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Abstract

We show that k-means clustering is an NP-hard optimization problem, even for instances in the plane.
Specifically, the hardness holds for k = Θ(nε), for any ε > 0, where n is the number of points in the
instance, and k is the number of clusters.

1 Introduction

In the k-means clustering problem we are given a finite set of points S in Rd, an integer k ≥ 1, and the goal
is to find k points (usually called centers) so to minimize the sum of the squared Euclidean distance of each
point in S to its closest center. In this brief note, we will show that k-means clustering is NP-hard even
in d = 2 dimensions. This result has also been shown by Mahajan, Nimbhorkar, and Varadarajan [3] with
a reduction from Planar 3-SAT. Our proof instead will use a reduction from Exact Cover by 3-Sets (X3C).
We will prove the hardness by considering k-means instances with weighted points. We observe that this is
without loss of generality since we can replace a point x of weight w with w distinct points very close to x.

We define the decisional version of the weighted k-means clustering problem.

Definition 1. Given a multiset S ⊆ Rd, an integer k and L ∈ R, is there a subset T ⊂ Rd with |T | = k such

that
∑
x∈S mint∈T ||x− t||2 ≤ L?

Our theorem is the following.

Theorem 2. The k-means clustering problem is NP-complete even for d = 2.

It is easy to see that the so defined k-means clustering is in NP. To show that it is indeed NP-complete we
will reduce from the Exact Cover by 3-Sets problem (X3C) which is known to be NP -complete [1]. It is
defined in the following way.

Definition 3. Given a finite set U containing exactly 3n elements and a collection C = {S1, S2, . . . , Sl} of
subsets of U each of which contains exactly 3 elements, are there n sets in C such that their union is U?

During the analysis, we will make extensive use of the well-known property that, for the k-means cost
function, the cost of a cluster C can be computed as 1

|C|
∑
{x,y}∈(C

2) ||x − y||2 (see for example [2]). For

weighted points this translates to

1∑
x∈C w(x)

∑
{x,y}∈(C

2)

w(x)w(y)||x− y||2 (1)

where w(x) denotes the weight of the point x.

2 Reduction

We start by showing some preliminary results that will help us in the proof of hardness.
Consider the grid Hl,n on the left of Fig. 1. This grid is composed by the “rows” Ri (1 ≤ i ≤ l), alternated

with the rows Mi (1 ≤ i ≤ l − 1). The row Ri is composed by the 6n+ 3 points {si, ri,1, ri,2, . . . ri,6n+1, fi}
(where si, fi weigh w2 and the other points weigh w), and the row Mi is composed by the 3n points
{mi,1,mi,2, . . . ,mi,3n}, all of weight w2. Distances and weights are shown on the right side of Fig. 1.
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Figure 1: On the left side, the grid of points Hl,n. On the right, details of the rows

We set the following values:

h = w1/3, d = 2

√
w + 1

w
, ε =

1

w2
, α =

8

w
− 1

w2(w + 1)

Now for fixed l and n, everything is defined in terms of w. Finally we let k = l(3n + 2) + (l − 1)3n and
L1 = lw(6n+ 4).

Definition 4. We define two possible (3n+ 2)-clusterings of Ri (1 ≤ i ≤ l).

A For 1 ≤ j ≤ 3n, the j-th cluster of Ri is {ri,2j−1, ri,2j}. Also it has the clusters {si} and {ri,6n+1, fi}.
B For 1 ≤ j ≤ 3n, the j-th cluster of Ri is {ri,2j , ri,2j+1}. Also it has the clustes {si, ri,1} and {fi}.

Definition 5. We say that a k-clustering of Hl,n is nice if each mi,j is a singleton cluster, and each Ri is
grouped in an A-clustering or in a B-clustering.

Lemma 6. A nice k-clustering of Hl,n with t rows grouped in an A-clustering costs L1 − tα.

Proof. Fix a row Ri. For the clusters containing si and fi, by equation (1), an A-clustering pays w3

w2+w (d−
ε)2 = 4w − α, while a B-clustering pays w3

w2+wd
2 = 4w. Now the lemma follows by observing that both

clustering pay (2w)(3n) = 6nw for the remaining clusters of the row. �

Lemma 7. For w = poly(n, l) large enough, any non-nice k-clustering of Hl,n costs at least L1 + Ω(w). On
the other hand, any nice k-clustering of Hl,n costs at most L1.

Proof. The second part of the lemma is immediate by Obs. 6. For the other part, take any non-nice clustering.
If it has a cluster containing points from different rows then it would cost at least Ω(hw) = Ω(w4/3). Similarly,
if it has a cluster containing some mi,j and mi,j′ (j 6= j′), then it would cost at least Ω(w2). In both cases,
for w = poly(n, l) large enough, the cost is more than L1 + Ω(w).

Now consider a non-nice clustering with each mi,j singleton and with no clusters containing points from
different rows. We want to infer that if a row (say Ri) is not grouped as an A-clustering or a B-clustering
then the cost of the clustering is at least L1 + Ω(w).

First consider the case when Ri has a singleton cluster and the rest of the points are grouped in 3n + 1
clusters of size 2; since Ri is not nice, then the singleton cluster must be some ri,j , while the points si and fi
must be in two clusters of size 2: this brings an overall cost for Ri of 2(4w) + (6n− 2)w = (6n+ 6)w, while
a nice clustering of Ri costs at most (6n+ 4)w.

It remains to consider the case when the clustering of Ri has clusters of cardinality m ≥ 3. Note that this
allows to use more than one singleton. We claim that a cluster of cardinality m costs at least w

3m(m2 − 1).
Let us conclude the proof, then we will prove the claim. Consider one of these clusters of cardinality m ≥ 3.
In a nice clustering we would have used at most dm2 e clusters for the m points in the cluster, so the best we
can achieve is by using the dm2 e − 1 “saved” clusters as singletons. Even so, for all these m+ dm2 e − 1 points
this clustering pays at least w

3m(m2 − 1). On the other hand, a nice clustering pays (a) w(m+ dm2 e − 1) if
si and fi are not among these points; (b) w(m+ dm2 e− 2) + 4w = w(m+ dm2 e+ 2) if either si or fi is among
these points1. In both cases the cost of the nice clustering is strictly better than w

3m(m2− 1) for any m ≥ 3.
We conclude by proving our claim. Take a cluster containing m ≥ 2 consecutive points in Ri (if the points

are not consecutive the cost will be more). First we observe that we can restrict ourselves to consider the

1The case when both si and fi are among these points would bring an even lower cost: this follows by the fact that a nice
clustering has either si or fi in a singleton cluster (i.e. one of them has no contribute to the cost).
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case when si, fi are not in the cluster. To see why, note that adding si (the case with fi is analogous) to the
cluster A = {ri,1, ri,2, . . . , ri,j}, for some 1 ≤ j ≤ m − 1, brings an incremental cost which is greater than
adding ri,j+1 to A: this follows by observing that si is further than ri,j+1 from the mean of A and si weighs
more than ri,j+1. Therefore w.l.o.g. it is enough to show that the cost of C = {ri,1, . . . , ri,m} is at least
w
3m(m2 − 1). Using equation (1) and observing that there are m− i (unordered) pairs of points at distance
2i in C, we can conclude that the cost of C is

1

mw

∑
i=0

w2(2i)2(m− i) =
1

mw
4w2

(
m
m(m+ 1)(2m+ 1)

6
− m2(m+ 1)2

4

)
=
w

3
m(m2 − 1)

�

ri+1,2j−1 ri+1,2j ri+1,2j+1

· · ·

1

yi,j

xi,j

· · ·

ri,2j+1ri,2j 1ri,2j−1

· · ·

· · ·

y′i,j

x′i,j
mi,j

h

√
h2 − 1

λ

Now we describe the reduction: given an instance U = {1, 2, . . . , 3n}
and C = {S1, S2, . . . , Sl} of X3C, we want to build a (decisional) instance
of k-means with a set of (weighted) points S ⊆ R2, a certain number of
clusters and a cost limit L ∈ R.

We let S = Gl,n ∪X, where Gl,n is a slight modification of Hl,n, and

the set X =
⋃l
i=1Xi depends on the collection C.

We refer to the figure on the right to explain the details, where we set

λ = h

(
2(w2 + 1)

w(2w + 1)

)1/2

Note that λ = Θ(h). The new grid Gl,n is identical to Hl,n except for the
fact that the points in the rows Mi are not perfectly (vertically) aligned
with the points in the rows Ri. The reason is that we want the points xi,j and x′i,j (as well as the points

yi,j and y′i,j) to be at the same distance λ from the point mi,j
2. It is easy to understand that the previous

results about Hl,n apply to Gl,n as well, since the distance between two adjacent rows in Gl,n is again Θ(h).
Now we define the set X. The spots xi,j , x

′
i,j , yi,j , y

′
i,j (for 1 ≤ i ≤ l − 1, 1 ≤ j ≤ 3n) are not all points

in X but only possible positions of points. Actually exactly half of these positions will be occupied: for any
1 ≤ i ≤ l−1, 1 ≤ j ≤ 3n, xi,j ∈ Xi iff j /∈ Si; x′i,j ∈ Xi iff j ∈ Si; yi,j ∈ Xi iff j /∈ Si+1; y′i,j ∈ Xi iff j ∈ Si+1.
All these points have weight 1. Finally we set the number of clusters to k (recall k = l(3n+ 2) + (l − 1)3n)

and the cost limit to L = L1 + L2 − nα, where L2 = 6n(l − 1)h2 2w
2w+1 = 6n(l − 1) 2w5/3

2w+1 .
We now show some properties about the points in X.

Definition 8. A cluster C is good for a point z /∈ C if adding z to C increases the cost of exactly h2 2w
2w+1 .

Lemma 9. For any 1 ≤ j ≤ 3n, 1 ≤ i ≤ l − 1, the following holds:

• The clusters {mi,j}, {ri,2j−1, ri,2j}, and {ri,2j , ri,2j+1} are good for xi,j.

• The clusters {mi,j}, {ri+1,2j−1, ri+1,2j}, and {ri+1,2j , ri+1,2j+1} are good for yi,j.

• The clusters {mi,j} and {ri,2j , ri,2j+1} are good for x′i,j.

• The clusters {mi,j} and {ri+1,2j , ri+1,2j+1} are good for y′i,j.

Proof. By equation (1), a cluster composed of mi,j and a point at distance λ has a cost of w2λ2

w2+1 = h2 2w
2w+1 .

In the other cases we start with a cluster of two points of weight w at distance 2, which has cost 2w.
W.l.o.g. assume these two points are in (0, 0) and (2, 0). Note that in all the cases we are adding a point

either in (0,
√
h2 − 1) or in (1, h). In the first case, using (1), the enlarged cluster will cost 4w2+4w+2w(h2−1)

2w+1 =

2w + h2 2w
2w+1 . In the second case, similarly, we have a cost of 4w2+2w+2wh2

2w+1 = 2w + h2 2w
2w+1 . �

Lemma 10. Consider any optimal k-clustering of Gl,n ∪X. Then for w = poly(n, l) large enough,

(a) the clustering induced on Gl,n is nice;

(b) points in X are in different good clusters.

2Note that it must be the case that λ > 1
2
d(xi,j , x

′
i,j). This holds for w large enough since λ = Θ(h) = Ω(w1/3) while

d(xi,j , x
′
i,j) is upper bounded by a constant.
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In addition, if there are t rows Ri grouped in an A-clustering, then this clustering costs L1 + L2 − tα.

Proof. First note that we can easily find a k-clustering of Gl,n∪X of cost L1+L2: start with a nice clustering
of Gl,n with all rows grouped in a B-clustering, and then for each 1 ≤ i ≤ l, 1 ≤ j ≤ l − 1 add xi (or x′i) to
the j-th cluster of Ri and put yi (or y′i) in a cluster with mi,j . In this way, each point in X is added to a
different good cluster, which leads to a total cost of L1 + L2.

Now consider an optimal k-clustering of Gl,n ∪ X. To prove (a), suppose by contradiction that this
clustering is not nice: then, by Lemma 7, it would cost at least L1 + Ω(w), which for w = poly(n, l) large
enough is more than L1 + L2 (note that L2 = o(w)).

To prove (b), note that the only way to catch up for assigning a point x ∈ X to a non-good cluster is
to increase the number of rows grouped in an A-clustering. However, by Lemma 6, even having all the rows
grouped in this way would have a saving in the cost of at most O(lα). Since α = O( 1

w ), while adding a point

x ∈ X to a cluster costs at least Ω(h2) = Ω(w2/3), then, for w = poly(n, l) large enough, it is more convenient
choosing good clusters than paying a little less by grouping the rows in A-clusterings. Finally notice that
once we assign a point to a good cluster, the new (enlarged) cluster will not be good for any other point,
thus any optimal clustering must assign the points in X to different good clusters. �

The following lemma proves theorem 2.

Lemma 11. The set Gl,n ∪X has a k-clustering of cost less or equal to L if and only if there is an exact
cover F ⊆ C for the Exact Cover by 3-sets instance.

Proof. Fix any optimal k-clustering and suppose it costs less or equal to L. Lemma 10 allows us to define
F = {Si : Ri is grouped in an A-clustering}, and this set will contain at least n sets.

Consider any 1 ≤ i ≤ l such that Ri is grouped in an A-clustering (i.e. Si ∈ F) and consider a j ∈ Si
which implies x′i,j ∈ Xi and y′i−1,j ∈ Xi−1. Since Ri is grouped in an A-clustering, the point x′i,j cannot be
in the j-th cluster of Ri because this is not a good cluster for the point. The same holds for y′i−1,j . In other
words, it holds the following claim: for any 1 ≤ i ≤ l, 1 ≤ j ≤ 3n, if the set Ri is grouped in an A-clustering
and j ∈ Si then the j-th cluster of Ri is not a good cluster for any points.

This means that x′i,j is in a cluster with mi,j and y′i−1,j is in a cluster with mi−1,j . This implies that
yi,j (or y′i,j) cannot be in the cluster containing mi,j but has to be added to the j-th cluster of Ri+1 which
therefore has to be a good cluster since the solution is optimal. Analogously xi−1,j (or x′i−1,j) cannot be in
the cluster containing mi−1,j but has to be added to the j-th cluster of Ri−1. By induction the j-th cluster
of all Ri′ with i′ 6= i has to be a good cluster for some point. The claim implies that either Ri′ is grouped
as a B-clustering (Ri′ /∈ F) or j /∈ Ri′ . Therefore, the sets in F do not overlap. Since F contains at least n
sets, F is an exact cover of U .

Conversely, suppose that the instance of Exact Cover by 3-Sets has an exact cover F . We define now a
k-clustering for Gl,n ∪X. Start putting all the points mi,j in different singleton clusters. For each 1 ≤ i ≤ l,
group Ri in an A-clustering if Si ∈ F and in a B-clustering otherwise. For each 1 ≤ j ≤ 3n, let i(j) be the
(unique) index such that j ∈ Si(j) and Si(j) ∈ F . For each i < i(j) merge xi,j (or x′i,j) with the j-th cluster
of Ri and merge yi,j (or y′i,j) with {mi,j}. For each i ≥ i(j) merge xi,j (or x′i,j) with {mi,j} and merge yi,j
(or y′i,j) with the j-th cluster of Ri+1.

Now let us compute the cost of this clustering. It is clear that we are assigning different points in
⋃l−1
i=1Xi

to different clusters. It remains to verify that all these points are assigned to good clusters. The only
possibility is when, for some 1 ≤ j ≤ 3n, 1 ≤ i < i(j) (resp. i ≥ i(j)), we merge a point x′i,j to the j-th
cluster of Ri (resp. y′i,j to the j-th cluster of Ri+1). But notice that if x′i,j ∈ Xi (resp. y′i,j ∈ Xi), then j ∈ Si
(resp. j ∈ Si+1) which implies Si /∈ F (resp. Si+1 /∈ F), which in turn implies Ri (resp. Ri+1) is grouped in
a B-clustering, i.e. we are assigning the point to a good cluster. �

We observe that the hard instances of k-means clustering created by our reduction are such that k =
Θ(nγ), for some 0 < γ < 1, where n is the number of points in the instance. We now prove the following
result.

Theorem 12. The k-means clustering problem is NP-hard for k = Θ(nε), for any ε > 0.

Proof. Fix any ε > 0, and take a hard instance with n points and k centers, where k = Θ(nγ).
First we consider the case γ < ε. In this case, we build another instance by adding nε points very far

from the original instance and very far each other. Also we add nε centers. The optimal solution will use the
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new centers to cluster the new points, while the optimum in the original instance will not change. Therefore
this is a hard instance with m = n+ nε = Θ(n) points and k′ = k + nε = Θ(nε) centers.

Now we consider the case γ > ε. Then we build another hard instance adding 1 center and nγ/ε points.
We put all these new points close each other but very far from the original instance, so that the new center
will cluster these new points and the optimum in the original instance will not change. Therefore, we have
a hard instance with m = n+ nγ/ε = Θ(nγ/ε) points, and k′ = k + 1 = Θ(nγ) = Θ(mε) centers. �
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