The finite field with 27 elements

On the 27-element set {0,1,2,...,25,26}, use the following unusual definitions of "multiplication" and "addition":

Multiplication table:

 0:    0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 1:    0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 2:    0  2  1  6  8  7  3  5  4 18 20 19 24 26 25 21 23 22  9 11 10 15 17 16 12 14 13
 3:    0  3  6  9 12 15 18 21 24 11 14 17 20 23 26  2  5  8 19 22 25  1  4  7 10 13 16
 4:    0  4  8 12 16 11 24 19 23 20 21 25  5  6  1 17  9 13 10 14 15 22 26 18  7  2  3
 5:    0  5  7 15 11 13 21 26 19  2  4  6 17 10 12 23 25 18  1  3  8 16  9 14 22 24 20
 6:    0  6  3 18 24 21  9 15 12 19 25 22 10 16 13  1  7  4 11 17 14  2  8  5 20 26 23
 7:    0  7  5 21 19 26 15 13 11  1  8  3 22 20 24 16 14  9  2  6  4 23 18 25 17 12 10
 8:    0  8  4 24 23 19 12 11 16 10 15 14  7  3  2 22 18 26 20 25 21 17 13  9  5  1  6
 9:    0  9 18 11 20  2 19  1 10 17 26  8 25  7 16  6 15 24 22  4 13  3 12 21 14 23  5
10:    0 10 20 14 21  4 25  8 15 26  6 16  1 11 18 12 22  5 13 23  3 24  7 17  2  9 19
11:    0 11 19 17 25  6 22  3 14  8 16 24 13 21  5 18  2 10  4 12 23  9 20  1 26  7 15
12:    0 12 24 20  5 17 10 22  7 25  1 13 15 18  3  8 11 23 14 26  2  4 16 19 21  6  9
13:    0 13 26 23  6 10 16 20  3  7 11 21 18  4 17 14 24  1  5 15 19 25  2 12  9 22  8
14:    0 14 25 26  1 12 13 24  2 16 18  5  3 17 19 20  4 15 23  7  9 10 21  8  6 11 22
15:    0 15 21  2 17 23  1 16 22  6 12 18  8 14 20  7 13 19  3  9 24  5 11 26  4 10 25
16:    0 16 23  5  9 25  7 14 18 15 22  2 11 24  4 13 20  6 21  1 17 26  3 10 19  8 12
17:    0 17 22  8 13 18  4  9 26 24  5 10 23  1 15 19  6 14 12 20  7 11 25  3 16 21  2
18:    0 18  9 19 10  1 11  2 20 22 13  4 14  5 23  3 21 12 17  8 26  6 24 15 25 16  7
19:    0 19 11 22 14  3 17  6 25  4 23 12 26 15  7  9  1 20  8 24 16 18 10  2 13  5 21
20:    0 20 10 25 15  8 14  4 21 13  3 23  2 19  9 24 17  7 26 16  6 12  5 22  1 18 11
21:    0 21 15  1 22 16  2 23 17  3 24  9  4 25 10  5 26 11  6 18 12  7 19 13  8 20 14
22:    0 22 17  4 26  9  8 18 13 12  7 20 16  2 21 11  3 25 24 10  5 19 14  6 23 15  1
23:    0 23 16  7 18 14  5 25  9 21 17  1 19 12  8 26 10  3 15  2 22 13  6 20 11  4 24
24:    0 24 12 10  7 22 20 17  5 14  2 26 21  9  6  4 19 16 25 13  1  8 23 11 15  3 18
25:    0 25 14 13  2 24 26 12  1 23  9  7  6 22 11 10  8 21 16  5 18 20 15  4  3 19 17
26:    0 26 13 16  3 20 23 10  6  5 19 15  9  8 22 25 12  2  7 21 11 14  1 24 18 17  4
Addition table:
 0:    0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
 1:    1  2  0  4  5  3  7  8  6 10 11  9 13 14 12 16 17 15 19 20 18 22 23 21 25 26 24
 2:    2  0  1  5  3  4  8  6  7 11  9 10 14 12 13 17 15 16 20 18 19 23 21 22 26 24 25
 3:    3  4  5  6  7  8  0  1  2 12 13 14 15 16 17  9 10 11 21 22 23 24 25 26 18 19 20
 4:    4  5  3  7  8  6  1  2  0 13 14 12 16 17 15 10 11  9 22 23 21 25 26 24 19 20 18
 5:    5  3  4  8  6  7  2  0  1 14 12 13 17 15 16 11  9 10 23 21 22 26 24 25 20 18 19
 6:    6  7  8  0  1  2  3  4  5 15 16 17  9 10 11 12 13 14 24 25 26 18 19 20 21 22 23
 7:    7  8  6  1  2  0  4  5  3 16 17 15 10 11  9 13 14 12 25 26 24 19 20 18 22 23 21
 8:    8  6  7  2  0  1  5  3  4 17 15 16 11  9 10 14 12 13 26 24 25 20 18 19 23 21 22
 9:    9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  0  1  2  3  4  5  6  7  8
10:   10 11  9 13 14 12 16 17 15 19 20 18 22 23 21 25 26 24  1  2  0  4  5  3  7  8  6
11:   11  9 10 14 12 13 17 15 16 20 18 19 23 21 22 26 24 25  2  0  1  5  3  4  8  6  7
12:   12 13 14 15 16 17  9 10 11 21 22 23 24 25 26 18 19 20  3  4  5  6  7  8  0  1  2
13:   13 14 12 16 17 15 10 11  9 22 23 21 25 26 24 19 20 18  4  5  3  7  8  6  1  2  0
14:   14 12 13 17 15 16 11  9 10 23 21 22 26 24 25 20 18 19  5  3  4  8  6  7  2  0  1
15:   15 16 17  9 10 11 12 13 14 24 25 26 18 19 20 21 22 23  6  7  8  0  1  2  3  4  5
16:   16 17 15 10 11  9 13 14 12 25 26 24 19 20 18 22 23 21  7  8  6  1  2  0  4  5  3
17:   17 15 16 11  9 10 14 12 13 26 24 25 20 18 19 23 21 22  8  6  7  2  0  1  5  3  4
18:   18 19 20 21 22 23 24 25 26  0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17
19:   19 20 18 22 23 21 25 26 24  1  2  0  4  5  3  7  8  6 10 11  9 13 14 12 16 17 15
20:   20 18 19 23 21 22 26 24 25  2  0  1  5  3  4  8  6  7 11  9 10 14 12 13 17 15 16
21:   21 22 23 24 25 26 18 19 20  3  4  5  6  7  8  0  1  2 12 13 14 15 16 17  9 10 11
22:   22 23 21 25 26 24 19 20 18  4  5  3  7  8  6  1  2  0 13 14 12 16 17 15 10 11  9
23:   23 21 22 26 24 25 20 18 19  5  3  4  8  6  7  2  0  1 14 12 13 17 15 16 11  9 10
24:   24 25 26 18 19 20 21 22 23  6  7  8  0  1  2  3  4  5 15 16 17  9 10 11 12 13 14
25:   25 26 24 19 20 18 22 23 21  7  8  6  1  2  0  4  5  3 16 17 15 10 11  9 13 14 12
26:   26 24 25 20 18 19 23 21 22  8  6  7  2  0  1  5  3  4 17 15 16 11  9 10 14 12 13

You may now verify that, as usual, 1x=x1=x, 0x=x0=0, 0+x=x+0=x, xy=yx, (xy)z=x(yz), x+y=y+x, (x+y)+z=x+(y+z), and x(y+z)=xy+xz, and that each row (or column) of the + table (and multiplication table) contains every field element exactly once (except for the 0-row and 0-column of the mul table). I.e. this really is a "field."

The squares are 0, 1, 4, 6, 7, 9, 13, 14, 15, 16, 17, 19, 20, and 24.

A famous theorem of Galois states that the multiplicative group of a finite field always is cyclic, a fact you can verify thusly in our case: 326=30=1, 31=3, 32=9, 33=11, 34=17, 35=8, 36=24, 37=10, 38=14, 39=26, 310=16, 311=5, 312=15, 313=2, 314=6, 315=18, 316=19, 317=22, 318=4, 319=12, 320=20, 321=25, 322=13, 323=23, 324=7, 325=21.


Return to main page