xKj)Lj .

Each decryptor j should broadcast NIZK-proofs he really is

exponentiating with his correct private exponent Kj . Note K never

learned by anyone.

14

Plaintext equality test (PET)

Let (α, β) = (gr, M1h
r) and (γ, δ) = (gs, M2h

s) be two ElGamal

ciphertexts (where r and s are random and g, h public group

elements). We wish to test whether M1=M2 without revealing

r, s, M1, M2. Divide: (α/γ, β/δ) = (gr−s, 1hr−s). Get ElGamal

encryption of 1=M1/M2?

Do cooperative ElGamal decrypt of zth power (z random,

immaculate shared secret, 0 < z < P) of this; note 1z = 1 but

Mz 6= 1. (As usual all parties broadcast ZK proofs they are

exponentiating with their correct secret exponents.)

15

ZK-proofs of ballot validity and interval

membership

1. Yes-no election: valid vote is encryption of “1” or “0.” Voter

could provide an ORed ZK-proof that some ElGamal cryptotext

(gr, hrkM) encrypts either M = 1 or M = 0, but not revealing

which. (We already showed how to do these component proofs.)

2. If votes consist of integers in a range [0, 2b − 1], i.e. b-bit

integers, the voter could simply provide the elementwise product of

b ElGamal 2-tuples,

(gr, hrkM) =
b−1
∏

j=0

(grj , hrj k2
jMj)

where M =
∑

j 2jMj & each Mj =one-bit, proved as before.

3. If 55 possible legal votes, then need ZK-proof of membership in

the integer interval [0, 54].

16

Correction of common myth about Boudot &

interval membership

F.Boudot discussed more general and supposedly more efficient (for

large b) interval-membership ZK-proofs than this simple procedure,

and also allowing other interval sizes than powers of 2. But his

“more efficient” procedure actually is “less efficient” and “more

complicated” than this, because Boudot’s depends on assumption

integer factoring hard, while we depend on assumption discrete

logarithms in EC groups hard. So we can use much shorter key

lengths to get same security, causing just one step in Boudot’s

method to take more work than our entire procedure – Boudot’s

methods having fewer “steps” is irrelevant. However I

[http://math.temple.edu/∼wds/homepage/works.html #80]

pointed out & repaired this error by devising ECC replacements for

Boudot’s ZK-proof components.

17

Mixnets (=several consecutive Mixers)

“Mixer” inputs N encrypted data and outputs same N items, in

shuffled order & re-encrypted. Gives ZK-proof he did that, but not

revealing shuffling perm or re-encryption transformations.

Mixnet literature complicated and/or flawed. Now outline

simple & good-enough linear-work scheme [see picture]:

1. Shuffler: C ← A→ B. (Each letter is N data.)

2. Verifier presents random challenge-seed κ.

3. Shuffler uses κ as pseudo-random seed to generate (in standard,

crypto-strong way) 2-coloring of C with ⌊N/2⌋ & ⌈N/2⌉ elements.

Publishes the coloring; reveals re-encryptions used to generate the

C’s from corresponding A’s (reveals correspondences) & similarly

to generate the B’s that come from C’s.

Cheating shuffler produced m exceptional (unshuffled or

wrongly-encrypted) elements? Detection chance≥ 1− 2−m.

18

Hashes of secret credentials

Suppose σ is voter’s secret credential. Given ElGamal encryption

(gr, hrσ) of σ: want to produce a standard hashz(σ), ZK-prove we

did, but not reveal σ to anybody. Later might want to do again but

using different hash-key z so that don’t get the same hash of the

same σ on this 2nd run.

Let h = gℓ where ℓ, z, ℓz are immaculate shared secrets. Method:

1. Compute (gr)ℓz = hrz from the first tuple entry;

2. Compute (hrσ)z = hrzσz from the second tuple entry;

3. Divide to get σz; (but nobody knows σ or z)

4. Output first 50% of σz’s bits to get deterministic hashz(σ).

Cooperating sharers can exponentiate to shared-secret exponents

without anybody ever learning the shared secrets or σ.

(Broadcasted ZK-proofs of exponentiation validity of course.)

19

“Coercion resistance” [JCJ]

“We allow adversary to demand coerced voters vote in specified

way, abstain from voting, or disclose secret keys. Scheme

coercion-resistant if it’s infeasible for adversary to determine

whether a coerced voter complies with demands.”

Double-edged sword: voter cannot prove/disprove he voted.

(Immediately knows whether his vote appeared on BB, & can prove

did/didn’t register.) Hence: voter can’t be coerced, but vulnerable

to “EA discards 10% of votes from Black Florida counties.”

However: if each voter submits many votes (which is legal), & to

several mistrustful EAs, & tries again at new EA if vote not

posted, that attack less effective.

Votes are “Additive” or “Anonymizable”?

Anonymizable: your vote unlikely to be unique. “Instant runoff

voting”: non-additive. Additive⇒Anonymizable: bit-splitting.

20

Simple Mixer scheme - Problems & Fixes

Problem: As described, was not truly zero knowledge.

Fix: prove each C corresponds to either of two A’s.

Problem: Bogusm proofs accepted with prob. 2−m.

Fix: Provide K different proofs: then 2−Km. Also can do

“fractional” proof (faster but less secure): same but 0 < K < 1.

Usually K = 0.02 should be good enough in practice; then very fast.

21

