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Abstract

Gerrymandering, the practice of dividing political districts into winding and unfair geome-
tries, has a deleterious effect on democratic accountability and participation. Incumbent
politicians have an incentive to create districts to their advantage (California in 2000, Texas
in 2003) so one proposed remedy for gerrymandering is to adopt an objective, possibly com-
puterized, methodology for districting. We present two computationally efficient algorithms
for solving the districting problem by modeling it as a Markov decision process rewarding
traditional measures of district “goodness”: equality of population, continuity, preservation
of county lines, and compactness of shape. Our Multi-Seeded Growth Model simulates the
creation of a fixed number of districts for an arbitrary geography by “planting seeds” for
districts and specifying particular growth rules. The result of this process is refined im-
mensely in our Partition Optimization Model which uses stochastic domain hill-climbing to
make small changes in district lines that improve goodness. We include, as an extension, an
optimization to minimize projected inequality in district populations between redistrictings.
As a case study, we implement our models to create an unbiased, geographically simple dis-
tricting of New York using tract-level data from the 2000 Census. We conclude with an open

letter to members of the New York State Assembly.
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1 What is Gerrymandering?

Gerrymandering is the division of an area into political districts that give special ad-
vantages to one group. Frequently, this involves concentrating “unfavorable” voters in a
few districts to ensure that “favorable” voters will win in many more districts. In order to
squeeze all of the unfavorable voters into a few districts, gerrymandering creates snaky and
odd shaped regions. The eponymous label was created when politician Elbridge Gerry pio-
neered this technique in early 19 Century and his opponents claimed the districts resembled
salamanders.

Figure 1: The original “Gerry-mander” from the Boston Centinel (1812)

1.1 Basic Terminology

e Packing - Forcing a disproportionately high concentration of a particular group into
one district to lessen their impact in nearby districts.

e Cracking - Spreading out members of some group in several districts in order to reduce
their impact in each of these districts.

e Forfeit district - A district where group A packs the members of group B so that
group B wins this district but loses several surrounding districts which B may have
won with a different districting scheme.
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e Wasted Vote - A vote cast by a member of group A in a district where A is already
assured victory so voting has no bearing on the result. In general, the group with more
wasted votes is made worse off by a districting plan.

1.2 Why is it so bad?

Politicians today still gerrymander federal and state-level electoral districts and the public
outcry is still strongly negative. Before we set out to eliminate this practice we should discuss
why gerrymandering is considered problematic.

First off, gerrymandering reduces electoral competition within districts since cracking/-
packing makes elections uncompetitive. Further, incumbent representatives are in no real
danger of losing elections so they do not campaign vigorously which can lead to lower voter
turnout. Exacerbating the problem, incumbents’ increased advantage means they are less
incentivized to govern based on their constituents’ interests so democratic accountability and
engagement mutually deteriorate.

Gerrymandering also presents the practical problem that it is difficult to explain to voters
why district shapes are so labyrinthine. Some districts connect demographically similar but
geographically distant regions using thin filaments such as the district depicted in Figure 2.
“Niceness” of district shape almost always takes a back seat to political and racial concerns
when districts are being created. Example: In the 2000 California realignment, Democrats
and Republicans united to design incumbent-favoring districts which resulted in the reelec-
tion of all of the 153 involved legislators in 2004. How can one argue that this is in voters’
best interests?

However, it should be noted that gerrymandering can be considered appropriate in specific
situations. For instance, the Arizona Legislature gerrymandered a division between the
historically hostile Hopi and Navajo tribes even though the Hopi reservation is entirely
surrounded by the Navajo reservation.

Congressional District 4

Stone Park_p——0UM2
I

Figure 2: A present-day gerrymander, the Illinois 4" congressional district.
(The two “earmuffs” are connected by a narrow band along Highway 294.)
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1.3 The legality of gerrymandering

We should be clear on one point: though gerrymandering is objectionable to many, it is legal
around the country. Interestingly, the Voting Rights Act of 1965 which eliminated poll taxes
and other discriminatory voting policies may have inadvertently increased the prevalence
of gerrymandering. One interpretation of the Act was that it mandated nondiscriminatory
election results which led to a strange reversal of vocabulary where creating “majority-
minority” districts was considered beneficial. These gerrymandered districts were packed
with minorities which guaranteed minority representation in Congress.

However, in Shaw v. Reno (1993), and later in Miller v. Johnson (1995), the Supreme
Court ruled that racial/ethnic gerrymanders were unconstitutional. Nevertheless, Hunt v.
Cromatrie approved of a seemingly racial gerrymandering since the motivation was mostly
partisan rather than racial. The recent case League of United Latin American Citizens v.
Perry (June 2006) upheld the position that states are free to redistrict as often as they like
so long as these redistrictings follow are not purely racially motivated.

2 Assumptions and Notation

2.1 What can we consider when districting?

We have compiled the following list of possible factors one might consider is districting a
State. The list is ranked with factors we consider more important or legitimate at the top.

1. Population equality between districts (legally mandated)
. Continuity of districts (legally mandated, excepting islands)
. Respect for legal boundaries (counties, city limits, townships)
. Respect for natural geographic boundaries

. Compactness of district shapes

. Respect for socio-economic similarity of constituents

2
3
4
5
6. Respect for man-made boundaries (highways, parks, etc.)
7
8. Similarity to past district boundaries

9

. Partisan political concerns
10. Desire to make districts (un)competitive
11. Racial/ethnic concerns

12. Desire to protect (or unseat) incumbent politicians

We consider only the top seven factors in our model. Factors 9-12 are all related to
political or racial concerns which our model is specifically designed to ignore. The case
SC State Conference of Branches v. Riley (1982) ruled that past districts (Factor 8) are a
legitimate tool for creating new districts but we choose to ignore past districts since they
are heavily biased by Factors 9-12.
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2.2 Geography and similar characteristics

The US Census Bureau provides a great deal of data on legal, natural, and man-made
boundaries as well as socio-economic similarity of regions. In each census, the United States
is broken up into several degrees of accuracy, the smallest of which are: blocks (40 people
on average), block groups (1500 people), and tracts (4500 people).

We follow the practice in Young (1988) by districting based on a maximum level of
resolution which in our Case Study (Section 5) is census tracts. Notational note: we refer
to the smallest unit of division generally as a tract.

A reference from the Caliper Corporation describes tracts in the following quotation:

Census tract boundaries normally follow visible features, but may follow gov-
ernmental unit boundaries and other non-visible features, and they always nest
within counties. Census tracts are designed to be relatively homogenous units
with respect to population characteristics, economic status, and living conditions
at the time the users established them.

For these reasons we believe that units at the tracts size (or less) are acceptably small and
homogenous to use as a base unit. Further, tracts are completely contained within counties
so we can easily check whether or not a district breaks county integrity.

2.3 Notation

Define m to be the number of census tracts, and n the number of districts.

We denote our districts by D;,1 < 57 < n, and our tracts by 7;,1 < [ < m. Denote the
set of all tracts by I' = {7} }1<;<m; we call this a State. Denote the set of all districts at a
particular time by A = {D;}1<j<,. We call this a partition for the State.

2.3.1 Adjacency

Define the symmetric relation 7, ~ T, for tract pairs (7}, 7,) which are adjacent. Define the
function d(7}) to be the district to which the tract 7; belongs. We also naturally extend the
definition of d to sets of tracts.

Define the neighbor set of tract 1} by ar(1;) = {1, € I'|T; ~ T,} to be the set of all census
tracts neighboring 7}, and define ap(7}) = d(ar(1;)) to be the set of all districts containing
neighbors of 7;. Every tract borders at least one other tracts, so ar(7;) and ap(7;) have
cardinality at least one for all T;.

2.3.2 Borders

Define the border of district D; as 0D; = {1} € D;|lap(T;) # {D;}} which is the set tracts
in D; that are adjacent to at least one district other than D;. The interior of district D; is
I, = D;\OD;, the set of census tracts in D; whose neighbors are all in D;. Denote the total
number of tracts in district D; as m; = | D;| the number of border tracts as b; = |0D;].

The frontier of D; is denoted F; = (Ugep,ar(17))\D;, i.e. the set of all tracts outside of
D; that border the boundry tracts of D;.
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2.3.3 Counties

We denote a county as C; and the set of all counties as A. Districts can (and often do)
break county boundaries but tracts are contained entirely within counties so we can think
of a county as a set of districts. Districts are also sets of tracts so we interpret the set
intersection D; N C} as the set of tracts in both district D; and county C;. From this, we
define ¢(D;) = {C;|D; N C; # 0} to be the set of counties which overlap with D;.

2.3.4 Population

Let the population of our State be P and we denote the optimal district size, %, as p. We
use the function p(+) to generally denote the population of an object, for instance p(T;) and
p(C;) are the populations of tract 7; and county Cj, respectively. Due to frequent use, we
use the shorthand p; = p(D;) for the population of districts.

Table 1 is a useful reference of these numerous definitions.

Table 1: Variables and their meanings
’ Variable \ Definition

n Number of congressional districts

D; The it district (1 <i < n)

A Set of all districts in a State, a partition
m Number of census tracts

T, The 1" tractfin (1 <1< m)

r Set of all tracts in a State

T

d(T) District to which tract 7; belongs
T, ~T, Tracts T, and T, are adjacent
ar(Ty) Set of tracts adjacent to tract T;
ap(T;) Set of districts containing tracts neighboring T;
oD; Border of D;, tracts that neighbor another district
I; Interior of D;, tracts with do not neighbor another district
m; Number of tracts in D;
b; Number of tracts in 0D;
F; Set of all tracts outside of D; that border 0D;
C; The j** county
c(Th) The county to which tract 7; belongs
c(D;) The set of counties containing district D;
P Total population of the State
D Average population of a district
p(+) Population of an arbitrary object

Di Shorthand for p(D;), population of district D;
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2.4 Past Models

Prior to explaining our modeling approach we would like discuss some previous work in the
literature on congressional districting and gerrymandering. We used these papers as guides
as we thought about and further refined our algorithm and implementation.

Cirincione et al. (2000) judge the quality of a districting plan based on equal population,
preservation of county integrity, and district area compactness. They require that district
populations differ by no more than 1% from exact equality in the number of constituents,
and require point contiguity of the districts. The algorithm constructs districts by picking a
random block group (their unit size), then adding additional block groups to the new district
until the district population reaches p. At this point they repeat the process starting with
a new random block group. Compactness of districts is based on their minimum bounding
rectangles and county integrety is encouraged by “randomly” selecting new block groups
with a preference for block groups in already inhabited counties.

Mehrotra et al. (1998) and Garfinkel and Nemhauser (1970) implement a “branch-and-
price” method in the optimization step. They first obtain a districting, and optimize over
their constraints such that population values are allowed to vary in the final solution of
the optimization step. In a final step they split up population units to ensure population
equality. They define compactness in a graph-theoretical manner where connected nodes are
adjacent tracts. They define the “center” of a district to be the node (tract) with the lowest
maximum distance to another other tract. They consider a graph (district) more compact
when sum of distances from each node to the center is small.

We do not use this measure, as it does not uniquely define the center of a graph, and,
contrary to their claims, does allow for oddly-shaped districts, such as a district whose graph
is a star-shaped tree with one tract in the center and many non-contiguous paths emanating
from it. In our case study simulations, prior to the incorporation of a compactness factor
in the objective function, we often obtain such a tree structure, which is one of the salient
features of gerrymandering.

We also do not use a “branch-and-price” method of optimization. Following suggestions
of Nagel (1965) and Kaiser (1966), we employ a local search algorithm in which tracts are
swapped between existing districts to maximize some objective function. We describe this
process in detail in Section 4.

2.5 Measuring compactness

The notion of compactness of a planar region has no uniformly accepted definition and
research done by Young (1988) suggests that any reasonable measure of compactness fails to
work well for certain geographic configurations. He further suggests that any good measure
of compactness in such problems should consider the population units (census tracts in our
case study) as indivisible units, and therefore that the measure of compactness should be
made independently of the predetermined shapes of the population units. We follow this
directive in our definition of compactness.

In fact, the compactness measures given in Young (1998) are not reasonable in the first
instance, and do not include any notion of the area of a district, or comparing it to the
perimeter. The measures include the maximum total perimeter of a district in a districting,
determining the relative height and width of the district, and finding the moment of inertia
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of the district. All of these measures fail to consider both perimeter and area simultaneously,
which seems to be a reasonable requirement of a good compactness measure.

The Isoperimetric Theorem, first proved (non-rigorously) by J. Steiner in 1838, states
that the quantity A/P?, given by the ratio of the area A of a planar region (not necessarily
continuous) to the square of its perimeter is maximized when the region is circular. The
maximum achievable compactness, that of a circle with radius r, is given by 4272"?,2 = ﬁ SO
we define compactness of a region as the ratio (4w A)/P?. This ratio is bounded within (0, 1]
where higher values indicate greater compactness.

We believe this serves as a good measure of the broadly defined “regularity” of a region
which is so important to the study of Congressional districting and gerrymandering. Specifi-
cally, any shear of factor s applied to a circle decreases the compactness by a factor of s, and
any concave region has lower compactness than does its convex hull. It is easy to see that
we can make an even stronger statement: the convex hull of a concave region has greater
area and smaller perimeter.

Observe that a square gets close to the optimum, with a compactness of ‘% ~ 0.785. This
implies that the set of possible compactness values for rectangles is (0,0.785) since a square

is the most compact rectangle.

3 The Multi-Seeded Growth Model

We take a two-stage approach to finding the best districts for a given State. In the Multi-
Seeded Growth Model, referred to as MSGM hereafter, we find an initial allocation of n
districts so that the partition has modest levels of population equality and county preser-
vation. Our more precise Partition Optimization Model, or POM, edits and improves the
rough sketch from MSGM into until it becomes, hopefully, a work of art.

The reason that our model runs in two phases is simple: speed. Our knee-jerk reaction to
the problem was to randomly allocate tracts to the n districts and then optimize by swapping
tracts trying to improve some objective function. However, a random initial configuration is
so far from the global maximum that the search might take millions of years.

The MSGM generates a very crude coloring of a State that ensures district contiguity
and tries, but does not guarantee, to achieve population equality and county preservation.
The districts created by MSGM are completely unacceptable for an actual plan but save
enormous amounts of computing time for our solution.

3.1 How it works

At first, our task seems daunting. How do we allocate n districts equally, even to a rough
approximation? Our solution is to grow the n districts simultaneously until they cover the
State.

We start by allocating the entire State to a blank, dummy district Dy, and then al-
locating n tracts that serve as the initial “seeds” for the final districts, such that each
D;,i € {1,...,n} begins as only a single tract. Now while |Dy| > 0, we take the set S of all
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possible moves which involve taking a district from Dy while preserving contiguity. That is:

szf) U M(Ti, Do, D)

=1 TZEFi

Where M(T;, D;, D;) represents a move of tract T; from D; to D;, corresponding to the exit
of T} from D; and the entrance of 7; into D;. We then sort the moves in S by our heuristic
function W(Dy,...,D,) — R, a function increasing in the desirability of our prospective
partition. Each move is scored by the heuristic value that would result if we were to accept
only that move. We then conclude by performing the moves corresponding to the top 3%
of the scored moves in S. Note that this method preserves contiguity, because by definition
any 1; € F; must be contiguous with D;, and thus the D, are contiguous at each step.

Had we but world enough, and time, we would only perform the best possible move
found in S before recalculating the frontier. Even though in the MSGM we do not consider
moves between two “true” districts (rather, we consider only moves between a true district
and the dummy district), the value of a move does not exist in isolation. Consider two
distinct districts D; and D;, and two tracts 1} € F;NF; and T}, € F;N Fy. The acceptance of
M (T}, Dy, D;) alters the heuristic value of every move associated with F;, which could poten-
tially affect the optimality of further moves with D;, such as the acceptance of M (T}, Dy, D;)
rather than M (T}, Dy, D;). Furthermore, the acceptance of M (1}, Dy, D;) likely expands the
size of F;. Perhaps there is an optimal move opened up in this new frontier that we do not
even consider, because we have not even calculated its value.

It would be better to only perform the best move, but such a strategy was found to be
too computationally intensive. We compromise by taking only a small, elite fraction of the
moves in each step before recalculating S and the values of its associated moves. In this
respect, our approach is analogous to the strategy of modified policy iteration for solving a
Markov decision problem. And just as modified policy iteration excels in practice, we found
that the tradeoff of possible inefficiency is more than compensated for by the speed gains of
the algorithm, especially considering that the solution obtained by MSGM will be further
refined by POM.

In true modified policy iteration, k rounds of value iteration are made in-between policy
iterations, such that k is fixed. Our MSGM scheme uses a variable number of moves in-
between recalculating the value of the frontier. We selected our scheme because it causes
us to be delicate in our selections of tract allocations, making moves virtually one-at-a-
time, at the beginning and end of the MSGM. By focusing on the beginning and end of
the problem, we attempt to avoid having a single district grow too large through possible
inefficient allocation.

Unlike Cirincione (2000) we use random initial seeds weighted by population rather than
seeds that are equally spaced around the State. The process works as follows: while there are
still random seeds to be selected, we find a candidate initial seed tract T; in Dy. Letting the
largest tract in our State have population p, we accept 7; as an initial seed with probability
p(T;)/p. We thus select tracts in linear proportion to their population. We found that
the MSGM algorithm produces the best initial results when all the districts have the same
amount of population, rather than the same number of tracts around which to grow. The
geographically optimal placement of five, or fewer, starting seeds in the NYC Metropolitan
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area and Long Island evinces the fallibility of the equidistant initial seed method.

We have presented our scheme for growing emerging districts, but we should also discuss
the heuristic by which we rank candidate moves. It has two components: a population score
and a county score.

3.2 Population score

Even thought the MSGM is only an rough start for our optimization we would like to
minimize egregious disparities in population between districts. We would much prefer if the
MSGM produces a result where the largest district has twice the population of the smallest
rather than 100 times the population.

Clearly, the population component of our heuristic should give the highest score to a
district when p; = p. Additionally we want to penalize large deviations from the optimal
population level so our function should be concave down.

Admittedly, choosing a heuristic is somewhat arbitrary but this does not bother us since
the results from MSGM are only a baseline. Let f(p;) be the population heuristic score for
a district with population D;. We use a piecewise definition for f:

f(pl) - AM g —\9 . _ (1)
M — p—z(pz’ —p)?, ifpi>p

Notice that f is steeper for values p; > p because we do not want growing districts to
engulf too much population; we penalize deviations above p worse than deviations below
p. (We also consider some “nicer” functions, like a Beta distributions, but we opted for a

computationally simpler implementation.) Figure 3 shows the function f.

Figure 3: MSGM heuristic for population
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3.3 County preservation score

For a given district D;, we measure its county preservation score in terms of the percent
of counties that it completes on a population basis. To encourage growing districts to add
remaining tracts in nearly complete counties the marginal value adding these should increase
with the fraction of the population already contained in that district. To accomplish this we
use the square of the proportion contained in a county. The county score, g, for a district
Di is:

9(D) =3 (Z p(cj)ﬂ )> (2)

CjEA

For instance, if a district completely contains one county and contains 30% of each of two
other counties’ populations then its score would be (1% + .3% 4 .3%) = 1.18. Figure 4 shows
a plot of the county score a district receives based on what percent of a counties population
said district contains.

Figure 4: MSGM heuristic for county completeness
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4 The Partition Optimization Model

Now that we have constructed a crude, approximate solution to the districting problem by
using MSGM, we refine the solution through a process of local search. We define our local
search by our objective function, and our neighborhood function and search space.

4.1 The objective function

For our optimization function, the only characteristics of each district and each county we
will use are the populations p(P) = {p; }1<i<n, the compactness measures ¢(P) = {¢; }1<i<n,
and the fractions p(P) = {p;,|1 <i <n,1 <r <c} of the population of county r which is
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contained in district 7. Based on our analysis of desired properties of districts, we would like
our score function s(P) = s(p(P),c(P), p(P)) to have the following properties:

1. the score function should be unimodal as a function of p;, with mode at p; = p;

2. The score should increase more by adding tracts which lie in x(D;), so that we prefer
having as few districts as possible in a given county.

3. The score should increase by more by adding tracts which increase the sum of all
compactness measures by the greatest amount.

When considering these three constraints, they suggest that we should consider the three
vectors p(P), ¢(P), p(P) independently of each other in the score function, and then compare
the scores of each when deciding on how to make tradeoffs between population equality,
compactness, and county unity. In other words, we would like our score function to be a
separable function of these three vectors, i.e. s has the form

s(P) = f(p(P)) + 9(c(P)) + h(p(P))

where f, g, h are functions.

4.1.1 One (wo)man, one vote

Based upon the first criterion, we only require a globally concave down function whose
maximum is attained at p; = p for all p;: g—; pi=p = 0, (%22 < 0. The simplest functional
form which satisfies this constraint is:

n

f(p(P) = —a, Y (pi — p)

=1

where «,, is some constant. That is, the score attributable to population differences is actually
a constant multiple of the population variance across districts (once all tracts are assigned
to a district).

The MSGM creates districts with approximate population equality by penalizing extreme
variation away from p but equality is generally pretty weak. In one, more or less typical run
of MSGM the districts created vary from 600,000 to 700,000, an unacceptable difference for
a final districting plan.

By far, the most important constraint in determining district lines is that the popula-
tions within each district are very similar. Note that, this criterion is based on the general
population within districts not the voting-age population or the population of likely voters.

Recall that our State has total population P and an average population of p = P/n per
district. Letting p; be the population in district ¢ we consider three potential metrics for the
population variance between districts.

1. Variance: Var(pi,pa,---,Pn)

2. Maximum deviation: max{|p; — p|}
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3. Maximum difference: max{p;} — min{p;}

For all of these measures lower values are preferable and the minimum value is 0. We submit
that choice number 1, variance, is the superior alternative. To see why, consider two possible
population distributions between districts:

e Situation A - one district has a population of 1.05p, one is .95p, and all of the others
are p

e Situation B - half of the districts have population 1.05p and half have .95p (any left
over odd district has p)

In Situation A only two districts are different from the ideal population level, p, but in
Situation B very few districts have population p so a good metric should rank B worse than
A. Clearly, the variance of populations is higher in B than in A, so variance passes this test.
The maximum difference test gives .05p for both A and B and the maximum difference gives
.1p for both.

We see that variance is the best measure of similarity since it factors in the pair wise dif-
ference in all district populations. We use variance as our measure of populational inequality
between districts.

4.1.2 Compactness

To measure the compactness of a district we would ideally use our compactness measure:

Area(D;)
C; =
Perimeter(D;)?

Such that: .
g(c(P)) =8>«
i=1

where 3 is some constant.

Unfortunately, try as we might, we were unable to calculate the perimeter of tracts on the
aggregate - the C++ library we used to interact with our census data shapefiles exhibited a
variety of disturbing characteristics for different methods we used for calculating perimeters,
including massive memory leaks for large-scale union operations, questionable accuracy for
pairwise unions, and seemingly arbitrary calculations of intersection length.

Yet it is a poor craftsman that blames his tools and so undaunted, we adopted a different
measure of compactness. Called the clustering coefficient, it provides a rough approximation
for compactness. We define it as:

e, {7k € DT ~ Ty}

()

ce(D;)

such that:
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where (3 is some constant. Our clustering coefficient thus provides a ratio of the total number
of inter-district boundaries to the maximum possible number of inter-district boundaries.
Note that if all tracts were uniformly shaped, this measure would prize square- and circle-
shaped districts, while winding, single tract-width districts would be penalized. However,
given the asymmetry of tract shapes, this measure does little to reflect negatively upon
district shapes such as the dumbbell, two circular clusters of tracts connected by a narrow
band of tracts. In general however, the clustering coefficient will value adding to districts
tracts that are “close” and removing from districts those tracts that are auxiliary.

4.1.3 County preservation

We adopt the same county preservation measure used in the MSGM, defined in equation 2
with the option of adding a scaling factor to the entire function to refine empirical perfor-
mance.

4.2 Search method and neighborhood function

In order to refine our solution from MSGM, we must move tracts between districts. Yet the
space of all possible contiguous moves is too large to run effectively. We solve this problem
considering a range of possible moves with respect to only one district, its boundary and
frontier, and performing the best move on this dramatically reduced state space.

By selecting our target district at random at each iteration, our strategy is best described
as stochastic domain hill climbing. It is a method that combines the best aspects of both
random and deterministic local search methods - we perform optimal moves while avoiding
getting stuck trying to only increase the score of a single district. After determining that
simple first-order moves on the district level, that is, adding or removing individual tracts,
were incapable of reducing our variance metric to the extremely low standard that was our
charge, we expanded our search to include second-order moves, that is, “swaps”, a combined
move that includes both an add and remove within a single operation.

If we assume that the maximum connectedness of any tract on the graph is k, checking
for all adds and removes separately for district D; involves considering O(k|0D;| + |F;|) =
O(km;) possible moves, while looking at all swaps involves considering O(k|0D;||F;|) =
O(km?) possible moves. One might contend, then, that the operation of checking every
district for first-order moves might be a better algorithm, as it would take O(}_}" | km;) =
O(nkm;) heuristic evaluations. One could even supplement such an algorithm with a degree
of randomness, to avoid being caught in a possible loop of futility, by employing simulated
annealing, stochastic hill climbing, or tabu search on the resulting list of possible future
states. In practice, however, we found that checking for second-order moves provided far
better empirical results with acceptable time performance, while an algorithm enumerating
all the possible second-order states, requiring O(>_7_, km?) = O(nkm?) heuristic evaluations,
was too slow to be effective.

The true heart of POM is the following algorithm. For simplicity and readability, we let
Ma,44(D;) be the set of all moves in which we add a frontier tract to D;, and M,emove(D;) to
be the set of all moves in which we remove a border tract from D;, and M ~! the move that
is the inverse of M, such that applying both M and M~! in turn has no effect. Recall also
that our heuristic scores partition P as s(P).
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Input: Iteration count iter, initial partition P.

Output: Final partition P.

count «— 0

while count < iter do

curscore «— s(P)

D «— randomDistrict()

bestscore < curscore

foreach M, € {0 U M,4q4(D)} do

foreach M, € {0 U M,cpmove(D)} do

per formM ove(M,)

per formMove(M,.)

if isContiguous(P) then

tmpscore «— s(P)

if tmpscore > bestscore then
bestscore < tmpscore
bestadd «— M,
bestremove «— M,

end

end

per formMove(M; 1)

per formMove(M ™)

end

end

if bestscore > curscore then
per formM ove(bestadd)

per formM ove(bestremove)
end

count «— count + 1
end

return P

Algorithm 1 - Stochastic domain hill-climbing algorithm for districting

Note that we guarantee that our solution will be contiguous by not even considering
moves that would break contiguity, and that we only perform a move if it increases the score
of our current state.

4.3 Achieving absolute equality

US law mandates that the populations of each district be equal within a range of error of
one person according to the census data (Karcher v. Daggett, 1983). Our problem dealt
only with census tracts, and so exact equality of populations to the nearest integer was not
possible. This last step of the algorithm must be implemented by splitting tracts between
two districts.

To the knowledge of the authors, this problem beyond population unit level (no smaller
than block groups) has not been addressed in the literature. Clearly, the simplest way to
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do this is to split one of the border tracts. While we do not implement this part of the
algorithm in the computer simulation, we describe the methodology for doing this.

Let G denote the graph whose vertices are given by the districts and whose edges are the
pairs of bordering districts. The intuition for the algorithm is that if we can find a pair of
districts such that splitting a border tract between them gives both districts a population
of one within the mean population, then we would optimally do so and ignore those two
districts for the remainder of the algorithm. However, to guarantee that the algorithm
finishes, we require that the graph G remain connected (otherwise, G may divide into two or
more connected components, such that the constituent districts cannot attain populations
equal to the overall mean). Taking out two districts at a time by splitting only a single tract
leaves the fewest possible tracts split, which we consider optimal, for the same reasons that
number of counties split between districts is optimal.

Our algorithm works as follows. We search for an edge of G such that removal of its two
vertices and all edges emanating from them leaves a new graph G; C G that is connected.
We call the deletion of a single vertex from a graph that leaves the graph connected a paring.
If these two vertices have some special properties, we perform the double paring and then
perform the algorithm on G, and continue until all districts have equal population. If no
such pair of districts exists, we then perform a single paring and ensure that the removed
district has population p before removing it. Define tract splitting to be the process of
splitting up a border tract into two disjoint areas and two disjoint populations allocated
between two bordering districts.

There always exists an edge on a connected graph GG that permits a double paring of G,
except for a very specialized set of connected graphs. However, all connected graphs permit
a paring, as the next theorem shows.

Theorem 4.1 All connected graphs permit a paring.

A proof of this theorem is given in the Appendix B.

We recursively update the districts to get population equality. We iteratively pare the
graph G of districts such that each time we pare a district or pair of districts, those districts
have populations which equal the population mean. By Theorem 4.1, this process always
ends with all districts having equal population. Our algorithm works as follows:

1. If the graph G contains only one district, its population must equal p. Stop the
algorithm here. If not, search across all border tracts of the partition for a tract such
that splitting it between two districts makes the population of the two border tracts
within 1 of the average p. If some pair of districts exists which is a double paring of
G, then perform this double paring of G. For these two districts, take the tract on
their border which, upon being split between the two districts, makes their populations
within 1 of the population mean. Split this tract to equalize their populations. If no
such pair exists, go to Step 2.

2. Search G for all possible double parings such that the two districts in the double
paring have populations which sum to twice the average population. Perform the
double paring of G among these double parings which has the property that the two
removed districts can have equal populations with the minimal number of tract moves



Control # 1421 Page 16 out of 35

and one tract splitting between the two. If such a pair exists, perform the double
paring and go to Step 1. If no such pair exists, go to Step 3.

3. Search all vertices of G for a paring of G such that a single tract splitting along the
border of the district gives the district a population of barp, and perform this paring of
G. If such a border tract and paring exist, perform the paring and the tract splitting,
and go to Step 1. If no such tract splitting and paring exist, go to Step 4.

4. Search all vertices of G for a paring of GG such that the removed district D; borders a
district which requires the minimum number of moves and one tract splitting to make
the population of D; equal to p. Perform these moves, this tract splitting, and this
paring, and return to Step 1.

This entire algorithm removes at least one vertex from G at each steps, and the whole
algorithm can therefore be performed with at most n — 1 tract splittings, where n is the
number of districts. The actual number of tract splittings equals n — d — 1, where d is the
number of double parings performed.

5 Case Study: New York congressional districts

5.1 The data

We began our inquiry by acquiring data from the 2000 census from the New York State Data
Center. The downloaded data contained 4907 tracts, but a number of these were tracts have
no population. These tracts represented water, inland lakes, or parks. We considered all of
these tracts to be the equivalent of water, with the exception of only one of these tracts on
Long Island which completely enclosed a populated “island” and was thus considered to be
a tract of land with no population. These empty districts are the cause of the “holes” on
our maps, particularly around the NYC Metro area.

Trimming these parts from our map left us with 4827 tracts to examine. It is worth noting
that the possible number of partitions of these tracts is prohibitively high. Ignoring concerns
such as contiguity, nonempty districts, or population equality, the number of allocations of
4827 tracts to 29 districts is approximately

i294827 ~ 11 x 107028

29! '
The data were delivered in ESRI shapefile format, which listed tract areas, populations, and
unique county identifiers.

5.2 Results

Running the MSGM on our initial allocation left us with 29 haggard districts spanning the
map from which to refine a solution.

Using this solution as a starting point, we optimized our result using swap moves in
particular. Though our algorithmic process of refinement is stochastic, generally more than
90% of the moves in any run involved swaps. This was particularly the case for moves
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Table 2: Values after the MSGM

Variable Value
Heuristic Variance Score | -3,147
Largest District 969,511
Smallest District 280,945
County Score 37.48
Compactness Score 2,869

at the very end of a run, where population differences between districts were minute. As a
result, swapping provided a way to adjust population smoothly. In addition swap operations,
particularly of side-by-side tracts exchanged between districts, provided an effective to “clean
up” tattered fringes of districts, increasing their compactness even with vigorous population
changes.

Table 3: Values after refinement

Variable Value
Heuristic Variance Score | -.0277
Largest District 655,760
Smallest District 652,561
County Score 47.44
Compactness Score 2,906

The most difficult part of both steps was defining the optimal values for the scaling
factors. It is important to note that it is not the magnitude of the scaling factors that is
most crucial, but rather their relative marginal magnitudes. Since our algorithm operates on
the changes that result from making a single first- or second-order move, selecting positions
with the highest score, it is important that the changes in each of the heuristic variables are
significant. In particular, a large or small multiple on some factor does not indicate that we
wished to treat that variable severely or lightly, but rather that the marginal changes in that
variable were relatively small or large.

The Appendix contains several informative tables and maps summarizing our results.
Images are produced using the amazing TatukGIS Viewer software.

6 Extension: The 4" Dimension

It is entirely possible that a state’s congressional districts could become populationally im-
balanced between redistrictings, which usually occur every 10 years. Though current practice
is to devise a districting with equal populations per district we suggest that this is subopti-
mal. One could imagine an initial population allocation that maximizes district population
equality not just in the first years but over the course of all 10 years between redistrictings.
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For instance, if one district’s population is growing 2% a year and another’s is shrinking
1% a year then after ten years the two populations will differ by over 33%. With congressional
elections occurring every two years it seems arbitary to privilege the population at the year
2000 rather than at the years 2002, 2004, etc. . To improve this disparty we propose starting
the growing district with a slightly lower population than that of the shrinking district.

6.1 A stitch in time

For each tract, we can observe certain demographic characteristics, such as race. Based
upon population growth estimates from the Census Bureau we can find optimal weighting
of populations such that citizens do not have an “equal vote” today, but citizens have the
most equal vote over the entire period between each redistrictings.

Let T" denote the time between redistrictings; in our case 1" = 10 because the census is
taken decenially in the United States. In this section we explore the effect of differential
population growth rates by districts on optimal population weights for the districts.

Modern utility theory suggests that individuals favor present utility greater than future
utility, and most often, for analytical convenience, according to a constant time discount
factor. Let us suppose that the time discount factor for utility of individuals in the United
States is given by 9.

We assume that societal utility is maximized by giving citizens an equal voting share in
each period. (If this does not actually maximize utility then one could still argue that ideal
politicians would prefer a scheme that promotes voting share equal.) As we discussed in
Section 4.1.1, variance is the best measure for population inequality between districts.

Utility today is weighted greater than utility ¢ units in the future by a factor of €.
If we have a partition = {Dy,..., D,}, with populations py, ..., p,, then the population
penalty we found for such a partition is a constant multiple of Var(p;). Let p;; denote
the population of district ¢ at time . Then the discounted utility of the state at time ¢ is
e %W ar(p;). Suppose that we have forecast data on the population growth rates of different
counties during the T-year period. Let the log-growth rate at time t for district 7 be given
by 7;:. Then the population of district ¢ at time ¢ is given by:

t
Dit = €XD (/ ﬂi,sdb’) Dio
0

and total utility of the initial allocation 2 with district populations p = (p1, pa, ..., pn)’ is

T
Upo1(R2) = —/0 e“STVar(pi,t)dt

Expressing the variance in terms of the populations p;, we get

2
1 < 1 [ n—1g 1
i) =23tk (Soe) <2 S
=1 =1 =1

i#]

Dividing out by a constant factor, this gives the total utility as
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Upm(Q) =—(n—1) X", p? [ exp (2 I misds — 25t) dt
+ 30 pibs fy exp (f(f (Mi.s + 1j.s)ds — 26t> dt

This functional form is convenient if we choose to give a specific stochastic process which
the logarithmic growth rate may follow. Since our time period is relatively short, we will
assume that population growth is simply exponential and thus log-growth rates are constant
within our time window, 10 years. So, we set 7, , = 1; and also define the time-discounted
population growth as v; = n; — d. As long as v; + v; # 0 then utility simplifies to:

n

T
U (Q) = —(n—1) Z ( 3/0 e2(ni— dt) + Z <pzp]/ 6[(m—6)+(nj—6)]tdt)

i=1 1#]
n 21/2 -1 (vi+v;)T -1
——(n—l)z< pz)+Z( —— pzpj)
=1 1#£j v J

We define the optimal vector of target populations as p* = (p}, ..., p5)T where p! is the
optimal population for district ¢. Under the constraint ) . p; = P (the population of the
whole State) we use Lagrange Multipliers to obtain:

aUOT 9 21/1 . e(uerV])T '
)\:[a’—]():—(n—l) pl—i—ZQ p],lgzgn
Di i Vit
It follows that the vector p* satisfies
Hp* =X\
b
where H is the matrix of coeflicients
e2r1T_q e(r1+v2)T _q e(r1+vn)T _q
—(n—1)=_ 2= e 2
e(vat+v)T _q 1 e2vaT _q e(vatvn)T _q
o R (R e A
(Vn+V1)T 1 (Vn+'V2)T_1 ' 20T _1
2° v1+vn ° vo+un U _(n B 1)6 Un,

where ¢ = (1,1,...,1)" is an n x 1 vector of ones and A is the Lagrange multiplier.

The expression for H is analytically convenient as H is symmetric, and by the Spectral
Theorem is orthogonally diagonalizable, enabling a computationally feasible inversion of H
to solve for the optimal populations p*:

pr=)H1

This uniquely determines A, as the sum of the components of p* must be P. We get
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P
JH-1,

and this yields the final formula

P
H1,

In the actual implementation, the growth rate 7; is such that if the annual growth rate
is g;, then we have 1+ g; = €™, or

p' = H (3)

gi=e"—1

While the estimation of 0 is not purely objective, it is reasonable to set the discount
rate equal to the discount rate of consumption. In utility-theory analysis, the best measure
of the discount rate of consumption is the risk-free interest rate, which is currently best
approximated by the overnight lending rate set by the United States Federal Reserve Bank,
which is at an annualized r = 5.25%. This implies that if the discount rate is ¢, then ¢ is
given by € =147, or

d =log(l+7)~51168%

We use this rough approximation in the following section.

6.2 Implementation of the extension

We are using data from the 2000 census, so to estimate the population growth rates in the
2000-2010 redistricting period, we use realized county population growth rates during the
2000-2003 period.

The output of our model gives allocations based on equal population and we estimate the
population growth rates of the districts by assuming uniform population growth rates within
each county. It is easy to calculate how much each district is made up of various counties
and we use these proportions as weights to approximate the district population growth rate
as a weighted average of county population growth rates.

Based on the optimal population vector p* found via Equation (3) we can rerun POM
with the populations goal of p*. This procedure can be iterated as: run the POM, find
the growth rates of each district produced, calculate the optimizations of initial populations
based on the above theory, and feed the results back into POM. We settle on a final districting
plan when the solution converges within some reasonable bound.

Figure 4 shows one iteration of this process. The initial result from POM is p; and
district growth rates are found using our Census data about county growth rates. The final
column shows the optimal initial population that from Equation (3) that will maximize
societal voting equality over the entire period between redistrictings. One can easily see

'We are assuming that district growth rates remains constant over time which is inconsistent with our
previous assumption that the county growth rates are constant. This is a small, simplifying assumption and
the interested reader may make these assumptions consistent by explicitly calculating district growth rates
over time in terms of the county growth rates and initial population distribution of counties in districts. The
theory above, using stochastic logarithmic growth rates, is designed to accomodate such generalizations.
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that districts with higher projected growth rates (7;) are assigned lower optimal starting
populations.

The results make intuitive sense: faster growing districts are initially under-allocated
and slower growing districts are over-allocated in terms of starting population. There is a
significant effect of taking into account population changes over time. The difference between
the smallest and largest optimal district populations is 69,133, which is 10.6% of the total
average district population. This implies that, with a reasonable level of certainty about
future population growth rates, it may be beneficial for legislators to take future population
growth into account when redistricting.



Control # 1421

Page 22 out of 35

Table 4: District Population Growth Rates

’ Di \ Est. 2003 population \ M \ Optimal initial pop. ‘
655,067 681,997 2.01% 613,786
654,373 678,814 1.83% 618,869
655,760 678,245 1.69% 622,818
654,715 673,058 1.38% 631,544
654,449 668,395 1.05% 640,802
654,140 667,976 1.05% 640,802
655,184 668,555 1.01% 641,922
653,486 666,411 0.98% 642,761
653,636 665,372 0.89% 645,278
654,702 665,452 0.81% 647,513
654,164 664,307 0.77% 648,630
653,902 663,066 0.70% 650,582
653,884 662,672 0.67% 651,418
652,561 659,850 0.56% 654,482
655,040 660,798 0.44% 657,818
654,383 659,926 0.42% 658,374
653,655 656,265 0.20% 664,474
655,311 657,351 0.16% 665,581
653,676 655,585 0.15% 665,857
653,792 655,701 0.15% 665,857
654,568 656,471 0.15% 665,857
654,739 656,443 0.13% 666,411
654,745 655,765 0.08% 667,793
654,041 654,476 0.03% 669,173
654,834 654,665 -0.01% 670,277
654,381 654,019 - 0.03% 670,829
654,242 653,298 -0.07% 671,932
654,395 648,670 -0.44% 682,097
654,632 648,514 -0.47% 682,919

In the above, p; is the value that our model returns for the population of the 29 districts.
The estimated 2003 populations are calculated for each district based on county growth
rates. One can easily see that districts with higher projected growth rates (7;) are assigned

lower optimal starting populations.
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7 Analysis of the Models

7.1 Solving the Problem

By combining the Multi-seeded Growth Model with the Partition Optimization Model we
effectively devised a strategy for creating fair and geometrically compact congressional dis-
tricts. The districts conform to several well accepted measures of district goodness: popula-
tion equality, contiguity, preservation of county boundaries, and compactness of shape.

The districts produced by our models are both simple and fair. Geometric simplicity
is measured by compactness, as determined by how close the members of a districts live
realtive to each other. Additionally, our method penalizes splitting counties between several
districts so that nearby citizens, who have simliar concerns, will be represented by the same
congressperson. The fairness of our methodology is evident in its perfect indifference to
partisan politics, incumbent protection, and race/ethnicity.

We apply our models to create a congressional district partition of New York State based
on 2000 US Census Bureau data. The results in Figures 6, 8, and 10 clearly demonstrate
a partitioning into contiguous, compact, and reasonable districts. Furthermore, the simula-
tions that produced these visually pleasing results also achieved extremely high degrees of
population equality and county preservation.

7.2 Strengths of Model

The model successfully generates district partitions that simultaneously excel against the
standard metrics of county integrity, compactness, and population equality. Unlike other
models in the literature, we provide an algorithm for reducing population differences to at
most 1 by breaking up a minimal number of tracts.

We also find that in order to equalize population of the districts as much as possible,
any knowledge about future district growth rates yields highly unequal initial district pop-
ulations, contrary to one of the fundamental assumptions of all existing algorithms in the
literature.

The model runs independently of the distribution of population, and works well both
in low- and high- density locales, and with regular and oddly shaped census tracts. This
is evidenced by the successful districtings that our model produces in rural, small city, and
large metropolitan areas. (See the Figures 5 through 10.)

The algorithm runs efficiently enough that it can generate districts for large States, such
as New York (population: 18,976,457), in a run time of less than an hour.

7.3 Weaknesses of Model

The model assumes contiguity of the entire State so in cases where contiguity cannot be
forced, such as Hawaii or Michigan, we must change the algorithm slightly. One solution
could be to divide the State into several regions and run our model separately on each
region, allocating the porportionally correct number of representatives to each region based
on population.

A second limitation is that the model appears to tend toward creating districts that are
either very low- or high-density, instead of splitting smaller population centers into a number
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of districts. As political affiliation and race are likely correlated with population density, the
algorithm may inadvertently generate districts which separate various demographic groups
into separate districts, which could be viewed as gerrymandering. Yet, another camp would
argue that it is appropriate to divide urban, suburban, and rural areas into separate districts
since their residents have different concerns.

7.4 Future Investigations

A problem with any computer-based solution to the redistricting problem is that the method-
ology used in the redistricting algorithm may indirectly lead to some form of gerrymander-
ing. Because the program is not deterministic and can be evaulated many times, the entity
running the program should not be able to arbitrarily choose a result as this could be charac-
terized as gerrymandering. (We tie our hands by choosing the highest scoring result based on
our goodness metric but a future modeller with an ulterior motive could be less objective.)

To solve this we should test our simulations and throw out any results that, by random
chance, display the qualities of partisan or racial /ethnic gerrymandering. This could be done
relatively easily by merging tract level data with data political and racial characteristics.

This model sought to create a baseline alternative to the political misuse of congressional
districting, but it could be expanded to a loftier goal. For instance, we assume that race/eth-
nicity should play no role in creating districts but it is conceivable that citizens are better
off when minority groups control a few districts so that these groups are guaranteed at least
a few representatives. If every district is a perfect cross-section of the State’s demographics
then minority groups will have ez ante equal political power but not ex post. More work
needs to be done to understand the legal, philosophical, and mathematical underpinnings of
districting in a representative democracy.
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An open letter concerning congressional districting

TO: Sheldon Silver, Assembly Speaker, New York State Assembly
CC: Robert D. Lenhard, Chairman, Federal Election Comission
CC: Rex Smith, Editor, Albany Time Union

FROM: MCM Team # 1421

DATE: February 12, 2007

The negative consequences of Gerrymandering are well accepted: voters become apa-
thetic, minority groups are sequestered to a few districts, and the political process moves
farther and farther from the electorate’s best interests. We present to the you, the Assem-
blymen and Assemblywomen of New York, a new method to create fair districts with simple
shapes that citizens will appreciate and embrace.

We have devised a set of rules that a computer can implement to create districts that
are:

1. Contiguous - there are no breaks in the district lines
2. Equally sized in population

3. Conscious of county boundaries - especially in upstate New York congressional districts
will avoid splitting county lines

4. Compact - districts are not winding, long and skinny, or oddly shaped

Our scheme produces fair districts in that choices are made without prejudice or favor
to residents of particular racial, ethnic, or socioeconomic groups. At the same time, by
producing districts that break up the fewest possible tracts, we ensure that voters with
roughly similar characteristics and geographical location will be represented by the same
congressperson. This has the effect of encouraging civic involvement by residents, aligning
representatives’ interests with those of their consituents, and fostering a healthier democracy.

By implementing our redistricting method, the Empire State can be a pioneer in guar-
anteeing the rights of its citizens. Since the 19" Century, Elbridge Gerry’s lizard has grown
into a terrible, twisting serpent, eating away at our Democracy.

It is time to put Gerrymanders on a healthier diet.



Control # 1421 Page 26 out of 35

References

1]

[13]

[14]
[15]
[16]

[17]

[18]

Barkan, J. D., P. J. Densham, and G. Rushton (2006). Space Matters: Designing Better
Electoral Systems for Emerging Democracies. American Journal of Political Science, 50

(4), 926-939.

Bong, C. and Y. Wang (2006). A multi-objective hybrid metaheuristic for zone definition
procedure. Int. J. Services Operations and Informatics (1) (1/2), 146-164.

Caliper  Corporation.  “About Census Summary Levels.”  Available at
http://www.caliper.com/Maptitude/Census2000Data/SummaryLevels.htm.

Cirincione, C., T. A. Darling, and T. G. O’Rourke (2000). Assessing South Carolina’s
1990s Congressional Redistricting. Political Geography, 19, 189-211.

Garfinkel, R. S. and G. L. Nemhauser (1970). Optimal political districting by implicit
enumeration techniques. Management Science, 16 (4), B495-B508.

Hunt v. Cromartie, 526 U. S. 541 (1999).
Karcher v. Daggett, 462 U.S. 725 (1983).

Kaiser, H. (1966). An objective method for establishing legislative districts. Midwest
Journal of Political Science, 10.

League of United Latin American Citizens v. Perry, 548 U.S. _____ (2006).

Luttinger, J. M. (1973). Generalized Isoperimetric Inequalities. Proceedings of the Na-
tional Academy of Sciences of the United States of America, 70, 1005-1006.

Macmillan, W. (2001). Redistricting in a GIS environment: An optimisation algorithm
using switching-points.

Macmillan, W. and T. Pierce (1994). Optimization modeling in a GIS framework: the
problem of political districting. In S. Fotheringham and P. Rogerson, Spatial Analysis
and GIS. Bristol: Taylor and Francis. Journal of Geographical Systems, 3, 167-180.

Mehrotra, A., E. L. Johnson and G. L. Nemhauser (1998). An Optimization Based
Heuristic for Political Districting. Management Science, 44 (8), 1100-1114.

Miller v. Johnson, 515 U. S. 900 (1995).
NationalAtlas.gov Maps of US Congressional Districts.

Nagel, S. (1965). Simplified bipartisan computer redistricting. Stanford Law Review, 17,
863-899.

ew York State Data  Center. “2000 Census Data.”  Available at
http://www.empire.state.ny.us/nysdc/.

Shaw v. Reno , 509 U. S. 630 (1993).



Control # 1421 Page 27 out of 35

[19] SC State Conference of Branches, Etc. v. Riley (1982). 533 F. Supp. 1178 (DSC). Af-
firmed 459 US 1025.

[20] S Census Bureau. “New York county data 2000-2003.” Available at
http://www.epodunk.com/top10/countyPop/coPop33.html.

[21] Weaver, J. B. and S. W. Hess (1963). A procedure for nonpartisan districting: develop-
ment of computer techniques. The Yale Law Journal, 73 (1), 287-308.

[22] ahoo Finance. Market data on US Treasury bond rates. Available at
http://finance.yahoo.com/bonds/composite_ bond_ rates .

23] Young, H. P. (1988). Measuring the Compactness of Legislative Districts. Legislative
Studies Quarterly. XIIT 105-115.



Control # 1421

Page 28 out of 35

A Tables and Maps

Table 5: Final partition of counties after the POM. f is the fraction of the county allocated
to the largest district in that county, while d represents the number of the districts with
tracts in that county.

County Name | f d | County Name | [ |d
Albany 0.84 | 2 Niagara 1 |1
Allegeny 1 1 Oneida 1 |1
Bronx 0.74 | 4 Onondaga 0.94 | 2
Broome 0.71] 2 Ontario 1 1
Cattaraugus | 0.53 | 3 Orange 0.85 | 2
Cayuga 0.94 | 2 Orleans 1 |1
Chautauqua 1 1 Oswego 0.92 |2
Chemung 0.52 | 3 Otsego 0.59 | 2
Chenango 0.83 ] 3 Putnam 1 |1
Clinton 1 1 Queens 1 |1
Columbia 09 | 2 Rensselaer | 0.87 | 3
Cortland 1 1 Richmond 1 |2
Delaware 0.56 | 2 Rockland 1 1
Dutchess 1 1 Saratoga 1 |1
Erie 1 1 | Schenectady | 0.83 | 2
Essex 1 1 Schoharie 0.93 | 2
Franklin 1 1 Schuyler 0.64 | 6
Fulton 0.55 | 5 Seneca 1 1
Genessee 0.43 | 9 | St. Lawrence 1 1
Greene 0.33 | 13 Steuben 1 |1
Hamilton 053] 7 Suffolk 0.81 |2
Herkimer 1 1 Sullivan 1 |1
Jefferson 042 9 Tioga 0.86 | 2
Kings 0.27 | 13 Tompkins 1 |1
Lewis 0.88 | 3 Ulster 0.92 |2
Livingston 1 1 Warren 0.71 | 2
Madison 0.75 | 2 | Washington | 0.6 |4
Monroe 1 1 Wayne 0.51 | 4
Montgomery 1 1 | Westchester | 0.73 | 4
Nassau 1 2 Wyoming 1 |1
New York 0.97 | 2 Yates 1 1

Averages: f = .85, d=2.55
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Figure 7: NYC metro-area M SGM (initialized districts)
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Figure 8: NYC metro-area POM (final optimization)
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Figure 9: Close-up of the Albany area M SGM (initialized districts)
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Figure 10: Close-up of the Albany area POM (final optimization)
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B Proof of Theorem 4.1

Theorem B.1 All connected graphs permit a paring.

Proof We prove that any connected graph G permits a paring, by induction on the number
of vertices y. We prove a stronger statement, namely that for any connected graph G with
at least two vertices, there exist at least two parings. The claim clearly holds for y = 2.

Suppose the claim holds for y = k, where £ > 2. Then for y = k + 1, suppose the
claim does not hold. Then as y > 3, take any vertex v of GG such that removal of v leaves
GG unconnected, and consider two disjoint subgraphs G, G2 into which G is divided upon
removal of this vertex. By the induction hypothesis, there exist vertices vy, v, of G such
that its removal leaves G; connected.

I claim that removal of one of vy, vy from the original graph G leaves G' connected. To
see this, note that neither v; nor vy is adjacent to any vertex in Gg, as Gy, G5 have no
common edges. If both vy, vy are adjacent to v, then removal of v; leaves G' connected. This
is because if we let G’ = G — {v,} and G} = G; — {v1}, then G’ consists of G} U{v} and G,
which are both connected and connected to each other, as v is necessarily connected to Gs.

This means that G — {v;} is connected. If one of vy, vs is not adjacent to v;, WLOG
assume it is v;. Then removing v; from G leaves the graph connected, as G} U {v} is
connected, as is G9, and they are connected to each other. Some such vertex which admits a
paring also exists in (G5, yielding two vertices which permit a paring. This proves the result
by induction. |
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C Computer codes

// Tract

// a Tract has an area, a perimeter, a population, an ID, and a county.

.h — header file for a Tract

// and an OGRGeometry. ..

#ifndef TRACTH
#define TRACTH

#include
#include
#include
#include

<iostream>
<vector>
<string>
<cmath>

class County;
class District;

using namespace std;

class Tract {

prot

ected :

double _area;

double _perim;

int _population;

string -id;

int _county;

int _index;

OGRGeometry *_geo ;
OGRPoint *_centroid ;
vector<Tract %> neighbors;
District *_mydist;

County *_mycounty ;
map<Tract *,double> shared;

public:

Tract () { }
Tract (OGRFeature sme, int index){
_area = me—>GetFieldAsDouble (me—>GetFieldIndex ("AREA”) ) ;
_population =
me—>GetFieldAsInteger (me—>GetFieldIndex ("TOTALPOP”) ) ;
_id = me—>GetFieldAsString (me—>GetFieldIndex (”ID”));

string :: size_type notwhite = _id.find_first_not_of (”.\t\n”);

_id . erase (0,notwhite);

// trim trailing whitespace

notwhite = _id.find_last_not_of (”_\t\n”);
_id . erase(notwhite+1);
_county =

me—>GetFieldAsInteger (me—>GetFieldIndex ("COUNTYFP” ) ) ;
_geo = me—>StealGeometry () ;
_centroid = new OGRPoint () ;
((OGRPolygon x)_geo)—>Centroid(-centroid);

_index = index;

_perim = (((OGRPolygon #)_geo)—>getExteriorRing())—>get_Length();
}
// Setters

void addPerim (Tract *t,double d){
shared [t] = d;

}

void setCounty (County =*c){
_mycounty = c;

}

void setN(const vector <Tract %> &n){
int i;

for(i=0; i < n.size(); i++){



109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

if ((n[i]—->getPop() = 0) && (n[i]->getID () != 71491835”))
continue;
neighbors.push_back(n[i]);

}

}

void setDistrict (District *d){
_mydist = d;

}

// Getters

double getShared (Tract =t){ return shared[t]; }
County* getMyCounty (){ return _mycounty; }
int getlndex (){ return _index;
vector <Tract *> getN(){ return neighbors; }
District *getDistrict (){ return _mydist; }
double getArea(){ return _area;}
double getPerim (){ return _perim;}
int getPop(){ return _population;}
string getID(){ return getlId();}
string getld(){ return _id;}
int getCounty(){ return _county;}
OGRPoint* getCentroid (){ return _centroid;}
OGRGeometry *getGeo (){

return _geo;
}

// Neat stuff I can do with Tracts
double bcMetric(Tract *t){

return distC(t)/min(getArea() ,(t—>getArea()));
}

double getPopDen () {
return getPop () /getArea();
}

bool bordersp(Tract =t){
OGRGeometry *g = t—>getGeo () ;
return _geo—>Touches(g);

}

double distBetweenTracts (Tract *t){
OGRGeometry *g = t—>getGeo () ;
return _geo—>Distance(g);

}

double dist (OGRPoint *oc){
double xdiff = _centroid —>getX () — oc—>getX();
double ydiff = _centroid —>getY () — oc—>getY ();
return sqrt (xdiffsxdiff + ydiffxydiff);

}

double distC(Tract =*t){
OGRPoint xoc = t—>getCentroid () ;
double xdiff = _centroid —>getX () — oc—>getX();
double ydiff = _centroid —>getY () — oc—>getY ();
return sqrt (xdiffsxxdiff + ydiffxydiff);

}

bool onPerimeter (){
// returns true iff exzists a meighboring tract with a
// different district assignment
vector <Tract *x>::iterator iter;
for (iter = neighbors.begin(); iter != neighbors.end(); iter++){
if ((xiter)—>getDistrict () != _mydist){
return true;
}



135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
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return false;

}

vector <District %> getNColors(){
// returns list of districts touching this one...

int i;

vector<Tract *> n = getN();
map<District *,bool> seenit;
vector<District %> retval;

for (i=0;

if ((n[i]—->getDistrict ()

i < n.size(); i++){

I'seenit [n[i]—>getDistrict ()]){

retval.push_back(n[i]->getDistrict ());

seenit [n[i]—->getDistrict ()] = true;
}
return retval;
}
b
#endif
// Fnode.h — defines a Fronteir node structure, consisting

// and the District to change that Tract to.

#include <iostream>
#include ”Tract.h”
#include ” District .h”

class Fnode {
private:

Tract *_t;
District =_-d;
double _score;

public:

Fnode() { }

Fnode(Tract *t, District =d){
-t =t
d = d;

}

void

}

setScore (double score){
_score = score;

double getScore () {

}

return _score;

Tract xgetTract (){

}

return _t;

District *getDistrict (){

}
s

// County.h — header
// a County consists

#ifndef COUNTYH
#define COUNTYH

return _d;

file for a County
of a list of pointers to tracts.

l= getDistrict ()) &&

of a Tract



#include <iostream>
#include <vector>
#include <map>

#include

”Tract.h”

class District;

using namespace std;

// NDIST?

extern District* BLANKDIST;

class County {
protected:

public:
County (){

vector<Tract %> myTracts;
double area;
int population;

population = 0;
area = 0;

void addToCounty (Tract *t){

myTracts. push_back (t);
area += t—>getArea();
population 4= t—>getPop();

void printCounty () {

//map<District *,int> p;
map<District *,double> a;

map<int ,string> cnames;

cnames [3] = 7 Allegeny”;
cnames [13] = ”Chautauqua”;
cnames [9] = ” Cattaraugus”;
cnames [29] = 7 Erie”;
cnames [63] = ”Niagara”;
cnames [73] = ”Orleans” ;
cnames [37] = ” Genesee” ;
cnames [121] = ”"Wyoming” ;
cnames [55] = ”Monroe” ;
cnames [51] = ”"Livingston”;
cnames [117] = "Wayne” ;
cnames [101] = ”Steuben”;
cnames [69] = ”Ontario” ;
cnames [123] = ”Yates”;
cnames [11] = ”Cayuga” ;
cnames [97] = ”Schuyler”;
cnames [99] = ”Seneca”;
cnames [15] = ”Chemung” ;
cnames [33] = "Franklin”;
cnames [109] = ”Tompkins” ;
cnames [107] = ”Tioga” ;
cnames [23] = ”Cortland”;
cnames [75] = ”Oswego” ;
cnames [45] = 7 Jefferson”;
cnames [89] = ”St.._.Lawrence”;
cnames [49] = " Lewis”;
cnames [67] = ”Onondaga” ;
cnames [7] = "Broome” ;
cnames [17] = ”Chenango” ;
cnames [43] = " Herkimer” ;
cnames [41] = ”Hamilton” ;
cnames [31] = ”Essex”;
cnames [113] = ”"Warren” ;
cnames [19] = ”Clinton”;

cnames [115] = ”Washington” ;



75 cnames [83] = ”Rensselaer”;

76 cnames [21] = ” Columbia” ;

7 cnames [27] = ”Dutchess”;

78 cnames [91] = ”Saratoga”;

79 cnames [35] = ”Fulton”;

80 cnames [93] = ”Schenectady”;

81 cnames [57] = ”Montgomery” ;

82 cnames [25] = " Delaware” ;

83 cnames [77] = 7 Otsego”;

84 cnames [65] = ”Oneida” ;

85 cnames [53] = ”Madison” ;

86 cnames [21] = ”Columbia” ;

87 cnames [27] = "Dutchess” ;

88 cnames [79] = ”"Putnam” ;

89 cnames[119] = ” Westchester”;

90 cnames [105] = ” Sullivan”;

91 cnames [71] = ”Orange” ;

92 cnames [111] = " Ulster”;

93 cnames [39] = ” Greene”;

94 cnames [95] = ”Schoharie”;

95 cnames [1] = ” Albany” ;

96 cnames [87] = ”Rockland”;

97 cnames [103] = ” Suffolk”;

98 cnames [59] = ”Nassau” ;

99 cnames [81] = ”Queens” ;

100 cnames [85] = ”"Richmond” ;

101 cnames [47] = ”"Kings”;

102 cnames [5] = ”Bronx”;

103 cnames [61] = "New.York”;

104

105 int i;

106 for (i=0; i < myTracts.size (); i++){

107 //p[myTracts[i]->getDistrict ()] += myTracts[i]->getPop();
108 a[myTracts[i]—>getDistrict ()] += myTracts[i]—>getArea();
109

110

111 double x;

112 double largest = —1;

113 //map<District *,int>::iterator piter;
114 map<District *,double>::iterator aiter;
115 cout << cnames|[myTracts. front ()—>getCounty ()] << 7.7
116 for (aiter = a.begin(); aiter != a.end(); aiter++){
117 x = (double) (aiter —>second) /(double)getArea () ;
118 if(x > largest){

119 largest = x;

120 }

121 }

122 cout << largest << 7.” << a.size() << endl;
123 }

124

125 vector<Tract *> getTractList (){

126 return myTracts;

127 }

128

129 int getPop(){

130 return population;

131 }

132

133 double getArea ()

134 return area;

135 }

136

137 double getValue () {

138 double scale = 1leT7;

139

140 map<District *,int> p;

141 //map<District *,double> a;

142



143 double a = 1.0 * scale;

144

145 int i;

146 for (i=0; i < myTracts.size(); i++){

147 if (myTracts[i]—>getDistrict () != BLANKDIST) {
148 p[myTracts[i]->getDistrict ()] += myTracts[i]—>getPop();
149

150 //a[myTracts[i]] += myTracts[i]->getArea();
151

152

153 double returnval=0;

154 double x;

155 map<District =,int >::iterator piter;

156 //map<District *,double>::iterator aiter;

157

158 for (piter = p.begin(); piter != p.end(); piter++){
159 x = (double) (piter —>second) /(double)population;
160 returnval 4= a*xx*x;

161 }

162

163 return returnval;

164 }

165

166 };

167

168 #endif

// District.h — header file for a District
// a District consists of a list of tracts, area, perimeter, and
// population.

#ifndef DISTRICT_H
#define DISTRICT_H

OO Ut WN -

9 #include <iostream>
10 #include <list >

11 #include <map>

12 #include <vector>
13 #include 7" Tract.h”
14 +#include ” County.h”
15 #include <sstream>

18 wusing namespace std;

19 extern District *xBLANKDIST;

20 extern const double AVGPEOPLE;

21 extern bool comp_func(Tract xlhs, Tract *rhs);
22 extern bool eq_-func(Tract xlhs, Tract *rhs);

23

24 class District {

25 protected:

26 list <Tract x> myTracts;
27 double _area;

28 double _perimeter;

29 int _population;

30 int _numtracts;

31

32 public:

33 District () {

34 _area = 0;

35 _population = 0;

36 _numtracts = 0;

37 }

38

39 void removeFromDistrict (Tract *t){
40 myTracts.remove(t);
41 _numtracts ——;

42 _area = _area — t—>getArea();



}

_population = _population — t—>getPop () ;

void addToDistrict (Tract *t){

}

if ((t—>getPop () = 0) && (t—>getID () != ”1491835"))
return;

myTracts. push_front (t);

_numtracts+4++;

_area += t—>getArea();

//-perimeter += t—>getPerimeter();

// would need to do pairwise elimination on borders...
_population += t—>getPop();

double getArea(){

}

Ve

return _area;

double getPerimeter(){
return _perimeter;

b/

double getlIsoPerim () {

double scale = .001;

OGRGeometry *uni ;

list <Tract *>::iterator liter;

list <Tract *> 1 = getPerimeter () ;

vector<Tract *> n;

double p=0;

int i;

double count;

//uni = ((myTracts. front () )—>getGeo () )—>clone();

for(liter = l.begin(); liter != l.end(); liter++){
count = 0;
n = (xliter)—>getN();
for(i=0; i < n.size(); i++){

if(n[i]->getDistrict () != this ){
count++;
}
}
p += ((*liter )—>getPerim () )*(count/(double)n.size ());
.
for(liter = myTracts. begin(); liter != myTracts.end();
liter++){
n = (xliter )—>getN();
p =p + (xliter )=>getPerim();
for(i=0; i < n.size(); i++)
if(nfiJ->getDistrict () == this){
p += n[ij->getPerim () — (xliter )=>getShared(n[i]);
}
b/

//double a = ((OGRPolygon x)uni)—>get_Area();
double a = getArea();

//OGRLinearRing *perim = ((OGRPolygonx)uni)—>getExteriorRing();
//double p = perim—>get_Length();

//cout << 7Area 7 << a << 7 Perimeter 7 << p << endl;
//delete uni;

return scalexa/(p*p);

int getPop(){



111 return _population;

112 }

113

114 int getNumTracts () {

115 return _numtracts;

116 }

117

118 list <Tract *> getTractList (){

119 return myTracts;

120 }

121

122 double score (){

123 return newcountyScore() + compactScore() + varScore() + countyScore();
124 }

125

126 double newcountyScore () {

127 double M = 0.;

128 list <Tract =>::iterator liter;
129 map<County #*,double> pz;

130 County =xc;

131 double frac;

132 map<County *,double>::iterator miter;
133 double retval=0;

134

135 for(liter = myTracts.begin(); liter != myTracts.end();
136 liter++){

137 c = (xliter )—>getMyCounty () ;
138 pzlc] += (xliter )—>getArea();
139

140

141 return Mxpz. size () ;

142 }

143

144 double countyScore (){

145 double M = 1.;

146 list <Tract *>::iterator liter;
147 map<County #*,double> pz;

148 map<int , string> cnames;

149 County x*c;

150 double frac;

151 map<County #*,double>::iterator miter;
152 double retval=0;

153 // Initialize County Names

154 cnames [3] = 7 Allegeny”;

155 cnames [13] = ”Chautauqua”;

156 cnames [9] = ” Cattaraugus”;

157 cnames [29] = " Erie”;

158 cnames [63] = ”Niagara”;

159 cnames [73] = ”Orleans”;

160 cnames [37] = ” Genesee” ;

161 cnames [121] = ”Wyoming” ;

162 cnames [55] = ”Monroe” ;

163 cnames [51] = ”Livingston”;

164 cnames [117] = "Wayne” ;

165 cnames [101] = ”Steuben”;

166 cnames [69] = ”Ontario”;

167 cnames [123] = ”"Yates”;

168 cnames [11] = ”Cayuga”;

169 cnames [97] = ”Schuyler”;

170 cnames [99] = ”Seneca”;

171 cnames [15] = ”Chemung” ;

172 cnames [33] = ”Franklin”;

173 cnames [109] = ”Tompkins” ;

174 cnames [107] = ”Tioga” ;

175 cnames [23] = ”Cortland”;

176 cnames [75] = ”Oswego” ;

177 cnames [45] = 7 Jefferson”;

178 cnames [89]

”St._Lawrence” ;



179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

}

cnames [49] = " Lewis” ;

cnames [67] = ”Onondaga” ;
cnames [7] = ”Broome” ;
cnames [17] = ”Chenango” ;
cnames [43] = ”Herkimer”;
cnames [41] = "Hamilton” ;
cnames [31] = ”Essex”;
cnames [113] = ”Warren” ;
cnames [19] = 7 Clinton”;
cnames [115] = ”Washington” ;
cnames [83] = ”"Rensselaer”;
cnames [21] = ”Columbia”;
cnames [27] = "Dutchess” ;
cnames [91] = ”Saratoga”;
cnames [35] = ”Fulton”;
cnames [93] = ”Schenectady”;
cnames [57] = ”Montgomery” ;
cnames [25] = ”Delaware” ;
cnames [77] = ”Otsego”;
cnames [65] = ”Oneida” ;
cnames [53] = ”Madison” ;
cnames [21] = " Columbia” ;
cnames [27] = ”Dutchess”;
cnames [79] = ”Putnam” ;
cnames [119] = " Westchester” ;
cnames [105] = ”Sullivan”;
cnames [71] = ”Orange” ;
cnames[111] = ”Ulster”;
cnames [39] = " Greene” ;
cnames [95] = ”Schoharie”;
cnames [1] = " Albany” ;
cnames [87] = ”Rockland”;
cnames [103] = ” Suffolk”;
cnames [59] = ”Nassau” ;
cnames [81] = ”Queens” ;
cnames [85] = "Richmond” ;
cnames [47] = ”"Kings”;
cnames [5] = ”Bronx”;
cnames [61] = "New.York”;
for(liter = myTracts.begin(); liter != myTracts.end();
liter++){

c = (xliter )—>getMyCounty () ;
pzlc] += (xliter )—>getArea();

for (miter = pz.begin(); miter != pz.end(); miter++){
frac =
(double) (miter —>second) /(double) (( miter—>first )—>getArea());
cout <<

cnames [(( miter—>first )—>getTractList ()).front ()—>getCounty ()]
<< ”,_4” << frac << ”,_4”;
retval += fracxfrac;
}
cout << endl;
return Mx(retval);

OGRPoint *centerOfMass (){

list <Tract *>::iterator liter;
double x=0,y=0;

for(liter = myTracts.begin(); liter != myTracts.end();
liter++){
x += ((xliter )—>getPop())*((xliter )—>getCentroid () )—>getX () ;
y +=

((xliter )—>getPop () ) *((*liter )—>getCentroid () )—>getY () ;



247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

x = x/getPop () ;
y = y/getPop();

OGRPoint *retval = new OGRPoint () ;
retval —>setX (x);
retval —=>setY (y);

return

retval;

double bcBB () {
list <Tract =>::iterator perim;
list <Tract *> p = myTracts;

double
double
double
double
double
double

minX = 999999999999,
minY = 999999999999.;

maxX = —999999999999.;
maxY = —999999999999.;
curX;
curyY ;

OGRPoint *pt;

for (perim = p.begin(); perim != p.end();

pt

= (xperim)—>getCentroid () ;

curX = pt—>getX () ;
curY = pt—>getY () ;
if (curX < minX){

minX = curX;

if (curY < minY){

minY = curY;

if (curX > maxX){

maxX = curX;

if (curY > maxY){

}
}

return

}

maxY = curY ;

4. x pow (maxX—minX+ (maxY—minY') ,2) ;

vector<District %> whatBordersMe () {
map<District #*,bool>seenit;
list <Tract *>::iterator perim;
list <Tract *> p = getFrontier ();
vector<District %> retval;

for (perim = p.begin(); perim != p.end()
if (! seenit [(*perim)—>getDistrict ()]

)]

t

}

return

}

)
seenit [(* perim)—>getDistrict (
retval.push_back ((*perim)—>getD

retval;

vector<Tract *> sharesBorder (District =*d){
list <Tract =>::iterator perim;
list <Tract *> p = getFrontier () ;
vector<Tract *> retval;

for (perim = p.begin(); perim != p.end();
if ((xperim)—>getDistrict () = d){
retval . push_back (xperim) ;
}
}
return retval;

perim++){

perim++){

{
= true;
istrict ());

perim++){



315

316 double compactScore (){

317 //return getlsoPerim () ;

318 //double M = .1;

319 //return MkxgetArea()/beBB();

320 /x

321 double M = —10000;

322 list<Tract *>::iterator perim;

323 list<Tract *> p = myTracts;

324 double avgDist = 0;

325 OGRPoint xc = centerOfMass () ;

326 for(perim = p.begin(); perim != p.end(); perim++){
327 avgDist += (xperim)—>dist(c);

328 }

329 avgDist = avgDist/p.size();

330 double retval = 0;

331 for(perim = p.begin(); perim != p.end(); perim++){
332 retval = pow((1—(*xperim)—>dist(c)/avgDist) ,2.);
333 }

334 delete c;

335 return Mxretval/(p.size()—1);

336 %/

337

338 double M = 30;

339 list <Tract =>::iterator liter;

340 vector<Tract *> n;

341 int i;

342 double count = 0;

343 for(liter = myTracts.begin(); liter != myTracts.end();
344 liter++){

345 n = (xliter)—>getN();

346 for(i=0; i < n.size(); i++){

347 if(n[i]—->getDistrict () = this){

348 count-+4-+;

349 }

350 }

351 }

352 return count * M /

353 (((double)myTracts. size ()) *((double)myTracts. size () — 1));
354

355 /%

356 double M = 10.;

357 list<Tract *> p = getPerimeter();

358 double b = (double)p.size();

359 int nt = getNumTracts();

360 return Mk ((double)nt)/pow(b+4.,2.);x/

361 }

362

363 inline double varScore (){

364 double M = —1000.;

365 return Mx(getPop () —

366 AVGPEOPLE) (1. / getPop () ) *(getPop ()-AVGPEOPLE) % (1. / getPop () ) ;
367 }

368

369 map<Tract *,bool> visited;

370

371 bool isContiguous(){

372 if (this = BLANKDIST) {

373 return true;

374 }

375 list <Tract *>::iterator liter;

376 visited . clear () ;

377 dfs (getTractList (). front ());

378 bool visitedall = true;

379 for(liter = myTracts.begin(); liter != myTracts.end();
380 liter4++){

381 if (visited [(xliter)] = false){

382 visitedall = false;



383 break;

384 }

385 }

386

387 return visitedall;

388 }

389

390 void dfs(Tract =t){

391 visited [t] = true;

392 vector <Tract *> n = t—>getN () ;

393 int i;

394 for(i=0; i < n.size(); i++){

395 if ((this = n[i]->getDistrict ()) && (!visited[n[i]])){
396 dfs (n[i]);

397

398 }

399 }

400

401 double getValue () {

402 if (this = BLANKDIST) {

403 return 0;

404

405 double M=10000;

406 double p = (double)getPop();

407 if (p < AVGPEOPLE) {

408 return Mxsqrt (p/AVGPEOPLE) ;

409 }

410 return M—4+Msx ((p—AVGPEOPLE) /p) * (( p—AVGPEOPLE) /p) ;
411 }

412

413 // perimeter —> set of nodes that are in this and border
414 // something mot in this

415 list <Tract *> getPerimeter (){

416 // go through all the Tracts...

417 list <Tract x=>::iterator liter;

418 list <Tract *> returnval;

419 for(liter = myTracts.begin(); liter != myTracts.end();
420 liter++){

421 if ((xliter )—>onPerimeter () ){

422 returnval . push_front (xliter);

423 }

424 }

425 return returnval;

426 }

427

428

429 // frontier —> set of nodes that border this

430 list <Tract *> getFrontier (){

431 // go thru all the wvectors

432 // add to master list only if it’s not == this
433 list <Tract x>::iterator liter;

434 list <Tract *> returnval;

435 map<Tract *,bool> seenit ;

436

437 vector<Tract *> v;

438 int i:

439 for(liter = myTracts.begin(); liter != myTracts.end();
440 liter++){

441 v = (xliter)—>getN();

442 for(i=0; i < v.size(); i++){

443 if ((this != v[i]->getDistrict ()) && !seenit[v[i]]) {
444 returnval . push_front (v[i]);

445 seenit [v[i]] = true;

446

447 }

448 }

449

450 //returnval.sort();
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Tract xprev;

if(returnval.size () > 1){

prev = returnval. front();
for(liter = ((returnval.begin())++); liter != returnval
liter++){

if (prev == (xliter)){

}

returnval.remove(prev);
addin. push_back (prev);

prev = *liter;

}
}

for(i=0; i < addin.size(); i++){

returnval

b/

.push_front(addin[i]) ;

//returnval . unique () ;
return returnval;

Tract* a,const Tract *b){

return ((a.getCentroid ())—>getX () <
(b.getCentroid () )—>getX());

returnval [0] = (myTracts. front ()—>getCentroid () )—>getX ();
returnval [1] = (myTracts. back ()—>getCentroid())—>getX();

Tractx a, const Tract xb){

return ((a.getCentroid ())—>getY () <
(b.getCentroid ())—>getY ());

returnval [0] = (myTracts. front ()—>getCentroid())—>getY ();
returnval [1] = (myTracts. back()—>getCentroid())—>getY ();

list<Tract x> cleavelessthanz (double target){

returnval ;

list<Tract *>::iterator iter;
for(iter=myTracts. start ();iter != myTracks.end(); iter++){
if (((xiter )—>getCentroid())—>getX () < target){
myTracts. remove (x iter ) ;
returnval.push_back (xiter);

}
/%
bool minmez(const
}
double *getMinMazX (){
double returnval [2];
myTracts. sort (minmez) ;
return returnval;
}
bool minmey(const
}
double xgetMinMazY (){
double returnval [2];
myTracts. sort (minmey) ;
return returnval;
}
list<Tract *>
}
}
b/
I
#endif

// Allocation.h — header file for an Allocation

// an Allocation consists

// walue.

#ifndef ALLOCATIONH
#define ALLOCATIONH

#include <iostream>

of an array of districts

(29) and a heuristic

.end();
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#include <cmath>
#include ” District .h”

using namespace std;

class Allocation {
protected:
District* d[29];

public:
Allocation (){ }
Allocation (District *xds){
int i;
for (i=0;

i< i++){
d[i] = ds

29;
[i];
}

District xxgetDistricts (){
return d;
}

I
#endif

#include 7 ogrsf_frmts.h”
#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
#include <map>
#include ”Tract.h”
#include ”County.h”
#include ” District .h”
#include 7 Allocation .h”
//#include "rng.h”
#include <sstream>
#include <cstdlib >
#include <ctime>
#include <vector>
#include ”Fnode.h”
#include <algorithm>

const int NTRACT = 4907;

const int NDIST = 29;

const double AVGPEOPLE = 18976457./(float )NDIST;
const int NCOUNTY = 62;

//const int NLEVELS = 20;

District *BLANKDIST;

const bool PRINTHEU = false;

using namespace std;

void plotAllocation (Allocation #a,string fname);

District xxgetNeighbor(District **d, Tract** allTracts, double
xxdistmat) ;

void moveTract (Tract *t, District xnewd);

double getBadness(District *xd,double xxdistmat);

void clarify (Tract #xallTracts);

void addneighrecur (Tract *t,District schangeto, District xbackground,int

levels);
double generateScore (District #xd, County **xallCounties);
vector <Fnode %> unionFrontier (District sxxd);
double getBC(vector<Tract *> startingpoints , Tract =t);

bool compf(Fnode *lhs, Fnode xrhs){
// greater than, not less than, b/c we want to sort descending



return lhs—>getScore() > rhs—>getScore();

}

bool eqf(Fnode *lhs, Fnode *rhs){
return lhs—>getScore () = rhs—>getScore () ;
}

bool eq_func(Tract xlhs, Tract *rhs){
return lhs = rhs;
}

bool compbefore(Fnode *lhs, Fnode xrhs){
if (rhs—>getTract () >= lhs—>getTract()){
return true;
} else if(rhs—>getTract() = lhs—>getTract ()){
& (

if (rhs—>getDistrict () >= lhs—>getDistrict ()){
return true;
}
}
return false;
}
bool eqbefore(Fnode xlhs, Fnode xrhs){
return ((rhs—>getTract () = lhs—>getTract()) &&
(rhs—>getDistrict () = lhs—>getDistrict()));
}
bool comp_func(Tract *lhs, Tract *rhs){
return lhs < rhs;
}
string inttostring (const int i){
ostringstream stream:;
stream << i;
return stream.str();
}
double randdub (){
return rand () /(double)RAND MAX;
//returns between lo and hi inclusive
int randint (int low, int high){
return (low+(int) floor (randdub () x(high—low+1)));
}
vector <Tract *>copyvec(const vector<Tract x> &in){
int i;
vector <Tract *> returnval;
for (i=0;i<in.size () ;i++){
returnval [1] = in[i];
}
}

int main(int argc, char * const argv[]) {
srand ((unsigned) time (NULL) ) ;

OGRRegisterAll () ;
OGRDataSource smyfile;
myfile = OGRSFDriverRegistrar::Open(”./polygons/”, FALSE);
if (myfile = NULL){
cerr << ”Can’t.open.file” << endl;

return 1;

cout << ”"Opened._file_appropriately!” << endl;
cout << ”?File_has.” << myfile—>GetLayerCount () << ”_layers” << endl;

OGRLayer xlayer = myfile—>GetLayer (0);
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if (1layer){
cerr << ”Cannot.open._layer” << endl;
return 1;

}

cout << ”Layer_has.” << layer—>GetFeatureCount () << ”_features” <<
endl;

int numtracts = layer —>GetFeatureCount () ;

int i,j;

OGRFeature xfeat ;

int populationindex;

int totalpop = 0;

map<string ,int> IDtolref;

map<int ,int> CkeytoRkey; // county key in file to our real keys.
Tract xallTracts [NTRACT];

bool #xbmat = new bool*[NTRACT];

double xxdistmat = new doublex[NTRACT];

double pdscore ,pcscore , fdscore , fcscore;
Allocation =xa;
County **xallCounties = new County * [NCOUNTY];
for (i=0; i < NOOUNTY; i++){

allCounties [i] = new County () ;
}

int cindex=-1;
for (i=0; i < numtracts; i++){
feat = layer—>GetNextFeature() ;
if (! feat){
cerr << ”Could_not.read._feature ,_exiting!” << endl;
return 1;

allTracts [i] = new Tract(feat ,i
IDtolref[allTracts [i]—>getID () ]
// Link to counties...
if (CkeytoRkey.count(allTracts [i]->getCounty ()) = 0){
cindex++;
CkeytoRkey [allTracts [i]—>getCounty ()] = cindex;

) .

)
= 1i;

allCounties [ CkeytoRkey [allTracts [ i]—>getCounty ()]]—>addToCounty (allTracts [i]) ;

delete feat;
feat = NULL;

}

cout << " beginning._to_read_border_file ...” << endl;
ifstream bo;
bo.open(”border.txt”);
for (i=0; i < NTRACT; i++){

bmat[i] = new bool [NTRACT];

for (j=0; j < NTRACT; j++){

bo >> bmat[i][]j];

}

}

bo.close ();
cout << ”finished._reading.border.file” << endl;

vector <Tract %> n;
for (i=0; i < NTRACT; i++){
for (j=0; j < NTRACT; j++){
if (bmat [1][]) {
n.push_back(allTracts [j]);
}

allTracts [i]—>setN(n);
n.clear ();
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cout << ”beginning.calculating._.centroid_distances” << endl;
for (i=0; i < NTRACT; i++){

distmat [i] = new double [NTRACT];

for (j=0; j < NTRACT; j++){

if(j < i){

distmat[i][j] = distmat[j]|[i];
} else {

distmat[i][j] = allTracts[i]—>distC (allTracts[j]);
}

}
}
cout << ”finished._calculating._centroid_distances” << endl;

District *d[NDIST+1]; // d[NDIST] = blank canvas....
for (i=0; i < NDIST+1; i++){

d[i] = new District ();
}

BLANKDIST = d [NDIST];

// initially we paint everything NDIST...
for (i=0; i < NTRACT; i++){
allTracts [i]—>setDistrict (BLANKDIST) ;
BLANKDIST—>addToDistrict (allTracts [i]) ;

string spoint = 7_..ooo 3483864”; // remember the spaces!
int iref = IDtolref[spoint];

if (lallTracts [iref]){
cerr << ”"Could_not_find_starting._node,_exiting!” << endl;
return 1;

}
// color it!

District =curd;
//curd = d[0];
//moveTract(allTracts [iref],curd);
// in each step, get list of possible frontier nodes.
// find the wvalue of adding each node.
// add the one with highest value only if the new value is increased
District *checkme;
list <Tract *> f;
list <Tract *>::iterator liter;
double hiscore;
Tract xaddme;
double curval ,tmpscore;
bool done;
hiscore = —999999999;
addme = NULL;
Tract =xabba;
vector <Tract %> startingpoints;
double maxdist;
Tract xthevest; // "wvest is best!”
abba = allTracts[iref];
/* distance mazimin
startingpoints.push_back (abba);
for(i=1; i < NDIST; i++){
maxdist = —1.;
for(j=0; j < NTRACT; j++){
tmpscore=getBC (startingpoints , allTracts[j]);
if (tmpscore > mazdist){
maxdist = tmpscore;
thevest = allTracts[j];
}
}

startingpoints.push_back(thevest);



249

250 for(i=0; i < NDIST; i++){

251 abba = startingpoints[i];

252 moveTract (abba,d[i]);

253 Yx/

254 bool flag;

255

256 cout << " Allocating.initial _random.districts” << endl;

257 for (i=0; i <NDIST; i++){

258 flag = false;

259 do {

260 j = randint (0 ,NTRACT-1);

261 abba = allTracts[j];

262 if (randdub() < (double)abba—>getPop () /25000.)

263 flag = true;

264 } while (abba—>getDistrict () != BLANKDIST || !flag);

265 moveTract (abba,d[i]) ;

266 }

267 cout << ”Done_random.allocation” << endl;

268 a = new Allocation(d);

269 plotAllocation (a, ”initial”);

270 vector<Fnode x> curfr;

271 Fnode xbest;

272 County *iq;

273

274 while ((BLANKDIST—>get TractList ()).size () > 0){

275 curfr = unionFrontier (d);

276 //sort(curfr.begin (), curfr.end(),compbefore);

277 //curfr.erase (unique (curfr.begin (), curfr.end(),eqbefore),curfr.end());
278 cout << ”Current.size.is:.” <<

279 (BLANKDIST—>get TractList () ). size () <<

280 7 _Frontier:.” << curfr.size () << endl;

281 for(i=0; i < curfr.size(); i++){

282 pdscore = (curfr [i]->getDistrict ())—>getValue();

283 iq =

284 allCounties [ CkeytoRkey [( curfr [i]—>getTract () )—>getCounty () |];
285 pcscore = ig—>getValue () ;

286 moveTract (curfr [i]—>getTract (), curfr[i]—->getDistrict ());
287 fdscore = (curfr[i]->getDistrict ())—>getValue();

288 fcscore = ig—>getValue();

289 //tmpscore = generateScore(d, allCounties);

290 tmpscore = fdscore+fcscore—pdscore—pcscore;

291 // methodology: generate scores for all, sort, take the top
292 // ceil(1/50th) of points.

293 curfr [i]—>setScore (tmpscore) ;

294 if (tmpscore >= hiscore){

295 hiscore = tmpscore;

296 best = curfr[i];

297 }

298 moveTract (curfr [i]->getTract () ,BLANKDIST) ;

299

300 // sort descending scores here

301 sort (curfr.begin () ,curfr.end() ,compf);

302 //curfr.erase(unique (curfr.begin (), curfr.end(),eqf),curfr.end());
303 // do the movements;

304

305 j = (int)floor ((double) curfr.size () /30.);

306 for(i=j;i !'= -1 ; i—){

307 moveTract (curfr [i]—>getTract (), curfr[i]—->getDistrict ());
308

309 curfr.clear ();

310 //moveTract(best—>getTract(),best—>getDistrict());

311 cout << ”Score:.” << generateScore(d, allCounties) << endl;
312 }

313

314 // District—by—District

315 /s

316 double pdoth, fdoth ;
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bool flag=false;
for(i=0; i < NDIST; i++){

curd = d[i];
flag = false;
do {

j = randint (0,NTRACT-1);
abba = allTracts[j];
if (randdub () < (double)abba—>getPop () /25000.)
flag = true;
} while (abba—>getDistrict () != BLANKDIST || !flag);
addme = abba;

cout << 7Starting District 7 << i+1 << endl;
Ve
curd = d[i];
f = BLANKDIST—>getTractList () ;
for(liter = f.begin(); liter != f.end(); liter++){
moveTract (x liter , curd);
tmpscore = generateScore(d, allCounties);
if (tmpscore >= hiscore){
hiscore = tmpscore;
addme = xliter ;

moveTract (x liter ,BLANKDIST) ;
}x
moveTract (addme, curd) ;
done = false;
while (!done){
curval = generateScore(d, allCounties);
cout << ”Score: 7 << curval << endl;
hiscore = —50.;
addme = NULL;
f = curd—>getFrontier();
//cout << "Frontier has 7 << f.size() << 7 tracts” << endl;
for(liter = f.begin(); liter I= f.end(); liter++){
// add liter to current allocation , getvalue, check and
// unwind, settign hiscore and addme if necessary.
checkme = (xliter )—>getDistrict();

if (checkme == curd){
cerr << ”"There is a problem with frontier generation!”
<< endl;

if (checkme—>isContiguous () ){
pdoth = checkme—>getValue () ;
pdscore = curd—>getValue();
iq =
allCounties [CkeytoRkey [(x liter )—>getCounty () ]];
pcscore = ig—>getValue();
moveTract (x liter ,curd);
fdoth = checkme—>getValue();
fdscore = curd—>getValue();
fescore = ig—>getValue();
//tmpscore = generateScore(d, allCounties);
tmpscore = fdscore+fcscore+fdoth — pcscore — pdscore
— pdoth;
if (tmpscore >= hiscore ){
addme = xliter;
hiscore = tmpscore;

moveTract (x liter ,checkme);

}

if (addme == NULL){
done = true;

} else {

moveTract (addme, curd) ;

}
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}
//*/

Ve

for(i=0; i < NTRACT; i++){
allTracts [i][->setDistrict (d[0]) ;
d[0]—>addToDistrict (allTracts[i]);

int seedind ,k;
cout << ”Beginning recursive initial districting” << endl;
for(i=1; i < NDIST; i++){
do {
seedind = randint (0,NTRACT-1);
} while(allTracts [seedind]—>getDistrict () = d[0]);

// seed with self, neighbors, neighbors of neighbors
addneighrecur (allTracts [seedind],d[i],d[0] ,NLEVELS) ;
if ((allTracts [seedind]—>getN()). front ()—>getDistrict () !=
allTracts [seedind]—>getDistrict ()){
moveTract ((allTracts [seedind]—>getN()).front(),allTracts[seedind]—->getDistrict ()

’

}

// add District 0 possible elimination

*
for(i=1; i < NDIST; i++){
if (thechosen [i]—>getDistrict () = d[i]){
moveTract (thechosen [i],d[i]);
}

}x

for(i=0; i < NDIST; i++){
cout << 7 District 7 << i+1<< 7: 7 << d[i]->getPop () << endl;
cout << 7 has 7 << (d[ij->getTractList()).size() << endl;

Allocation *xa = new Allocation (d);
plotAllocation (a, ”initial”);
District xxmaybe;
District *xcurr = d;
for(i=0; i< 1000; i++){
J/if (1(i%10))
clarify (allTracts);
cout << 7Step 7 << 1t << 7 badness: ” << getBadness(curr,distmat)
<< endl;
maybe = getNeighbor (curr, allTracts , distmat);

if (I'maybe){
//cout << 71 didn’t improve!” << endl;

} else {

curr = maybe;
}
b/

int sumpump=0;
for (i=0; i < NDIST+1; i++){
sumpump += d[i]->getPop () ;
cout << " District.” << i+1 << 7:.” << d[i]—>getPop() << endl;

}

if (arge = 2){
list <Tract *>doolist;
list <Tract *x>::iterator liter;
ofstream outfile (argv[1]);
double variance=0;
for (i=0; i < NDIST; i++){
variance += pow ((double) (d[i]—>getPop ()-AVGPEOPLE) ,2.) ;
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}
variance = sqrt(variance);
outfile << variance << endl;
outfile << generateScore(d, allCounties) << endl;
for (i=0; i < NDIST; i++){
outfile << "D.";
doolist = d[i]->getTractList () ;
for(liter=doolist.begin(); liter != doolist.end(); liter++){
outfile << (xliter)—>getIndex () << 7.7;

outfile << endl;
}

outfile.close ()

}

cout << ”"Total_population:.
a = new Allocation(d);
plotAllocation (a, ”testing”);
return 0;

”

<< sumpump << endl;

}

// measures bc metric, returns maz found...

double getBC(vector<Tract *> startingpoints ,Tract xt){
int i;

double minv = 999999999999999999.;

double tmp;

for(i=0; i < startingpoints.size(); i++){
tmp = t—>bcMetric(startingpoints[i]);
if (tmp < minv){

minv = tmp;
}
}
return minv;
}
vector <Fnode %> unionFrontier (District *xd){
int i,j,k;
list <Tract %> f;
list <Tract *>::iterator liter ,jiter ,kiter;
Fnode xtmp;
bool flag;
vector <Fnode %> retval;
for (i=0; i < NDIST; i++){
f = d[i]->getFrontier();
/*
for(jiter = f.begin(); jiter != f.end(); jiter++)
flag = false;
for(kiter = jiter; kiter != f.end(); kiter++){
if (((xjiter) == (xkiter)) &8 !flag){
flag = true;
} else if((xjiter) == (xkiter)){
cout << ”Duplicate in the frontier!” << endl;
}
}
}
*/
for(liter = f.begin(); liter != f.end(); liter++){
if ((xliter )=>getDistrict () = BLANKDIST) {
tmp = new Fnode(x*liter ,d[i]);
retval.push_back (tmp);
}
}
}
return retval;
}



520 double generateScore(District #xd, County x*xallCounties){

521 int i;

522 double pval=0;

523 double cval=0;

524

525 for (i=0; i < NDIST; i++){

526 pval 4= d[i]->getValue () ;

527 }

528

529 for (i=0; i < NOOUNTY; i++){

530 cval += allCounties [i]—>getValue () ;

531 }

532

533 if (PRINTHEU)

534 cout << ”Population.Score:.” << pval << ”_County.Score:.” << cval << endl;
535 return pvaltcval;

536 }

537

538 void addneighrecur(Tract *t,District *changeto,District sbackground,int
539 levels){

540 if(levels = 0)

541 return;

542 if (t—getDistrict () = changeto || t—>getDistrict () != background)
543 return;

544

545 moveTract (t,changeto);

546 vector <Tract *> nvec;;

547 int j;

548 nvec = t—>getN () ;

549 for (j=0; j < nvec.size(); j++){

550 addneighrecur (nvec[j],changeto, background,levels —1);
551 }

552 }

553

554 wvoid clarify (Tract s+xallTracts){

555 int i,j;

556 // if everything around me is another color, then I change
557 District #*me,xoth;

558 vector <Tract *> n;

559 bool changeme;

560 for (i=0; i < NTRACT; i++){

561 me = allTracts [i]—>getDistrict ();

562 if (me—>getTractList ().size() <= 2){

563 continue;

564

565 n = allTracts [i]—>getN();

566 if(n.size() > 0){

567 changeme = true;

568 for (j=0; j < n.size(); j++){

569 if(me = n[j]->getDistrict ()){

570 changeme = false;

571 break;

572 }

573 }

574 /*

575 oth = n[0]—>getDistrict();

576 if (oth I= me){

577 changeme = true;

578 for(j=1; j < n.size(); j++){

579 if (oth != n[j]->getDistrict()){
580 changeme = false;

581 break;

582 }

583

584 Y=/

585 if (changeme) {

586 oth = n[randint (0,n.size ()—1)]->getDistrict ();

587 cout << "Found_enclave!” << endl;



588 moveTract(allTracts [i],oth);

589 changeme = false;

590 }

591 }

592 }

593}

594

595

596 District sxgetNeighbor(District #xd, Tractxx allTracts, double xxdistmat){
597 double curval = getBadness(d, distmat);
598 int i;

599

600 bool done = false;

601 Tract *tmp,* posc;

602 vector <Tract *> in;

603 while (! done){

604 tmp = allTracts[randint (0 ,NTRACT-1) |;
605 if (!tmp—>onPerimeter () ){

606 continue;

607 } else {

608 in = tmp—>getN () ;

609 posc = in[randint (0,in.size ()—1)];
610 if (posc—>getDistrict () != tmp—>getDistrict())
611 done = true;

612 }

613 }

614 /x

615 vector <Tract x> borders;

616

617 for (i=0;i < NTRACT; i++){

618 if(allTracts [i][->onPerimeter () ){

619 borders.push_back(allTracts[i]);
620 }

621 }

622

623 while (! done){

624 tmp = borders[randint (0,borders. size ()—1)];
625 in = tmp—>getN();

626 posc = in[randint (0,in. size ()—1)];
627 if (posc—>getDistrict () != tmp—>getDistrict())
628 done = true;

629 }

630 %/

631 District *oldd = tmp—>getDistrict () ;

632 District *newd = posc—>getDistrict ();

633 double movet;

634 double movec;

635 double swap;

636

637 // option one: let’s move tmp to mewd:
638

639 moveTract (tmp,newd) ;

640 movet = getBadness(d, distmat);

641 // huh. That didn’t work. Let’s try the other way...
642 moveTract (tmp, oldd) ;

643 moveTract (posc,oldd);

644 movec = getBadness(d, distmat);

645

646 // Try the swap...

647 moveTract (tmp,newd) ;

648 swap = getBadness(d,distmat);

649

650 list <double> 1;

651 l.push_front (curval);

652 l.push_front (movet);

653 l.push_front (movec) ;

654 l.push_front (swap) ;

655
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}

l.sort();

// current state: swapped

if (1.front () = curval){
moveTract (tmp, oldd) ;
moveTract (posc ,newd) ;
return NULL;

} else if(1l.front() = movet){
moveTract (posc ,newd) ;
return d;

} else if(1l.front() = movec){
moveTract (tmp, oldd) ;
return d;

} else {
return d;

// house cleaning to keep data structs in order
void moveTract (Tract *t, District xnewd){

}

District *oldd = t—>getDistrict();
if (oldd = newd){
cerr << ”"Trying._to_change_to_already_fixed_district!” << endl;
return;
}
list <Tract *> 1 = oldd—>getTractList ();
l.remove(t);
1 = newd—>getTractList () ;
l.push_front(t);
t—>setDistrict (newd) ;
oldd—>removeFromDistrict (t);
newd—>addToDistrict (t);

double getBadness(District **d,double #xdistmat){

int i;
double sum=0;

// Linf norm (maz)
/*
for(i=0; i < NDIST; i++){
if(d[i]->getPop () > sum){
sum = d[i]->getPop();

}
b/
// L2 norm (wariance):

for (i=0; i < NDIST; i++){
sum += pow(d[i]—>getPop ()—AVGPEOPLE, 2) ;
}

sum = sqrt(sum); // add constant factor here at some point

double dist=0;
list <Tract *>lind;
list <Tract x>::iterator iti;
list <Tract *>::iterator jtj;
double mydist=0;
for (i=0; i < NDIST; i++){
lind = d[i]->getTractList () ;
for(iti = lind.begin(); iti != lind.end(); iti++){
for(jtj = iti; jtj != lind.end(); jtj++){
mydist += distmat [(*iti)—>getIndex () ][(*jtj)—>getIndex () ];
}
}

dist 4=
mydist /(lind .size () *(lind.size () —1)*sqrt(d[i]—>getArea()));
mydist = 0;



724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
it
778
779
780
781
782

© 00~ U WN -

dist

cout << ”Sum.of_Distances_.Metric:.” << dist << ”_.Population_.Metric:.” << sum <<

retu

void plo

= dist * 700000;

rn dist+sum;

tAllocation (Allocation *a,string fname){

// plots an Allocation to a file

const char xpszDriverName = "ESRI_Shapefile”;
OGRSFDriver xpoDriver;

OGRRegisterAll () ;

poDriver =

if (!

}

OGRSFDriverRegistrar :: GetRegistrar ()—>GetDriverByName (
pszDriverName) ;

poDriver){

cerr << ”"Could_not_initialize_driver_for_writing!” << endl;

return;

OGRDataSource #*poDS;
OGRLayer xlayer;
District xxd = a—>getDistricts ();

int

i;

string curname,lname;
OGRFeature *tmpf;

list
list

for (

}

#include
#include
#include
#include
#include
#include
#include
//#inclu
//#inclu

<Tract *>tracts;
<Tract *x>::iterator iter;

i=0; i < NDIST; i++){
tracts = d[i]->getTractList ();

curname = fname + inttostring (i) + ”.shp”;
poDS = poDriver—>CreateDataSource (fname. c_str () , NULL);
if (!poDS){
cerr << ”Could_not_create_output_file!” << endl;
return;
}
Iname = ” District.” + inttostring (i+1);

layer = poDS—>CreateLayer (Iname. c_str (), NULL, wkbUnknown,NULL) ;
if (!layer){

cerr << ”Layer_creation._failed!” << endl;

return;

}

for (iter = tracts.begin(); iter != tracts.end();
tmpf = new OGRFeature(layer —>GetLayerDefn());
tmpf—>SetGeometry ((* iter )—>getGeo () );
if (layer —>CreateFeature (tmpf) != OGRERRNONE) {
cerr << ”Could.not_create_feature!” << endl;
return;

iter++){

}

OGRFeature : : DestroyFeature (tmpf) ;

OGRDataSource: : DestroyDataSource (poDS) ;

?ogrsf_frmts.h”
<iostream>
<fstream>
<iomanip>
<string>
<map>
”Tract.h”

de ”County.h”

de 7 District.h”

endl;



#include ” Allocation .h”
//#include 7rng.h”
#include <sstream>
#include <cstdlib >
#include <ctime>
#include <vector>
#include ”Fnode.h”
#include <algorithm>

const int NTRACT = 4907;

const int NDIST = 29;

const double AVGPEOPLE = 18976457./(float )NDIST;
const int NCOUNTY = 62;

//const int NLEVELS = 20;

District *BLANKDIST;

const bool PRINTHEU = false;

using namespace std ;

void plotAllocation (Allocation #a,string fname);

void moveTract (Tract *t, District xnewd);

vector <Fnode *> unionFrontier (District xxd);

double getBC(vector<Tract *> startingpoints , Tract =t);
District xlargestD (District *xd);

double partTwoScore(District #xd,County #xallCounties);
District xsmallestD (District #xd);

vector <Fnode *> addingMoves(District *dis);

vector <Fnode *> reducingMoves(District *dis);

District *nextD(District s*xd);

bool compf(Fnode xlhs, Fnode *rhs){
// greater than, not less than, b/c we want to sort descending
return lhs—>getScore () > rhs—>getScore();

}

bool eqf(Fnode xlhs, Fnode *rhs){
return lhs—>getScore () = rhs—>getScore () ;
}

bool eq_func(Tract *lhs, Tract *rhs){
return lhs == rhs;
}

bool compbefore(Fnode *lhs, Fnode xrhs){
if (rhs—>getTract () >= lhs—>getTract()){
return true;
} else if(rhs—>getTract() = lhs—>getTract()){
t(

if (rhs—>getDistrict () >= lhs—>getDistrict ()){
return true;
}
return false;
}
bool eqgbefore(Fnode xlhs, Fnode xrhs){
return ((rhs—>getTract () = lhs—>getTract()) &&
(rhs—>getDistrict () = lhs—>getDistrict()));
}

bool comp_func(Tract *lhs, Tract srhs){
return lhs < rhs;
}

string inttostring (const int i){
ostringstream stream;
stream << i;
return stream.str();
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double randdub () {
)

return rand () /(double )RANDMAX;

//returns between lo and hi inclusive

int

}

randint (int low, int high){
return (low+(int) floor (randdub () *(high—low+1)));

vector <Tract *>copyvec(const vector<Tract *> &in){

}

int

int

int i;

vector <Tract *> returnval;

for (i=0;i<in.size () ;i++){
returnval [i] = in[i];

}

idFromString (char *s,map<string ,int> m){
string k(s);

return mlk];

main (int argc, char x const argv[]) {
srand ((unsigned) time (NULL) ) ;

OGRRegisterAll () ;
OGRDataSource smyfile;

myfile = OGRSFDriverRegistrar::Open(”./polygons/”, FALSE);
if (myfile = NULL){
cerr << ”Can’t.open.file” << endl;
return 1;
}
cout << ”"Opened._file_appropriately!” << endl;
cout << ”File_has.” << myfile—>GetLayerCount () << ”_layers” << endl;

OGRLayer xlayer = myfile—>GetLayer (0);
if (!layer){
cerr << ”Cannot.open.layer” << endl;
return 1;

}

cout << ”Layer_has.” << layer —>GetFeatureCount () << ”_features” <<
endl;

int numtracts = layer —>GetFeatureCount () ;

int i,j;

OGRFeature xfeat ;

int populationindex;

int totalpop = 0;

map<string ,int> IDtolref;

map<int ,int> CkeytoRkey; // county key in file to our real keys.
Tract xallTracts [NTRACT];

bool *xbmat = new boolx [NITRACT];

double xxdistmat = new double % [NTRACT];

Allocation =xa;
County **xallCounties = new County * [NOCOUNTY];
for (i=0; i < NOOUNTY; i++){
allCounties[i] = new County () ;
}

int cindex=-1;
for (i=0; i < numtracts; i++){
feat = layer—>GetNextFeature();
if (! feat){
cerr << ”Could.not.read_feature ,_exiting!” << endl;
return 1;
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allTracts [i] = new Tract (feat ,i
IDtolref[allTracts [i]—>getID ()]
// Link to counties ...
if (CkeytoRkey.count(allTracts[i]—>getCounty()) = 0){
cindex++;
CkeytoRkey [allTracts [i]—>getCounty ()] = cindex;

) .

)

allCounties [ CkeytoRkey [allTracts [ i]->getCounty ()]]—>addToCounty (allTracts [
allTracts [i]—>setCounty (allCounties [CkeytoRkey [allTracts [i]—->getCounty () |]

delete feat;
feat = NULL;

}

cout << ”"beginning._to_read_border_file ...” << endl;
ifstream bo;
bo.open(”border.txt”);
for (i=0; i < NTRACT; i++){

bmat[i] = new bool [NTRACT];

for (j=0; j < NTRACT; j++){

bo >> bmat[i][]j];

}

}

bo.close ();
cout << ”finished.reading.border.file” << endl;

cout << ”beginning calculating centroid distances” << endl;
for(i=0; i < NTRACT; i++){
distmat[i] = new double [NTRACT];
for(j=0; j < NTRACT; j++){
(5 < i
distmat[i][j] = distmat[j][i];
} else {
distmat[i][j] = allTracts[i]->distC(allTracts[j]);
}

}
}
cout << ”"finished calculating centroid distances” << endl;

District *d[NDIST+1]; // d[NDIST] = blank canvas....
for (i=0; i < NDIST+1; i++){

d[i] = new District ();
}

BLANKDIST = d [NDIST];
// Read in file here....
cout << ”opening.input.file ....” << endl;
if(argec >= 2){
list <Tract *>doolist;
list <Tract *>::iterator liter;
ifstream infile (argv[1]);
if (linfile){
cerr << ”Could.not._open.” << argv[l] << endl;
return 1;

double upp;
infile >> upp;
cout << ”Variance:.” << upp << endl;
infile >> upp;
cout << ”Score:.” << upp << endl;
int inp;
for (i=-1; (i < NDIST) && !infile.eof (); i++){
infile >> inp;
while ((inp != —1) & & !infile.eof()){
allTracts [inp]—>setDistrict (d[i]) ;
d[i]->addToDistrict (allTracts [inp]) ;

)

1)
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infile >> inp;

}
}
infile.close ();
} else {
cerr << "Must_call_an_input_file ...” << endl;

return 1;

doublex* intermat = new double*[NTRACT];
double xmyp = new double [NTRACT];
OGRGeometry *ia;
OGRGeometry *ib ;
OGRGeometry =*u;
double sz;
for (i=0; i < NTRACT; i++){
ia = allTracts [i]—>getGeo();
myp[i] = (((OGRPolygon #)ia)—>getExteriorRing())—>get_Length();

/*

for(i=0; i < NTRACT; i++){
intermat[i] = new double [NTRACT];
for(j=0; j < NTRACT; j++){

if (Tomat[i][5])1
intermat [i][j]=0;
continue ;
}
if (i > j){
intermat [i][j] = intermat[j][i];
continue ;

ta = allTracts [i]->getGeo () ;
tb = allTracts [j]->getGeo();
u = ta—>Union (ib);
sz = (((OGRPolygon *)u)—>getEzteriorRing())—>get_-Length();
intermat[i][j] = (double)(myp[i]+myp[j]—sz)/(double)2.;
if (intermat[i][j] < 0){

cout << ”Negative for 7 << allTracts[i]->getID () <<

7 and 7 << allTracts[j]—>getID () << endl;

intermat [i][j] = maz(myp[i],myp[j]);
} else if(intermat[i][j] < le—5){

intermat[i][j] = 0; //set to 0 so that they don’t border
}

//cout << intermat[i][j] << endl;
}
b/

cout << ”"Done.processing._unions” << endl;

int sm = IDtolref[”19286/67];
int top = IDtolref[”1928680"];
int left = IDtolref[”1928888”];
int rt = IDtolref[”19285827];

cout << myp[sm] << 7 7 << intermat[sm][top] << 7 7 <<
intermat [sm][left] << 7 7 << intermat [sm][rt] << endl;

cout << myp[sm] << 7 7 << myp[top] << 7 7 << myp[left] << 77
<< myp[rt] << endl;

for(i=0; © < NTRACT; i++){
for(j=0; j < NTRACT; j++)
if (bmat[i][5] >)
allTracts [i]—>addPerim (allTracts [j],intermat[i][j]);
}
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vector <Tract *> n;
for (i=0; i < NTRACT; i++){
for (j=0; j < NTRACT; j++){
if (bmat[i][]j]){
n.push_back(allTracts[j]);
}

allTracts [i]—>setN(n);
n.clear ();
}
/%
cout << myp[IDtolref[”754210”]] << endl;
cout << myp[IDtolref[”759105”]] << endl;
cout << intermat [IDtolref[” 7542107 ]][IDtolref[”759105”]] << endl;
cout << intermat [IDtolref[”578488”]][IDtolref[”598495"]] << endl;
*
/
// 7 and 7 << calp—>get_Length () << endl;
//for(i=0; i < NDIST; i++){
// dfi]->getlsoPerim () ;
//}
District *dsm; //smallest district;
District xdlg; // largest district;
District =*you,*xme;
vector<Fnode %> addingf;
//Fnode xbestadd;
County x*iq;
double pcscore , fcscore;
double pcompactyou,pcompactme;
double fcompactyou ,fcompactme;
double pvaryou ,pvarme;
double fvaryou ,fvarme;
double bestscore=—1e300;
double tmpscore;
// we do mot meed to consider my past compactness or my past
// variance because all possible moves will consider that. Ignore.
double varscore = 0;
double pscore = —1e347;
double curscore = —1e300;
District =xnextd;
vector<Fnode x> adds;
vector<Fnode *> removes;
Fnode xbestadd;
Fnode xbestremove;
District *youtakeme;
District =xitakeyou;
vector<District *> myborders;
vector<Tract %> swappage;
District =xblock;
double prevscore , futscore;
int count;
for (count = 0; count < 500; count++){
cout << "Iteration.” << count+l << endl;
//do{
pscore = curscore;
// add to smallest District...
bestadd = NULL;
bestremove = NULL;
bestscore = —1e300;

nextd = nextD(d);

adds = addingMoves (nextd) ;
removes = reducingMoves (nextd) ;
me = nextd;

/*
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if (count < 200){
myborders = me—>whatBordersMe () ;
block = myborders[randint (0, myborders. size ()—1)];
swappage = me—>sharesBorder(block);
// swap out, then swap in....
prevscore = me=>score () + block—>score();
for (i=0; i < swappage.size(); i++){
moveTract (swappage[i],me);
}

futscore = me=>score() + block—>score();
for(i=0; i < swappage.size (); i++)
moveTract (swappage[i], block);

if ((me>isContiguous () &€ block—>isContiguous())){
tmpscore = futscore — prevscore;
if (tmpscore > 0){
for(i=0; i < swappage.size(); i++){
moveTract (swappage[i],me);
}

cout << ”"Made massive swap!” << endl;
continue ;
}
}
swappage = block—>sharesBorder (block);

for(i=0; i < swappage.size (); i++)
moveTract (swappage[i], block);
}

futscore = me=>score() + block—>score();
for(i=0; i < swappage.size(); i++)
moveTract (swappage [i],me);

}
if ((me=>isContiguous () &€ block—>isContiguous())){
tmpscore = futscore — prevscore;
if (tmpscore > 0){
for(i=0; © < swappage.size(); i++)
moveTract (swappage[i], block);

}
cout << "Made massive swap!” << endl;
continue ;
}
}
b/

// consider all adds
for(i=0; i < adds.size(); i++){
itakeyou = (adds[i]—->getTract())—>getDistrict ();
prevscore = itakeyou—>score () + me—>score();
moveTract (adds[i]—>getTract () ,me);
if (!itakeyou—>isContiguous ()){
moveTract (adds[i]—>getTract () ,itakeyou);

continue;
}
futscore = itakeyou—>score() + me—>score();
tmpscore = futscore — prevscore;
if (tmpscore > bestscore){
bestscore = tmpscore;
bestadd = adds[i];
bestremove = NULL;
}

moveTract (adds[i]—>getTract () ,itakeyou);

}

// consider all removes
for(i=0; i < removes.size(); i++){
youtakeme = removes|[i]->getDistrict ();
prevscore = youtakeme—>score () + me—>score();
moveTract (removes [i]->getTract () ,youtakeme) ;
if (!me—>isContiguous ()){
moveTract (removes|[i]—>getTract () ,me);



418 continue;

419 }

420 futscore = me—>score () + youtakeme—>score () ;

421 tmpscore = futscore — prevscore;

422 if (tmpscore > bestscore){

423 bestscore = tmpscore;

424 bestadd = NULL;

425 bestremove = removes|[i];

426 }

427 moveTract (removes[i]—>getTract () ,me);

428 }

429

430 // consider all swaps

431 if(/xbestscore < 0 &8 randdub() < 0.9%/ true){

432 for (i=0; i < removes.size(); i++){

433 youtakeme =removes[i]->getDistrict ();

434 for (j=0; j < adds.size(); j++){

435 itakeyou = (adds[j]->getTract () )—>getDistrict ();
436 if (youtakeme =— itakeyou){

437 prevscore = youtakeme—>score () + me—>score();
438 } else {

439 prevscore = youtakeme—>score () + me—>score () +
440 itakeyou—>score () ;

441 }

442 moveTract (removes[i]—>getTract () ,youtakeme) ;
443 moveTract (adds[j]—>getTract () ,me);

444 if (litakeyou—>isContiguous () ||

445 !me—>isContiguous ()){

446 moveTract (removes[i]—>getTract () ,me);
447 moveTract (adds[j]—>getTract () ,itakeyou);
448 continue;

449

450 if (youtakeme != itakeyou){

451 futscore = me—>score () + youtakeme—>score () +
452 itakeyou—>score () ;

453 } else {

454 futscore = me—>score () + youtakeme—>score () ;
455 }

456 tmpscore = futscore — prevscore;

457 if (tmpscore > bestscore){

458 bestscore = tmpscore;

459 bestadd = adds[j];

460 bestremove = removes|[i];

461 }

462 moveTract (removes[i]—>getTract () ,me);

463 moveTract (adds[j]—>getTract () ,itakeyou);

464 }

465 }

466

467 if (bestscore > 0){

468 // make the moves, clear the stuff

469 if (bestadd){

470 moveTract (bestadd—>getTract () ,me) ;

471

472 if (bestremove){

473 moveTract (bestremove—>getTract () ,bestremove—>getDistrict ());
474 }

475 if (bestadd && bestremove){

476 cout << ”"Swap.is._the_best_move!” << endl;

477 }

478 }

479 adds. clear () ;

480 removes. clear () ;

481 curscore = partTwoScore(d, allCounties);

482 cout << ”Current.Score:.” << curscore << endl;

483 //} while(bestadd || bestremove);

484 varscore = 0;

485 for (i=0; i < NDIST; i++){



486 varscore += d[i]->varScore () ;

487 }

488 //} while(varscore < —1);
489

490

491 int sumpump=0;
492 for(i=0; i < NDIST; i++){

493 sumpump += d[i]—->getPop () ;

494 cout << 7 District.” << i+l << 7:.” << d[i]->getPop() << endl;
495}

496

497 if (argv[2]){

498 ofstream ogil (argv[2]);

499 ogil << varscore << endl;

500 ogil << partTwoScore(d, allCounties) << endl;
501 list <Tract *> lst;

502 list <Tract x>::iterator liter;

503 for(i=0; i < NDIST; i++){

504 ogil << 7—-1.7;

505 Ist = d[i]->getTractList ();

506 for(liter = lst.begin(); liter != Ist.end(); liter++){
507 ogil << (xliter)—>getIndex () << ”.7;

508

509 ogil << endl;

510 }

511

512 ogil.close();

513}

514 cout << ”Total_population:.” << sumpump << endl;

515 a = new Allocation (d);

516 plotAllocation (a, ”"parttwo_finish”);
517 return O;

518}

519

520 //bool randnezt = false;

521 District snextD(District s*xd){

522

523 District ssmallest = d[randint (0,NDIST—1)];
524 /*

525 if (randnext){

526 smallest = d[randint (0,NDIST—1)];
527 randnext = false;

528

529 } else {

530 int i;

531 smallest = d[0];

532 double score = d[0]—>score();
533 double ts;

534 for(i=1; © < NDIST; i++)X
535 ts = d[ij->score();

536 if(ts < score){

537 smallest = d[1];
538 score = ts;

539 }

540 }

541 randnext = true;

542 Y/

543 return smallest ;

544}

545

546

547 District ssmallestD (District =xd){
548 int i;

549 District *smallest = d[0];

550 int smpop = d[0]—>getPop () ;

551 for(i=1; i < NDIST; i++){

552 if (d[i]->getPop() < smpop){

553 smpop = d[i]->getPop();



554 smallest = d[i];

555 }

556 }

557 return smallest ;

558}

559

560 District xlargestD (District =xd){
561 int i;

562 District xlargest = d[0];

563 int smpop = d[0]—>getPop();

564 for (i=1; i < NDIST; i++){

565 if(d[i]—>getPop () > smpop){
566 smpop = d[i]—->getPop();
567 largest = d[i];

568 }

569

570 return largest;

571}

572

573 double partTwoScore(District #xd,County *xallCounties){
574 int i;

575 double compact=0,var=0,county=0,ncscore=0;
576 for (i=0; i < NDIST; i++){

577 compact += d[i]—>compactScore();

578 var += d[i]->varScore();

579 county += d[i]->countyScore () ;

580 ncscore += d[i]->newcountyScore () ;

581 }

582

583 /x

584 for(i=0; i < NCOUNTY; i++){

585 county += allCounties [i]->getValue();
586 Y/

587 cout << ”Variance:.” << var << ”_Compactness:.” << compact <<
588 ? _County:.” << county << ”_New.County.Score:.” << ncscore << endl;
589

590 return var + compact 4+ county + ncscore;
501}

592

593 vector <Fnode *> reducingMoves(District *dis){
594 list <Tract *> f = dis—>getPerimeter();
595 list <Tract x>::iterator liter;

596 Fnode *tmp;

597 vector <Fnode *> retval;

598 int i;

599 vector <District %> otherD;

600

601 for (liter = f.begin(); liter != f.end(); liter++){
602 otherD = (xliter )—>getNColors () ;

603 for (i=0; i < otherD.size(); i++){

604 tmp = new Fnode(*liter ,otherD[i]);
605 retval . push_back (tmp) ;

606 }

607 }

608

609 return retval;

610 }

611

612 vector <Fnode *> addingMoves(District =*dis){
613 list <Tract x> f = dis—>getFrontier();

614 list <Tract *>::iterator liter;

615 Fnode *tmp;

616 vector <Fnode %> retval;

617

618 for(liter = f.begin(); liter != f.end(); liter++){
619 tmp = new Fnode(xliter ,dis);

620 retval . push_back (tmp) ;

621 }
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if(f.size() 0){
cout << "blank._frontier” << endl;

}
if (retval.size() = 0){
cout << ”blank._retval” << endl;
}
return retval;
}
vector <Fnode %> unionFrontier (District sx*d){
int i;
list <Tract *> f;
list <Tract *>::iterator liter;
Fnode *tmp;
bool flag;
vector <Fnode %> retval;
for (i=0; i < NDIST; i++){
f = d[i]->getFrontier();
for(liter = f.begin(); liter != f.end(); liter++){
if ((xliter )—>getDistrict () = BLANKDIST) {
tmp = new Fnode(xliter ,d[i]);
retval.push_back (tmp) ;
}
}
}
return retval;
}

// house cleaning to keep data structs in order
void moveTract (Tract *t, District xnewd){
District *oldd = t—>getDistrict ();
if (oldd = newd){
cerr << "Trying._to_change_to_already._fixed_district!” << endl;
return;
}
list <Tract x> 1 = oldd—>getTractList () ;
l.remove(t);
1 = newd—>getTractList () ;
l.push_front(t);
t—>setDistrict (newd);
oldd—>removeFromDistrict (t);
newd—>addToDistrict (t);

}

void plotAllocation (Allocation *a,string fname){
// plots an Allocation to a file

const char xpszDriverName = "ESRI_Shapefile”;
OGRSFDriver xpoDriver;

OGRRegisterAll () ;

poDriver =
OGRSFDriverRegistrar :: GetRegistrar ()—>GetDriverByName (
pszDriverName) ;
if (! poDriver){
cerr << ”Could.not_initialize_driver_for_writing!” << endl;
return;

}

OGRDataSource *poDS;

OGRLayer xlayer;

District *xd = a—>getDistricts ();
int i;

string curname,lname;

OGRFeature *tmpf;
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list <Tract *>tracts;
list <Tract *=>::iterator iter;

for (i=0; i < NDIST; i++){
tracts = d[i]->getTractList ();

curname = fname + inttostring (i) + ”.shp”;
poDS = poDriver—>CreateDataSource (fname. c_str (), NULL);
if (1poDS){
cerr << ”Could.not.create_output.file!” << endl;
return;
}
Iname = ” District.” + inttostring (i+1);

layer = poDS—>CreateLayer (Ilname. c_str (), NULL, wkbUnknown,NULL);
if (!layer){

cerr << ”Layer.creation.failed!” << endl;

return;

}

for(iter = tracts.begin(); iter != tracts.end();
tmpf = new OGRFeature(layer—>GetLayerDefn());
tmpf—>SetGeometry ((* iter )—>getGeo () );
if (layer —>CreateFeature (tmpf) != OGRERRNONE) {
cerr << ”Could.not.create_feature!” << endl;
return;

iter++){

}

OGRFeature:: DestroyFeature (tmpf) ;

OGRDataSource : : DestroyDataSource (poDS) ;

}

#include ”ogrsf_frmts.h”
#include <iostream>
#include <fstream>
#include <iomanip>
#include <string>
#include <map>
#include ”Tract.h”
//#include 7County.h”
#include ” District .h”
#include ” Allocation .h”
//#include 7rng.h”
#include <sstream>
#include <cstdlib>
#include <ctime>
#include <vector>
#include ”Fnode.h”
#include <algorithm>

const int NTRACT = 4907;

const int NDIST = 29;

const double AVGPEOPLE = 18976457./(float )NDIST;
const int NCOUNTY = 62;

//const int NLEVELS = 20;

District *BLANKDIST;

const bool PRINTHEU = false;

using namespace std;
void plotAllocation (Allocation #a,string fname);
string inttostring (const int i){

ostringstream stream;

stream << 1i;
return stream.str();

int main(int argc, char xargv|[]){
srand ((unsigned)time (NULL) ) ;



OGRRegisterAll () ;
OGRDataSource sxmyfile;

myfile = OGRSFDriverRegistrar::Open(”./polygons/”, FALSE);
if (myfile = NULL){

cerr << ”"Can’t._open.file” << endl;

return 1;

cout << ”Opened._file_appropriately!” << endl;
cout << ”File_has.” << myfile—>GetLayerCount () << ”_layers” << endl;

OGRLayer xlayer = myfile—>GetLayer (0);
if (layer){
cerr << ”Cannot_open.layer” << endl;
return 1;

}

cout << ”Layer_has.” << layer—>GetFeatureCount () << ”_features” <<
endl;

int numtracts = layer—>GetFeatureCount () ;

int i,j;

OGRFeature xfeat ;

int populationindex;

int totalpop = 0;

map<string ,int> IDtolref;

map<int ,int> CkeytoRkey; // county key in file to our real keys.
Tract xallTracts [NTRACT];

bool *xbmat = new bool x [NTRACT];

double xxdistmat = new doublex[NTRACT];

Allocation =xa;

County **xallCounties = new County * [NOCOUNTY];
for (i=0; i < NOOUNTY; i++){

allCounties [i] = new County () ;
}

int cindex=-1;
for (i=0; i < numtracts; i++){
feat = layer—>GetNextFeature();
if (! feat){
cerr << ”Could_not.read_feature ,_.exiting!” << endl;
return 1;

allTracts [i] = new Tract(feat ,i);

IDtolIref[allTracts [i]—->getID ()] = i;

// Link to counties...

if (CkeytoRkey.count(allTracts [i]->getCounty ()) == 0){
cindex++;
CkeytoRkey [allTracts [i]—>getCounty ()] = cindex;

allCounties [ CkeytoRkey [allTracts [ i]—>getCounty ()]]—>addToCounty (allTracts [i]) ;
allTracts [i]—>setCounty (allCounties [ CkeytoRkey[allTracts [i]—>getCounty () ]]) ;

delete feat ;
feat = NULL;

}

cout << ”beginning_to_read_border_file ...” << endl;
ifstream bo;
bo.open(” border.txt”);
for (i=0; i < NTRACT; i++){

bmat[i] = new bool [NITRACT];

for (j=0; j < NTRACT; j++){

bo >> bmat[i][j];
}
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}

bo.close ();
cout << ”finished.reading.border.file” << endl;

District *d[NDIST+1]; // d[NDIST] = blank canvas....
for (i=0; i < NDIST+1; i++){

}

d[i] = new District ();

vector <Tract *> n;
for (i=0; i < NTRACT; i++){
for (j=0; j < NTRACT; j++){
if (bmat [1]]]) {
n.push_back(allTracts[j]);
}

allTracts [i]—>setN(n);
n.clear ();

}

BLANKDIST = d [NDIST];
// Read in file here....
cout << ”opening._input_file ....” << endl;
if(arge >= 2){
list <Tract *>doolist;
list <Tract *x>::iterator liter;
ifstream infile (argv([1]);
if (linfile){
cerr << ”"Could.not_open.” << argv[l] << endl;
return 1;

double upp;
infile >> upp;
cout << ”Variance:.” << upp << endl;
infile >> upp;
cout << ”Score:.” << upp << endl;
int inp;
for (i=—1; (i < NDIST) && !infile.eof(); i++){
infile >> inp;
while ((inp != —1) && !infile.eof()){
allTracts [inp]—>setDistrict (d[i]);
d[i]->addToDistrict (allTracts [inp]) ;
infile >> inp;

}
}
infile.close ();
} else {
cerr << "Must_call_an_input_file ...” << endl;

return 1;

}

for (i=0; i < NOOUNTY; i++){
allCounties [i]->printCounty () ;
}

double varScore = d[0]—>varScore () ;
double cScore = d[0]—>countyScore ()
double compact = d[0]—>compactScore
double minpop = d[0]—>getPop () ;
double maxpop = d[0]—>getPop () ;
cout << " District.” << 1 << 7.7 << d[0]—>getPop () << endl;
for (i=1; i < NDIST; i++){

//cScore += d[i]->countyScore();

//compact += d[i]->compactScore();

varScore += d[i]—>varScore () ;

if (d[i]—>getPop () > maxpop){

maxpop = d[i]->getPop();

’();

if(d[i]—->getPop() < minpop){
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minpop = d[i]->getPop();
}
cout << ”?District.” << i+l << 72" << d[i]—->getPop() << endl;
}
cout << ”Variance:.” << varScore << ”_Max:.” << maxpop << ”_Min:.”
<< minpop << endl;
cout << ”County:.” << cScore << ”._Compact:.” << compact << endl;

a = new Allocation(d);
plotAllocation (a,argv[2]);
return 0;

}

void plotAllocation (Allocation =*a,string fname){
// plots an Allocation to a file

const char xpszDriverName = "ESRI_.Shapefile”;
OGRSFDriver xpoDriver;

OGRRegisterAll () ;

poDriver =
OGRSFDriverRegistrar :: GetRegistrar ()—>GetDriverByName (
pszDriverName) ;
if (! poDriver){
cerr << ”Could.not_.initialize_driver.for_.writing!” << endl;
return;

}

OGRDataSource *poDS;

OGRLayer xlayer;

District **d = a—>getDistricts();
int i;

string curname,lname;

OGRFeature xtmpf;

list <Tract x>tracts;

list <Tract *x>::iterator iter;

for (i=0; i < NDIST; i++){
tracts = d[i]->getTractList () ;

curname = fname + inttostring (i) + ”.shp”;
poDS = poDriver—>CreateDataSource (fname. c_str (), NULL);
if (!poDS){
cerr << "Could_not_create_output_file!” << endl;
return;
}
Iname = ” District.” + inttostring (i+1);

layer = poDS—>CreateLayer (Ilname. c_str (), NULL, wkbUnknown,NULL);
if (!layer){

cerr << ”Layer.creation._failed!” << endl;

return;

}

for(iter = tracts.begin(); iter != tracts.end();
tmpf = new OGRFeature(layer —>GetLayerDefn());
tmpf—>SetGeometry ((* iter )—>getGeo () );
if (layer —>CreateFeature (tmpf) != OGRERRNONE) {
cerr << ”"Could.not.create._.feature!” << endl;
return;

iter++){

}

OGRFeature:: DestroyFeature (tmpf) ;

OGRDataSource : : DestroyDataSource (poDS) ;



