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On the hardness of approximating
minimum vertex cover

By Irit Dinur and Samuel Safra*

Abstract

We prove the Minimum Vertex Cover problem to be NP-hard to approx-
imate to within a factor of 1.3606, extending on previous PCP and hardness
of approximation technique. To that end, one needs to develop a new proof
framework, and to borrow and extend ideas from several fields.

1. Introduction

The basic purpose of computational complexity theory is to classify com-
putational problems according to the amount of resources required to solve
them. In particular, the most basic task is to classify computational problems
to those that are efficiently solvable and those that are not. The complexity
class P consists of all problems that can be solved in polynomial-time. It is
considered, for this rough classification, as the class of efficiently solvable prob-
lems. While many computational problems are known to be in P, many others
are neither known to be in P, nor proven to be outside P. Indeed many such
problems are known to be in the class NP, namely the class of all problems
whose solutions can be verified in polynomial-time. When it comes to prov-
ing that a problem is outside a certain complexity class, current techniques
are radically inadequate. The most fundamental open question of complexity
theory, namely, the P vs. NP question, may be a particular instance of this
shortcoming.

While the P vs. NP question is wide open, one may still classify computa-
tional problems into those in P and those that are NP-hard [Coo71], [Lev73],
[Kar72]. A computational problem L is NP-hard if its complexity epitomizes
the hardness of NP. That is, any NP problem can be efficiently reduced to L.
Thus, the existence of a polynomial-time solution for L implies P=NP. Con-
sequently, showing P�=NP would immediately rule out an efficient algorithm
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for any NP-hard problem. Therefore, unless one intends to show NP=P, one
should avoid trying to come up with an efficient algorithm for an NP-hard
problem.

Let us turn our attention to a particular type of computational problem,
namely, optimization problems — where one looks for an optimum among all
plausible solutions. Some optimization problems are known to be NP-hard,
for example, finding a largest size independent set in a graph [Coo71], [Kar72],
or finding an assignment satisfying the maximum number of clauses in a given
3CNF formula (MAX3SAT) [Kar72].

A proof that some optimization problem is NP-hard, serves as an indica-
tion that one should relax the specification. A natural manner by which to
do so is to require only an approximate solution — one that is not optimal,
but is within a small factor C > 1 of optimal. Distinct optimization problems
may differ significantly with regard to the optimal (closest to 1) factor Copt to
within which they can be efficiently approximated. Even optimization prob-
lems that are closely related, may turn out to be quite distinct with respect to
Copt. Let the Maximum Independent Set be the problem of finding, in a given
graph G, the largest set of vertices that induces no edges. Let the Minimum
Vertex Cover be the problem of finding the complement of this set (i.e. the
smallest set of vertices that touch all edges). Clearly, for every graph G, a
solution to Minimum Vertex Cover is (the complement of) a solution to Max-
imum Independent Set. However, the approximation behavior of these two
problems is very different: as for Minimum Vertex Cover the value of Copt is
at most 2 [Hal02], [BYE85], [MS83], while for Maximum Independent Set it is
at least n1−ε [H̊as99]. Classifying approximation problems according to their
approximation complexity —namely, according to the optimal (closest to 1)
factor Copt to within which they can be efficiently approximated— has been
investigated widely. A large body of work has been devoted to finding efficient
approximation algorithms for a variety of optimization problems. Some NP-
hard problems admit a polynomial-time approximation scheme (PTAS), which
means they can be approximated, in polynomial-time, to within any constant
close to 1 (but not 1). Papadimitriou and Yannakakis [PY91] identified the
class APX of problems (which includes for example Minimum Vertex Cover,
Maximum Cut, and many others) and showed that either all problems in APX
are NP-hard to approximate to within some factor bounded away from 1, or
they all admit a PTAS.

The major turning point in the theory of approximability, was the discov-
ery of the PCP Theorem [AS98], [ALM+98] and its connection to inapproxima-
bility [FGL+96]. The PCP theorem immediately implies that all problems in
APX are hard to approximate to within some constant factor. Much effort has
been directed since then towards a better understanding of the PCP methodol-
ogy, thereby coming up with stronger and more refined characterizations of the
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class NP [AS98], [ALM+98], [BGLR93], [RS97], [H̊as99], [H̊as01]. The value
of Copt has been further studied (and in many cases essentially determined)
for many classical approximation problems, in a large body of hardness-of-
approximation results. For example, computational problems regarding lat-
tices, were shown NP-hard to approximate [ABSS97], [Ajt98], [Mic], [DKRS03]
(to within factors still quite far from those achieved by the lattice basis reduc-
tion algorithm [LLL82]). Numerous combinatorial optimization problems were
shown NP-hard to approximate to within a factor even marginally better than
the best known efficient algorithm [LY94], [BGS98], [Fei98], [FK98], [H̊as01],
[H̊as99]. The approximation complexity of a handful of classical optimization
problems is still open; namely, for these problems, the known upper and lower
bounds for Copt do not match.

One of these problems, and maybe the one that underscores the limitations
of known technique for proving hardness of approximation, is Minimum Vertex
Cover. Proving hardness for approximating Minimum Vertex Cover translates
to obtaining a reduction of the following form. Begin with some NP-complete
language L, and translate ‘yes’ instances x ∈ L to graphs in which the largest
independent set consists of a large fraction (up to half) of the vertices. ‘No’
instances x �∈ L translate to graphs in which the largest independent set is much
smaller. Previous techniques resulted in graphs in which the ratio between
the maximal independent set in the ‘yes’ and ‘no’ cases is very large (even
|V |1−ε) [H̊as99]. However, the maximal independent set in both ‘yes’ and ‘no’
cases, was very small |V |c, for some c < 1. H̊astad’s celebrated paper [H̊as01]
achieving optimal inapproximability results in particular for linear equations
mod 2, directly implies an inapproximability result for Minimum Vertex Cover
of 7

6 . In this paper we go beyond that factor, proving the following theorem:

Theorem 1.1. Given a graph G, it is NP-hard to approximate the Mini-
mum Vertex Cover to within any factor smaller than 10

√
5− 21 = 1.3606 . . . .

The proof proceeds by reduction, transforming instances of some
NP-complete language L into graphs. We will (easily) prove that every ‘yes’-
instance (i.e. an input x ∈ L) is transformed into a graph that has a large inde-
pendent set. The more interesting part will be to prove that every ‘no’-instance
(i.e. an input x �∈ L) is transformed into a graph whose largest independent
set is relatively small.

As it turns out, to that end, one has to apply several techniques and
methods, stemming from distinct, seemingly unrelated, fields. Our proof in-
corporates theorems and insights from harmonic analysis of Boolean functions,
and extremal set theory. Techniques which seem to be of independent inter-
est, they have already shown applications in proving hardness of approxima-
tion [DGKR03], [DRS02], [KR03], and would hopefully come in handy in other
areas.
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Let us proceed to describe these techniques and how they relate to our
construction. For the exposition, let us narrow the discussion and describe how
to analyze independent sets in one specific graph, called the nonintersection
graph. This graph is a key building-block in our construction. The formal
definition of the nonintersection graph G[n] is simple. Denote [n] = {1, . . . , n}.

Definition 1.1 (Nonintersection graph). G[n] has one vertex for every
subset S ⊆ [n], and two vertices S1 and S2 are adjacent if and only if S1 ∩
S2 = φ.

The final graph resulting from our reduction will be made of copies of
G[n] that are further inter-connected. Clearly, an independent set in the final
graph is an independent set in each individual copy of G[n].

To analyze our reduction, it is worthwhile to first analyze large indepen-
dent sets in G[n]. It is useful to simultaneously keep in mind several equivalent
perspectives of a set of vertices of G[n], namely:

• A subset of the 2n vertices of G[n].

• A family of subsets of [n].

• A Boolean function f : {−1, 1}n → {−1, 1}. (Assign to every subset an
n-bit string σ, with −1 in coordinates in the subset and 1 otherwise. Let
f(σ) be −1 or 1 depending on whether the subset is in the family or out.)

In the remaining part of the introduction, we survey results from various
fields on which we base our analysis. We first discuss issues related to analysis
of Boolean functions, move on to describe some specific codes, and then discuss
relevant issues in Extremal Set Theory. We end by describing the central
feature of the new PCP construction, on which our entire approach hinges.

1.1. Analysis of Boolean functions. Analysis of Boolean functions can
be viewed as harmonic analysis over the group Zn

2 . Here tools from classical
harmonic analysis are combined with techniques specific to functions of finite
discrete range. Applications range from social choice, economics and game
theory, percolation and statistical mechanics, and circuit complexity. This
study has been carried out in recent years [BOL89], [KKL88], [BK97], [FK96],
[BKS99], one of the outcomes of which is a theorem of Friedgut [Fri98] whose
proof is based on the techniques introduced in [KKL88], which the proof herein
utilizes in a critical manner. Let us briefly survey the fundamental principles
of this field and the manner in which it is utilized.

Consider the group Zn
2 . It will be convenient to view group elements as

vectors in {−1, 1}n with coordinate-wise multiplication as the group operation.
Let f be a real-valued function on that group

f : {−1, 1}n → R.
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It is useful to view f as a vector in R2n

. We endow this space with an inner-
product, f ·g def= Ex [f(x) · g(x)] = 1

2n

∑
x f(x)g(x). We associate each character

of Zn
2 with a subset S ⊆ [n] as follows,

χS : {−1, 1}n → R, χS(x) =
∏
i∈S

xi .

The set of characters {χS}S forms an orthonormal basis for R2n

. The expansion
of a function f in that basis is its Fourier-Walsh transform. The coefficient of
χS in this expansion is denoted f̂(S) = Ex [f(x) · χS(x)]; hence,

f =
∑
S

f̂(S) · χS .

Consider now the special case of a Boolean function f over the same domain

f : {−1, 1}n → {−1, 1}.

Many natural operators and parameters of such an f have a neat and helpful
formulation in terms of the Fourier-Walsh transform. This has yielded some
striking results regarding voting-systems, sharp-threshold phenomena, perco-
lation, and complexity theory.

The influence of a variable i ∈ [n] on f is the probability, over a random
choice of x ∈ {−1, 1}n, that flipping xi changes the value of f:

influencei(f)
def= Pr [f(x) �= f(x � {i})]

where {i} is interpreted to be the vector that equals 1 everywhere except at the
i-th coordinate where it equals -1, and � denotes the group’s multiplication.

The influence of the i-th variable can be easily shown [BOL89] to be
expressible in term of the Fourier coefficients of f as

influencei(f) =
∑
S�i

f̂2(S) .

The total-influence or average sensitivity of f is the sum of influences

as(f) def=
∑

i

influencei(f) =
∑
S

f̂2(S) · |S| .

These notions (and others) regarding functions may also be examined for
a nonuniform distribution over {−1, 1}n; in particular, for 0 < p < 1, the
p-biased product-distribution is

µp(x) = p|x|(1 − p)n−|x|

where |x| is the number of −1’s in x. One can define influence and average
sensitivity under the µp distribution, in much the same way. We have a different
orthonormal basis for these functions [Tal94] because changing distributions
changes the value of the inner-product of two functions.
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Let µp(f) denote the probability that a given Boolean function f is −1. It is
not hard to see that for monotone f, µp(f) increases with p. Moreover, the well-
known Russo’s lemma [Mar74], [Rus82, Th. 3.4] states that, for a monotone
Boolean function f, the derivative dµp(f)

dp (as a function of p), is precisely equal
to the average sensitivity of f according to µp:

asp(f) =
dµp(f)

dp
.

Juntas and their cores. Some functions over n binary variables as above
may happen to ignore most of their input and essentially depend on only a
very small, say constant, number of variables. Such functions are referred to
as juntas. More formally, a set of variables C ⊂ [n] is the core of f, if for
every x,

f(x) = f(x|C)

where x|C equals x on C and is otherwise 1. Furthermore, C is the (δ, p)-core
of f if there exists a function f ′ with core C, such that,

Pr
x∼µp

[
f(x) �= f ′(x)

]
≤ δ .

A Boolean function with low total-influence is one that infrequently changes
value when one of its variables is flipped at random. How can the influence
be distributed among the variables? It turns out, that Boolean functions with
low total-influence must have a constant-size core, namely, they are close to a
junta. This is a most-insightful theorem of Friedgut [Fri98] (see Theorem 3.2),
which we build on herein. It states that any Boolean f has a (δ, p)-core C such
that

|C| ≤ 2O(as(f)/δ) .

Thus, if we allow a slight perturbation in the value of p, and since a
bounded continuous function cannot have a large derivative everywhere, Russo’s
lemma guarantees that a monotone Boolean function f will have low-average
sensitivity. For this value of p we can apply Friedgut’s theorem, to conclude
that f must be close to a junta.

One should note that this analysis in fact can serve as a proof for the
following general statement: Any monotone Boolean function has a sharp
threshold unless it is approximately determined by only a few variables. More
precisely, one can prove that in any given range [p, p+γ], a monotone Boolean
function f must be close to a junta according to µq for some q in the range;
the size of the core depending on the size of the range.

Lemma 1.2. For all p ∈ [0, 1], for all δ, γ > 0, there exists q ∈ [p, p + γ]
such that f has a (δ, q)-core C such that |C| < h(p, δ, γ).
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1.2. Codes — long and biased. A binary code of length m is a subset

C ⊆ {−1, 1}m

of strings of length m, consisting of all designated codewords. As mentioned
above, we may view Boolean functions f : {−1, 1}n → {−1, 1} as binary vec-
tors of dimension m = 2n. Consequently, a set of Boolean functions B ⊆
{f : {−1, 1}n → {−1, 1}} in n variables is a binary code of length m = 2n.

Two parameters usually determine the quality of a binary code: (1) the
rate of the code, R(C) def= 1

m log2 |C|, which measures the relative entropy of
C, and (2) the distance of the code, that is the smallest Hamming distance
between two codewords. Given a set of values one wishes to encode, and a
fixed distance, one would like to come up with a code whose length m is as
small as possible, (i.e., the rate is as large as possible). Nevertheless, some
low rate codes may enjoy other useful properties. One can apply such codes
when the set of values to be encoded is very small; hence the rate is not of the
utmost importance.

The Hadamard code is one such code, where the codewords are all char-
acters {χS}S . Its rate is very low, with m = 2n codewords out of 2m possible
ones. Its distance is, however, large, being half the length, m

2 .
The Long-code [BGS98] is even much sparser, containing only n = log m

codewords (that is, of loglog rate). It consists of only those very particular
characters χ{i} determined by a single index i, χ{i}(x) = xi,

LC =
{
χ{i}

}
i∈[n]

.

These n functions are called dictatorship in the influence jargon, as the value
of the function is ‘dictated’ by a single index i.

Decoding a given string involves finding the codeword closest to it. As
long as there are less than half the code’s distance erroneous bit flips, unique
decoding is possible since there is only one codeword within that error distance.
Sometimes, the weaker notion of list-decoding may suffice. Here we are seeking
a list of all codewords that are within a specified distance from the given string.
This notion is useful when the list is guaranteed to be small. List-decoding
allows a larger number of errors and helps in the construction of better codes,
as well as plays a central role in many proofs for hardness of approximation.

Going back to the Hadamard code and the Long-code, given an arbitrary
Boolean function f, we see that the Hamming distance between f and any
codeword χS is exactly 1−f̂(S)

2 2n. Since
∑

|̂f(S)|2 = 1, there can be at most 1
δ2

codewords that agree with f on a 1+δ
2 fraction of the points. It follows, that

the Hadamard code can be list-decoded for distances up to 1−δ
2 2n. This follows

through to the Long-code, being a subset of the Hadamard code.
For our purposes, however, list-decoding the Long-code is not strong

enough. It is not enough that all xi’s except for those on the short list have
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no meaningful correlation with f. Rather, it must be the case that all of the
nonlisted xi’s, together, have little influence on f. In other words, f needs be
close to a junta, whose variables are exactly the xi’s in the list decoding of f.

In our construction, potential codewords arise as independent sets in the
nonintersection graph G[n], defined above (Definition 1.1). Indeed, G[n] has
2n vertices, and we can think of a set of vertices of G[n] as a Boolean function,
by associating each vertex with an input setting in {−1, 1}n, and assigning
that input −1 or +1 depending on whether the vertex is in or out of the set.

What are the largest independent sets in G[n]? One can observe that there
is one for every i ∈ [n], whose vertices correspond to all subsets S that contain i,
thus containing exactly half the vertices. Viewed as a Boolean function this
is just the i-th dictatorship χ{i} which is one of the n legal codewords of the
Long-code.

Other rather large independent sets exist in G[n], which complicate the
picture a little. Taking a few vertices out of a dictatorship independent set
certainly yields an independent set. For our purposes it suffices to concentrate
on maximal independent sets (ones to which no vertex can be added). Still,
there are some problematic examples of large, maximal independent sets whose
respective 2n-bit string is far from all codewords: the set of all vertices S where
|S| > n

2 , is referred to as the majority independent set. Its size is very close
to half the vertices, as are the dictatorships. It is easy to see, however, by a
symmetry argument, that it has the same Hamming distance to all codewords
(and this distance is ≈ 2n

2 ) so there is no meaningful way of decoding it.
To solve this problem, we introduce a bias to the Long-code, by placing

weights on the vertices of the graph G[n]. For every p, the weights are defined
according to the p-biased product distribution:

Definition 1.2 (biased nonintersection graph). Gp[n] is a weighted graph,
in which there is one vertex for each subset S ⊆ [n], and where two vertices
S1 and S2 are adjacent if and only if S1 ∩ S2 = φ. The weights on the vertices
are as follows:

for all S ⊆ [n], µp(S) = p|S|(1 − p)n−|S| .(1)

Clearly G 1
2
[n] = G[n] because for p = 1

2 all weights are equal. Observe the
manner in which we extended the notation µp, defined earlier as the p-biased
product distribution on n-bit vectors, and now on subsets of [n]. The weight
of each of the n dictatorship independent sets is always p. For p < 1

2 and large
enough n, these are the (only) largest independent sets in Gp[n]. In particular,
the weight of the majority independent set becomes negligible.

Moreover, for p < 1
2 every maximal independent set in Gp[n] identifies a

short list of codewords. To see that, consider a maximal independent set I in
G[n]. The characteristic function of I —fI(S) = −1 if S ∈ I and 1 otherwise—
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is monotone, as adding an element to a vertex S, can only decrease its neighbor
set (fewer subsets S′ are disjoint from it). One can apply Lemma 1.2 above
to conclude that fI must be close to a junta, for some q possibly a bit larger
than p:

Corollary 1.3. Fix 0 < p < 1
2 , γ > 0, ε > 0 and let I be a maximal

independent set in Gp[n]. For some q ∈ [p, p + γ], there exists C ⊂ [n], where
|C| ≤ 2O(1/γε), such that C is an (ε, q)-core of fI .

1.3. Extremal set-systems. An independent set in G[n] is a family of
subsets, such that every two-member subset intersect. The study of maximal
intersecting families of subsets has begun in the 1960s with a paper of Erdős,
Ko, and Rado [EKR61]. In this classical setting, there are three parameters:
n, k, t ∈ N. The underlying domain is [n], and one seeks the largest family of
size-k subsets, every pair of which share at least t elements.

In [EKR61] it is proved that for any k, t > 0, and for sufficiently large n,
the largest family is one that consists of all subsets that contain some t fixed
elements. When n is only a constant times k this is not true. For exam-
ple, the family of all subsets containing at least 3 out of 4 fixed elements is
2-intersecting, and is maximal for a certain range of values of k/n.

Frankl [Fra78] investigated the full range of values for t, k and n, and
conjectured that the maximal t-intersecting family is always one of Ai,t ∩

([n]
k

)
where

([n]
k

)
is the family of all size-k subsets of [n] and

Ai,t
def= {S ⊆ [n] | S ∩ [1, . . . , t + 2i] ≥ t + i} .

Partial versions of this conjecture were proved in [Fra78], [FF91], [Wil84].
Fortunately, the complete intersection theorem for finite sets was settled not
long ago by Ahlswede and Khachatrian [AK97].

Characterizing the largest independent sets in Gp[n] amounts to studying
this question for t = 1, yet in a smoothed variant. Rather than looking only at
subsets of prescribed size, we give every subset of [n] a weight according to µp;
see equation (1). Under µp almost all of the weight is concentrated on subsets
of size roughly pn. We seek an intersecting family, largest according to this
weight.

The following lemma characterizes the largest 2-intersecting families of
subsets according to µp, in a similar manner to Alswede-Khachatrian’s solution
to the the Erdős-Ko-Rado question for arbitrary k.

Lemma 1.4. Let F ⊂ P ([n]) be 2-intersecting. For any p < 1
2 ,

µp(F) ≤ p•
def= max

i
{µp(Ai,2)}

where P ([n]) denotes the power set of [n]. The proof is included in Section 11.



448 IRIT DINUR AND SAMUEL SAFRA

Going back to our reduction, recall that we are transforming instances x

of some NP-complete language L into graphs. Starting from a ‘yes’ instance
(x ∈ L), the resulting graph (which is made of copies of Gp[n]) has an inde-
pendent set whose restriction to every copy of Gp[n] is a dictatorship. Hence
the weight of the largest independent set in the final graph is roughly p. ‘No’
instances (x �∈ L) result in a graph whose largest independent set is at most
p• + ε where p• denotes the size of the largest 2-intersecting family in Gp[n].
Indeed, as seen in Section 5, the final graph may contain an independent set
comprised of 2-intersecting families in each copy of Gp[n], regardless of whether
the initial instance is a ‘yes’ or a ‘no’ instance.

Nevertheless, our analysis shows that any independent set in Gp[n] whose
size is even marginally larger than the largest 2-intersecting family of subsets,
identifies an index i ∈ [n]. This ‘assignment’ of value i per copy of Gp[n] can
then serve to prove that the starting instance x is a ‘yes’ instance.

In summary, the source of our inapproximability factor comes from the
gap between sizes of maximal 2-intersecting and 1-intersecting families. This
factor is 1−p•

1−p , being the ratio between the sizes of the vertex covers that are
the complements of the independent sets discussed above. The value of p is
constrained by additional technical complications stemming from the structure
imposed by the PCP theorem.

1.4. Stronger PCP theorems and hardness of approximation. The PCP
theorem was originally stated and proved in the context of probabilistic check-
ing of proofs. However, it has a clean interpretation as a constraint satisfaction
problem (sometimes referred to as Label-Cover), which we now formulate ex-
plicitly. There are two sets of non-Boolean variables, X and Y . The variables
take values in finite domains Rx and Ry respectively. For some of the pairs
(x, y), x ∈ X and y ∈ Y , there is a constraint πx,y. A constraint specifies
which values for x and y will satisfy it. Furthermore, all constraints must have
the ‘projection’ property. Namely, for every x-value there is only one possible
y-value that together would satisfy the constraint. An enhanced version of the
PCP theorem states:

Theorem 1.5 (The PCP Theorem [AS98], [ALM+98], [Raz98]).Given as
input a system of constraints {πx,y} as above, it is NP-hard to decide whether

• There is an assignment to X, Y that satisfies all of the constraints.

• There is no assignment that satisfies more than an |Rx|−Ω(1) fraction of
the constraints.

A general scheme for proving hardness of approximation was developed in
[BGS98], [H̊as01], [H̊as99]. The equivalent of this scheme in our setting would
be to construct a copy of the intersection graph for every variable in X∪Y . The
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copies would then be further connected according to the constraints between
the variables, in a straightforward way.

It turns out that such a construction can only work if the constraints
between the x, y pairs in the PCP theorem are extremely restricted. The im-
portant ‘bijection-like’ parameter is as follows: given any value for one of the
variables, how many values for the other variable will still satisfy the con-
straint? In projection constraints, a value for the x variable has only one
possible extension to a value for the y variable; but a value for the y variable
may leave many possible values for x. In contrast, a significant part of our
construction is devoted to getting symmetric two-variable constraints where
values for one variable leave one or two possibilities for the second variable,
and vice versa. It is the precise structure of these constraints that limits p to
being at most 3−

√
5

2 .
In fact, our construction proceeds by transformations on graphs rather

than on constraint satisfaction systems. We employ a well-known reduc-
tion [FGL+96] converting the constraint satisfaction system of Theorem 1.5
to a graph made of cliques that are further connected. We refer to such a
graph as co-partite because it is the complement of a multi-partite graph. The
reduction asserts that in this graph it is NP-hard to approximate the maximum
independent set, with some additional technical requirements. The major step
is to transform this graph into a new co-partite graph that has a crucial addi-
tional property, as follows. Every two cliques are either totally disconnected,
or, they induce a graph such that the co-degree of every vertex is either 1 or 2.
This is analogous to the ‘bijection-like’ parameter of the constraints discussed
above.

1.5. Minimum vertex cover. Let us now briefly describe the history of the
Minimum Vertex Cover problem. There is a simple greedy algorithm that ap-
proximates Minimum Vertex Cover to within a factor of 2 as follows: Greedily
obtain a maximal matching in the graph, and let the vertex cover consist of
both vertices at the ends of each edge in the matching. The resulting vertex-set
covers all the edges and is no more than twice the size of the smallest vertex
cover. Using the best currently known algorithmic tools does not help much
in this case, and the best known algorithm gives an approximation factor of
2 − o(1) [Hal02], [BYE85], [MS83].

As to hardness results, the previously best known hardness result was due
to H̊astad [H̊as01] who showed that it is NP-hard to approximate Minimum
Vertex Cover to within a factor of 7

6 . Let us remark that both H̊astad’s result
and the result presented herein hold for graphs of bounded degree. This follows
simply because the graph resulting from our reduction is of bounded degree.

1.6. Organization of the paper. The reduction is described in Section 2.
In Section 2.1 we define a specific variant of the gap independent set problem
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called hIS and show it to be NP-hard. This encapsulates all one needs to know
– for the purpose of our proof – of the PCP theorem. Section 2.2 describes the
reduction from an instance of hIS to Minimum Vertex Cover. The reduction
starts out from a graph G and constructs from it the final graph GCL

B . The
section ends with the (easy) proof of completeness of the reduction. Namely,
that if IS(G) = m then GCL

B contains an independent set whose relative size is
roughly p ≈ 0.38.

The main part of the proof is the proof of soundness. Namely, proving
that if the graph G is a ‘no’ instance, then the largest independent set in GCL

B
has relative size at most < p• + ε ≈ 0.159. Section 3 surveys the necessary
technical background; and Section 4 contains the proof itself. Finally, Section 5
contains some examples showing that the analysis of our construction is tight.
Appendices appear as Sections 8–12.

2. The construction

In this section we describe our construction, first defining a specific gap
variant of the Maximum Independent Set problem. The NP-hardness of this
problem follows directly from known results, and it encapsulates all one needs
to know about PCP for our proof. We then describe the reduction from this
problem to Minimum Vertex Cover.

2.1. Co-partite graphs and h-clique-independence. Consider the following
type of graph,

Definition 2.1. An (m, r)-co-partite graph G = 〈M × R, E〉 is a graph
constructed of m = |M | cliques each of size r = |R|; hence the edge set of G is
an arbitrary set E, such that,

∀i ∈ M, j1 �= j2 ∈ R, (〈i, j1〉 , 〈i, j2〉) ∈ E .

Such a graph is the complement of an m-partite graph, whose parts have
r vertices each. It follows from the proof of [FGL+96], that it is NP-hard to
approximate the Maximum Independent Set specifically on (m, r)-co-partite
graphs.

Next, consider the following strengthening of the concept of an indepen-
dent set:

Definition 2.2. For any graph G = (V, E), define

ISh(G) def= max {|I| | I ⊆ V contains no clique of size h} .

The gap-h-Clique-Independent-Set Problem (or hIS(r, ε, h) for short) is as fol-
lows:
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Instance: An (m, r)-co-partite graph G.

Problem: Distinguish between the following two cases:

• IS(G) = m.
• ISh(G) ≤ εm.

Note that for h = 2, IS2(G) = IS(G), and this becomes the usual gap-
Independent-Set problem. Nevertheless, by a standard reduction, one can
show that this problem is still hard, as long as r is large enough compared
to h:

Theorem 2.1. For any h, ε > 0, the problem hIS(r, ε, h) is NP-hard, as
long as r ≥ (h

ε )c for some constant c.

A complete derivation of this theorem from the PCP theorem can be found
in Section 9.

2.2. The reduction. In this section we present our reduction from
hIS(r, ε0, h) to Minimum Vertex Cover by constructing, from any given (m, r)-
co-partite graph G, a graph GCL

B . Our main theorem is as follows:

Theorem 2.2. For any ε > 0, and p < pmax = 3−
√

5
2 , for large enough

h, lT and small enough ε0 (see Definition 2.3 below): Given an (m, r)-co-partite
graph G = (M ×R, E), one can construct, in polynomial time, a graph GCL

B so
that :

IS(G) = m =⇒ IS(GCL
B ) ≥ p − ε

ISh(G) < ε0 · m =⇒ IS(GCL
B ) < p• + ε where p• = max(p2, 4p3 − 3p4) .

As an immediate corollary we obtain,

Corollary 2.3 (independent-set). Let p < pmax = 3−
√

5
2 . For any

constant ε > 0, given a weighted graph G, it is NP-hard to distinguish between:

Yes: IS(G) > p − ε.

No: IS(G) < p• + ε.

In case p ≤ 1
3 , p• reads p2 and the above asserts that it is NP-hard to

distinguish between I(GCL
B ) ≈ p = 1

3 and I(GCL
B ) ≈ p2 = 1

9 and the gap between
the sizes of the minimum vertex cover in the ‘yes’ and ‘no’ cases approaches
1−p2

1−p = 1 + p, yielding a hardness-of-approximation factor of 4
3 for Minimum

Vertex Cover. Our main result follows immediately,

Theorem 1.1. Given a graph G, it is NP-hard to approximate Minimum
Vertex Cover to within any factor smaller than 10

√
5 − 21 ≈ 1.3606.
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Proof. For 1
3 < p < pmax, direct computation shows that p• = 4p3 − 3p4,

thus it is NP-hard to distinguish between the case GCL
B has a vertex cover of

size 1−p+ε and the case GCL
B has a vertex cover of size at least 1−4p3+3p4−ε

for any ε > 0. Minimum Vertex Cover is thus shown hard to approximate to
within a factor approaching

1 − 4(pmax)3 + 3(pmax)4

1 − pmax
= 1 + pmax + (pmax)2 − 3(pmax)3

= 10
√

5 − 21 ≈ 1.36068 . . . .

Before we turn to the proof of the main theorem, let us introduce some
parameters needed during the course of the proof. It is worthwhile to note
here that the particular values chosen for these parameters are insignificant.
They are merely chosen so as to satisfy some assertions through the course of
the proof. Nevertheless, most importantly, they are all independent of r = |R|.
Once the proof has demonstrated that assuming a (p• +ε)-weight independent
set in GCL

B , we must have a set of weight ε0 in G that contains no h-clique.
One can set r to be large enough so as to imply NP-hardness of hIS(r, ε0, h),
which thereby implies NP-hardness for the appropriate gap-Independent-Set
problem. This argument is valid due to the fact that none of the parameters
of the proof is related to r.

Definition 2.3 (parameter setting). Given ε > 0 and p < pmax, let us set
the following parameters:

• Let 0 < γ < pmax − p be such that (p + γ)• − p• < 1
4ε.

• Choosing h: We choose h to accommodate applications of Friedgut’s
theorem (Theorem 3.2 below), a Sunflower Lemma and a pigeon-hole
principle. Let Γ(p, δ, k) be the function defined as in Theorem 3.2, and
let Γ∗(k, d) be the function defined in the Sunflower Lemma (Theorem 4.8
below). Set

h0 = sup
q∈[p,pmax]

(
Γ(q, 1

16ε,
2
γ )

)
and let η = 1

16h0
· p5h0 , h1 = � 2

γ·η � + h0, hs = 1 + 22h0 ·
∑h0

k=0

(
h1

k

)
, and

h = Γ∗(h1, hs).

• Fix ε0 = 1
32 · ε.

• Fix lT = max(4 ln 2
ε , (h1)2).

Remarks. The value of γ is well defined because the function taking
p to p• = max(p2, 4p3 − 3p4) is a continuous function of p. The supre-
mum supq∈[p,pmax]

(
Γ(q, 1

16ε,
2
γ )

)
in the definition of h0 is bounded, because
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Γ(q, 1
16ε,

2
γ ) is a continuous function of q; see Theorem 3.2. Both r and lT re-

main fixed while the size of the instance |G| increases to infinity, and so without
loss of generality we can assume that lT · r � m.

Constructing the final graph GCL
B . Let us denote the set of vertices of G

by V = M × R.
The constructed graph GCL

B will depend on a parameter l
def= 2lT · r.

Consider the family B of all sets of size l of V :

B =
(

V

l

)
= {B ⊂ V | |B| = l} .

Let us refer to each such B ∈ B as a block. The intersection of an independent
set IG ⊂ V in G with any B ∈ B, IG ∩ B, can take 2l distinct forms, namely
all subsets of B. If |IG| = m then expectedly |IG ∩ B| = l · m

mr = 2lT hence for
almost all B it is the case that |IG ∩ B| > lT. Let us consider for each block
B its block-assignments,

RB
def=

{
a : B → {T,F}

∣∣ |a−1(T)| ≥ lT
}

.

Every block-assignment a ∈ RB supposedly corresponds to some independent
set IG, and assigns T to exactly all vertices of B that are in IG, that is, where
a−1(T) = IG ∩ B. Two block-assignments are adjacent in GB if they surely
do not refer to the same independent set. In this case they will be said to be
inconsistent. Thus a �= a′ ∈ RB are inconsistent.

Consider a pair of blocks B1, B2 that intersect on B̂ = B1∩B2 with |B̂| =
l − 1. For a block-assignment a1 ∈ RB1 , let us denote by a1|B̂ : B̂ → {T,F}
the restriction of a1 to B̂, namely, where ∀v ∈ B̂, a1|B̂(v) = a1(v). Block
assignments a1 ∈ RB1 and a2 ∈ RB2 possibly refer to the same independent set
only if a1|B̂ = a2|B̂. If also B1 = B̂ ∪ {v1} and B2 = B̂ ∪ {v2} such that v1, v2

are adjacent in G, a1, a2 are consistent only if they do not both assign T to
v1, v2 respectively. In summary, every block-assignment a1 ∈ RB1 is consistent
with (and will not be adjacent to) at most two block-assignments in RB2 .

Let us formally construct the graph GB = (VB, EB):

Definition 2.4. Define the graph GB = (VB, EB), with vertices for all
block-assignments to every block B ∈ B,

VB =
⋃

B∈B
RB

and edges for every pair of block-assignments that are clearly inconsistent,

EB =
⋃

〈v1,v2〉∈E, B̂∈( V

l−1)

{
〈a1, a2〉 ∈ RB̂∪{v1} × RB̂∪{v2}

∣∣∣ a1|B̂ �= a2|B̂

or a1(v1) = a2(v2) = T
}⋃

B

{〈a1, a2〉 | a1, a2 ∈ RB} .
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Note that |RB| is the same for all B ∈ B, and so for r′ = |RB| and
m′ = |B|, the graph GB is (m′, r′)-co-partite.

The (almost perfect) completeness of the reduction from G to GB, can be
easily proven:

Proposition 2.4. IS(G) = m =⇒ IS(GB) ≥ m′ · (1 − ε).

Proof. Let IG ⊂ V be an independent set in G, |I| = m = 1
r |V |. Let

B′ consist of all l-sets B ∈ B =
(
V
l

)
that intersect IG on at least lT elements

|B ∩ IG| ≥ lT. The probability that this does not happen is (see Proposi-
tion 12.1) PrB∈B [B �∈ B′] ≤ 2e−

2lT
8 ≤ ε. For a block B ∈ B′, let aB ∈ RB be

the characteristic function of IG ∩ B:

∀v ∈ B, aB(v) def=


T v ∈ IG

F v �∈ IG

.

The set I = {aB |B ∈ B′} is an independent set in GB, of size m′ · (1 − ε).

The final graph. We now define our final graph GCL
B , consisting of the

same blocks as GB, but where each block is not a clique but rather a copy of
the nonintersection graph Gp[n], for n = |RB|, as defined in the introduction
(Definition 1.2).

Vertices and weights. GCL
B =

〈
V CL
B , ECL

B ,Λ
〉

has a block of vertices V CL
B [B]

for every B ∈ B, where vertices in each block B correspond to the noninter-
section graph Gp[n], for n = |RB|. We identify every vertex of V CL

B [B] with a
subset of RB; that is,

V CL
B [B] = P (RB) .

V CL
B consists of one such block of vertices for each B ∈ B,

V CL
B =

⋃
B∈B

V CL
B [B] .

Note that we take the block-assignments to be distinct; hence, subsets of them
are distinct, and V CL

B is a disjoint union of V CL
B [B] over all B ∈ B.

Let ΛB, for each block B ∈ B, be the distribution over the vertices of
V CL
B [B], as defined in Definition 1.2. Namely, we assign each vertex F a prob-

ability according to µp:

ΛB(F ) = µRB
p (F ) = p|F |(1 − p)|RB\F | .

Finally, the probability distribution Λ assigns equal probability to every
block: For any F ∈ V CL

B [B]

Λ(F ) def= |B|−1 · ΛB(F ) .
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Edges. We have edges between every pair of F1 ∈ V CL
B [B1] and F2 ∈

V CL
B [B2] if in the graph GB there is a complete bipartite graph between these

sets; i.e.,

ECL
B =

{
〈F1, F2〉 ∈ V CL

B [B1] × V CL
B [B2]

∣∣∣ EB ⊇ F1 × F2

}
.

In particular, there are edges within a block, i.e. when B1 = B2, if and only if
F1 ∩ F2 = φ (formally, this follows from the definition because the vertices of
RB form a clique in GB, and GB has no self loops).

This completes the construction of the graph GCL
B . We have,

Proposition 2.5. For any fixed p, l > 0, the graph GCL
B is polynomial -

time constructible given input G.

A simple-to-prove, nevertheless crucial, property of GCL
B is that every in-

dependent set1 can be monotonically extended,

Proposition 2.6. Let I be an independent set of GCL
B : If F ∈ I∩V CL

B [B],
and F ⊂ F ′ ∈ V CL

B [B], then I ∪ {F ′} is also an independent set.

We conclude this section by proving completeness of the reduction:

Lemma 2.7 (Completeness). IS(G) = m =⇒ IS(GCL
B ) ≥ p − ε.

Proof. By Proposition 2.4, if IS(G) = m then IS(GB) ≥ m′(1−ε). In other
words, there is an independent set IB ⊂ VB of GB whose size is |IB| ≥ m′·(1−ε).
Let I0 = {{a} | a ∈ IB} be the independent set consisting of all singletons of
IB, and let I be I0’s monotone closure. The set I is also an independent set
due to Proposition 2.6 above. It remains to observe that the weight within
each block of the family of all sets containing a fixed a ∈ IB, is p.

3. Technical background

In this section we describe our technical tools, formally defining and stat-
ing theorems that were already described in the introduction. As described
in the introduction, these theorems come from distinct fields, in particular
harmonic analysis of Boolean functions and extremal set theory.

For the rest of the paper, we will adopt the notation of extremal set
theory as follows. A family of subsets of a finite set R will usually be denoted
by F ⊆ P (R), and member subsets by F, H ∈ F . We represent a Boolean

1An independent set in the intersection graph never contains the empty-set vertex, because
it has a self loop.
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function f : {−1, 1}n → {−1, 1}, according to its alternative view as a family
of subsets

F = {F ∈ P (R) | f(σF ) = −1} ,

where σF is the vector with −1 on coordinates in F , and 1 otherwise.

3.1. A family ’s core. A family of subsets F ⊂ P (R) is said to be a junta
with core C ⊂ R, if a subset F ∈ P (R) is determined to be in or out of F only
according to its intersection with C (no matter whether other elements are in
or out of F ). Formally, C is the core of F if,

{F ∈ P (R) |F ∩ C ∈ F} = F .

A given family F , does not necessarily have a small core C. However,
there might be another family F ′ with core C, which approximates F quite
accurately, up to some δ:

Definition 3.1 (core). A set C ⊆ R is said to be a (δ, p)-core of the fam-
ily F ⊆ P (R), if there exists a junta F ′ ⊆ P (R) with core C such that
µp(F � F ′) < δ.

The family F ′ that best approximates F on its core, consists of the subsets
F ∈ P (C) whose extension to R intersects more than half of F :

[F ]
1
2
C

def=

{
F ∈ P (C)

∣∣∣∣∣ Pr
F ′∈µR\C

p

[
F ∪ F ′ ∈ F

]
>

1
2

}
.

Consider the core-family, defined as the family of all subsets F ∈ P (C), for
which 3

4 of their extension to R, i.e. 3
4 of {F ′ |F ′ ∩ C = F}, resides in F :

Definition 3.2 (core-family). For a set of elements C ⊂ R, define,

[F ]
3
4
C

def=

{
F ∈ P (C)

∣∣∣∣∣ Pr
F ′∈µR\C

p

[
F ∪ F ′ ∈ F

]
>

3
4

}
.

By simple averaging, it turns out that if C is a (δ, p)-core for F , this family
approximates F almost as well as the best family C.

Lemma 3.1. If C is a (δ, p)-core of F , then µC
p

(
[F ]

3
4
C

)
≥ µR

p (F) − 4δ.

Proof. Clearly, [F ]
1
2
C ⊇ [F ]

3
4
C . Let

F 1
2

=
{

F
∣∣∣ F ∩ C ∈ [F ]

1
2
C

}
, F 3

4
=

{
F

∣∣∣ F ∩ C ∈ [F ]
3
4
C

}
,

and let F ′ = F 1
2
\ F 3

4
. We will show

µ((F � F 3
4
) ∩ F ′) ≤ 3µ((F � F 1

2
) ∩ F ′) ;(2)
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thus

µ(F � F 3
4
)≤µ(((F � F 3

4
) ∩ F ′) ∪ ((F � F 3

4
) ∩ F ′))

≤ 3µ((F � F 1
2
) ∩ F ′) + µ((F � F 3

4
) ∩ F ′)

= 3µ((F � F 1
2
) ∩ F ′) + µ((F � F 1

2
) ∩ F ′) ≤ 4δ ,

where the first two lines follow from (2) and the third line holds because F 1
2

=
F 3

4
outside F ′.

To prove (2), fix F ∈ [F ]
1
2
C \ [F ]

3
4
C , and denote

ρ = Pr
F ′∈µR\C

p

[
F ∪ F ′ ∈ F

]
.

Clearly 1
2 < ρ ≤ 3

4 so that (1 − ρ) ≥ ρ/3. For every F ′ ⊆ R \ C, the subset
F ∪ F ′ is always in F 1

2
and not in F 3

4
; and so

Pr
F ′∈µR\C

p

[
F ∪ F ′ ∈ F � F 1

2

]
= 1 − ρ ≥ ρ

3
=

1
3
· Pr

F ′∈µR\C
p

[
F ∪ F ′ ∈ F � F 3

4

]
.

Influence and sensitivity. Let us now define influence and average sen-
sitivity for families of subsets. Assume a family of subsets F ⊆ P (R). The
influence of an element e ∈ R,

influencep
e(F) def= Pr

F∈µ
p

[exactly one of F ∪ {e}, F \ {e} is in F ] .

The total-influence or average sensitivity of F with respect to µp, denoted
asp(F), is the sum of the influences of all elements in R,

asp(F) def=
∑
e∈R

influencep
e(F) .

Friedgut’s theorem states that if the average sensitivity of a family is small,
then it has a small (δ, p)-core:

Theorem 3.2 (Theorem 4.1 in [Fri98]). Let 0 < p < 1 be some bias,
and δ > 0 be any approximation parameter. Consider any family F ⊂ P (R),
and let k = asp(F). There exists a function Γ(p, δ, k) ≤ (cp)k/δ, where cp is
a constant depending only on p, such that F has a (δ, p)-core C, with |C| ≤
Γ(p, δ, k).

Remark. We rely on the fact that the constant cp above is bounded by a
continuous function of p. The dependence of cp on p follows from Friedgut’s
p-biased equivalent of the Bonami-Beckner inequality. In particular, there is
a parameter 1 < τ < 2 whose precise value depends on p as follows: it must
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satisfy (τ − 1)p2/τ−1 > 1− 3τ/4. Clearly τ is a continuous (bounded) function
of p.

A family of subsets F ⊆ P (R) is monotonic if for every F ∈ F , for all
F ′ ⊃ F , F ′ ∈ F . We will use the following easy fact:

Proposition 3.3. For a monotonic family F ⊆ P (R), µp(F) is a mono-
tonic nondecreasing function of p.

For a simple proof of this proposition, see Section 10.
Interestingly, for monotonic families, the rate at which µp increases with p,

is exactly equal to the average sensitivity:

Theorem 3.4 (Russo-Margulis identity [Mar74], [Rus82]).Let F ⊆ P (R)
be a monotonic family. Then,

dµp(F)
dp

= asp(F) .

For a simple proof of this identity, see Section 10.

3.2. Maximal intersecting families. Recall from the introduction that a
monotonic family distinguishes a small core of elements, that almost deter-
mine it completely. Next, we will show that a monotonic family that has large
enough weight, and is also intersecting, must exhibit one distinguished ele-
ment in its core. This element will consequently serve to establish consistency
between distinct families.

Definition 3.3. A family F ⊂ P (R) is t-intersecting, for t ≥ 1, if

∀F1, F2 ∈ F , |F1 ∩ F2| ≥ t .

For t = 1 such a family is referred to simply as intersecting.

Let us first consider the following natural generalization for a pair of fam-
ilies,

Definition 3.4 (cross-intersecting).Two families F1,F2 ⊆ P (R) are cross-
intersecting if for every F1 ∈ F1 and F2 ∈ F2, F1 ∩ F2 �= φ.

Two families cannot be too large and still remain cross-intersecting,

Proposition 3.5. Let p ≤ 1
2 , and let F1,F2 ⊆ P (R) be two families of

subsets for which µp(F1)+µp(F2) > 1. Then F1,F2 are not cross-intersecting.

Proof. We can assume that F1,F2 are monotone, as their monotone clo-
sures must also be cross-intersecting. Since µp, for a monotonic family, is
nondecreasing with respect to p (see Proposition 3.3), it is enough to prove the
claim for p = 1

2 .
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For a given subset F denote its complement by F c = R \ F . If there was
some F ∈ F1 ∩ F2 for which F c ∈ F1 or F c ∈ F2, then clearly the families
would not be cross-intersecting. Yet if such a subset F ∈ F1 ∩ F2 does not
exist, then the sum of sizes of F1,F2 would be bounded by 1.

It is now easy to prove that if F is monotone and intersecting, then the
same holds for the core-family [F ]

3
4
C that is (see Definition 3.2) the threshold

approximation of F on its core C,

Proposition 3.6. Let F ⊆ P (R), and let C ⊆ R.

• If F is monotone then [F ]
3
4
C is monotone.

• If F is intersecting, and p ≤ 1
2 , then [F ]

3
4
C is intersecting.

Proof. The first assertion is immediate. For the second assertion, assume
by way of contradiction, a pair of nonintersecting subsets F1, F2 ∈ [F ]

3
4
C and

observe that the families

{F ∈ P (R \ C) |F ∪ F1 ∈ F1} and {F ∈ P (R \ C) |F ∪ F2 ∈ F2}
each have weight > 3

4 , and by Proposition 3.5, cannot be cross-intersecting.

An intersecting family whose weight is larger than that of a maximal
2-intersecting family, must contain two subsets that intersect on a unique ele-
ment e ∈ R.

Definition 3.5 (distinguished element). For a monotone and intersecting
family F ⊆ P (R), an element e ∈ R is said to be distinguished if there exist
F �, F � ∈ F such that

F � ∩ F � = {e} .

The distinguished element itself is not unique, a fact that is irrelevant to
our analysis as we choose an arbitrary one. Clearly, an intersecting family has
a distinguished element if and only if it is not 2-intersecting. We next establish
a weight criterion for an intersecting family to have a distinguished element.
Recall that pmax = 3−

√
5

2 . For each p < pmax, define p• to be

Definition 3.6.

∀p < pmax, p•
def= max(p2, 4p3 − 3p4) .

This maps each p to the size of the maximal 2-intersecting family, accord-
ing to µp. For a proof of such a bound we venture into the field of extremal
set theory, where maximal intersecting families have been studied for some
time. This study was initiated by Erdős, Ko, and Rado [EKR61], and has seen
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various extensions and generalizations. The corollary above is a generalization
to µp of what is known as the Complete Intersection Theorem for finite sets,
proved in [AK97]. Frankl [Fra78] defined the following families:

Ai,t
def= {F ∈ P ([n]) |F ∩ [1, t + 2i] ≥ t + i} ,

which are easily seen to be t-intersecting for 0 ≤ i ≤ n−t
2 and conjectured the

following theorem that was finally proved by Ahlswede and Khachatrian [AK97]:

Theorem 3.7 ([AK97]). Let F ⊆
([n]

k

)
be t-intersecting. Then,

|F| ≤ max
0≤i≤n−t

2

∣∣∣∣Ai,t ∩
(

[n]
k

)∣∣∣∣ .

Our analysis requires the extension of this statement to families of subsets
that are not restricted to a specific size k, and where t = 2. Let us denote
Ai

def= Ai,2. The following lemma (mentioned in the introduction) follows from
the above theorem, and will be proved in Section 11.

Lemma 1.4. Let F ⊂ P ([n]) be 2-intersecting. For any p < 1
2 ,

µp(F) ≤ max
i

{µp(Ai)}.

Furthermore, when p ≤ 1
3 , this maximum is attained by µp(A0) = p2, and

for 1
3 < p < pmax by µp(A1) = 4p3 − 3p4. Having defined p• = max(p2, 4p3 −

3p4) for every p < pmax, we thus have:

Corollary 3.8. If F ⊂ P (R) is 2-intersecting, then µp(F) ≤ p•, pro-
vided p < pmax.

The proof of this corollary can also be found in Section 11.

4. Soundness

This section is the heart, and most technical part, of the proof of cor-
rectness, proving the construction is sound, that is, that if GCL

B has a large
independent set, then G has a large h-clique–free set.

Lemma 4.1 (soundness). IS(GCL
B ) ≥ p• + ε =⇒ ISh(G) ≥ ε0 · m.

Proof sketch. Assuming an independent set I ⊂ V CL
B of weight Λ(I) ≥

p• + ε, we consider for each block B ∈ B the family I[B] = I ∩ V CL
B [B].

The first step (Lemma 4.2) is to find, for a nonnegligible fraction of the
blocks Bq ⊆ B, a small core of permissible block-assignments, and in it, one
distinguished block-assignment to be used later to form a large h-clique–free
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set in G. This is done by showing that for every B ∈ Bq, I[B] has both
significant weight and low-average sensitivity. This, not necessarily true for p,
is asserted for some slightly shifted value q ∈ (p, p + γ). Utilizing Friedgut’s
theorem, we deduce the existence of a small core for I[B]. Then, utilizing an
Erdős-Ko-Rado-type bound on the maximal size of a 2-intersecting family, we
find a distinguished block-assignment for each B ∈ Bq.

The next step is to focus on one (e.g. random) l − 1 sub-block B̂ ∈
(

V
l−1

)
,

and consider its extensions B̂ ∪ {v} for v ∈ V = M × R, that represent the
initial graph G. The distinguished block-assignments of those blocks that are
in Bq will serve to identify a large set in V .

The final, most delicate part of the proof, is Lemma 4.6, asserting that
the distinguished block-assignments of the blocks extending B̂ must identify
an h-clique–free set as long as I is an independent set. Indeed, since they all
share the same (l − 1)-sub-block B̂, the edge constraints these blocks impose
on one another will suffice to conclude the proof.

After this informal sketch, let us now turn to the formal proof of Lemma 4.1.

Proof. Let then I ⊂ V CL
B be an independent set of size Λ(I) ≥ p• + ε, and

denote, for each B ∈ B,

I[B] def= I ∩ V CL
B [B] .

The fractional size of I[B] within V CL
B [B], according to ΛB, is ΛB(I[B]) =

µp(I[B]).
Assume without loss of generality that I is maximal.

Observation. I[B], for any B ∈ B, is monotone and intersecting.

Proof. It is intersecting, as GCL
B has edges connecting vertices correspond-

ing to nonintersecting subsets, and it is monotone due to maximality (see
Proposition 2.6).

The first step in our proof is to find, for a significant fraction of the
blocks, a small core, and in it one distinguished block-assignment. Recall from
Definition 3.5, that an element a ∈ C would be distinguished for a family
[I[B]]

3
4
C ⊆ P (C) if there are two subsets F �, F � ∈ [I[B]]

3
4
C whose intersection

is exactly F � ∩ F � = {a}.
Theorem 3.2 implies that a family has a small core only if the family has

low-average sensitivity, which is not necessarily the case here. To overcome
this, let us use an extension of Corollary 1.3, which would allow us to assume
some q slightly larger than p, for which a large fraction of the blocks have a
low-average sensitivity, and thus a small core. Since the weight of the family
is large, it follows that there must be a distinguished block-assignment in that
core.
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Lemma 4.2. There exist some q ∈ [p, pmax) and a set of blocks Bq ⊆ B
whose size is |Bq| ≥ 1

4ε · |B|, such that for all B ∈ Bq:

(1) I[B] has a ( 1
16ε, q)-core, Core[B] ⊂ RB, of size |Core[B]| ≤ h0.

(2) The core-family [I[B]]
3
4

Core[B] has a distinguished element ȧ[B] ∈ Core[B].

Proof. We will find a value q ∈ [p, pmax) and a set of blocks Bq ⊆ B
such that for every B ∈ Bq, I[B] has large weight and low-average sensitivity,
according to µq. We will then proceed to show that this implies the above
properties. First consider blocks whose intersection with I has weight not
much lower than the expectation,

B′ def=
{

B ∈ B
∣∣∣∣ ΛB(I[B]) > p• +

1
2
ε

}
.

By a simple averaging argument, it follows that |B′| ≥ 1
2ε · |B|, as otherwise

Λ(I) · |B| =
∑
B∈B

ΛB(I[B])≤ 1
2
ε |B| +

∑
B �∈B′

ΛB(I[B])

<
1
2
ε |B| +

∑
B �∈B′

(p• +
1
2
ε) ≤ (p• + ε) · |B| .

Since µp is nondecreasing with p (see Proposition 3.3), and since the value of
γ < pmax − p was chosen so that for every q ∈ [p, p + γ], p• + 1

4ε > q•, we have
for every block B ∈ B′,

µq(I[B]) ≥ µp(I[B]) > p• +
1
2
ε > q• +

1
4
ε .(3)

The family I[B], being monotone, cannot have high average sensitivity ac-
cording to µq for many values of q; so by allowing an increase of at most γ,
the set

Bq
def=

{
B ∈ B′

∣∣∣∣ asq(I[B]) ≤ 2
γ

}
must be large for some q ∈ [p, p + γ]:

Proposition 4.3. There exists q ∈ [p, p + γ] so that |Bq| ≥ 1
4ε · |B|.

Proof. Consider the average, within B′, of the size of I[B] according to µq

µq[B′] def=
∣∣B′∣∣−1 ·

∑
B∈B′

µq(I[B]),

and apply a version of Lagrange’s Mean-Value Theorem: The derivative of
µq[B′] as a function of q is

dµq[B′]
dq

=
∣∣B′∣∣−1 ·

∑
B∈B′

dµq

dq
(I[B]) =

∣∣B′∣∣−1 ·
∑
B∈B′

asq(I[B])
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where the last equality follows from the Russo-Margulis identity (Lemma 3.4).
Therefore, there must be some q ∈ [p, p+γ] for which dµq[B′]

dq ≤ 1
γ , as otherwise

µp+γ [B′] > 1 which is impossible. It follows that at least half of the blocks in
B′ have asq(I[B]) ≤ 2

γ . We have |Bq| ≥ 1
2 |B′| ≥ 1

4ε |B|.

Fix then q ∈ [p, p + γ], to be as in the proposition above, so that |Bq| ≥
1
4ε · |B|. We next show that the properties claimed by the lemma, indeed hold
for all blocks in Bq. The first property, namely that I[B] has an ( 1

16ε, q)-
core, denoted Core[B] ⊂ RB, of size |Core[B]| ≤ h0, is immediate from The-
orem 3.2, if we plug in the average sensitivity of I[B]; by definition of h0 =
supq∈[p,pmax] Γ(q, 1

16 ε, 2
γ ); see Definition 2.3.

Having found a core for I[B], consider the core-family approximating I[B]
on Core[B] (see Definition 3.2) denoted by

CFB
def= [I[B]]

3
4

Core[B] =

{
F ∈ P (Core[B])

∣∣∣∣∣ Pr
F ′∈µR\Core[B]

p

[
F ∪ F ′ ∈ I[B]

]
>

3
4

}
.

By Proposition 3.6, since I[B] is monotone and intersecting, so is CFB. More-
over, Corollary 3.1 asserts that

µq(CFB) > µq(I[B]) − 4 · ε

16
> q• ,

where the second inequality follows from inequality (3), when µq(I[B]) > q• +
1
4ε for any B ∈ Bq. We can now utilize the bound on the maximal size of a
2-intersecting family (see Corollary 3.8) to deduce that CFB is too large to
be 2-intersecting, and must distinguish an element ȧ ∈ Core[B], i.e. contain
two subsets F �, F � ∈ CFB that intersect on exactly that block-assignment,
F � ∩ F � = {ȧ}. This completes the proof of Lemma 4.2.

Let us now fix q as guaranteed by Lemma 4.2 above. The following implicit
definitions appeared in the above proof, and will be used later as well,

Definition 4.1 (core, core-family, distinguished block-assignment). Let
B ∈ Bq.

• B’s core, denoted Core[B] ⊂ RB, is an arbitrary smallest ( 1
16ε, q)-core of

I[B].

• B’s core-family is the core-family on B’s core (see Definition 3.2), denoted
CFB = [I[B]]

3
4

Core[B].

• B’s distinguished block-assignment, is an arbitrary distinguished element
of CFB, denoted ȧ[B] ∈ Core[B].

Let us further define, for each block B ∈ Bq, the set of all block-assignments
of B that have influence larger than η = 1

16h0
· p8h0 :
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Definition 4.2 (extended core). For B ∈ B, let the extended core of B be

ECore[B] def= Core[B] ∪ {a ∈ RB | influenceq
a(I[B]) ≥ η} .

The extended core is not much larger than the core, because the total sum
of influences of elements in RB, is bounded for every B ∈ Bq, by asq(I[B]) ≤ 2

γ ,

|ECore[B]| ≤ h0 +
asq(I[B])

η
≤ h0 + � 2

γ·η � = h1 .

Consider now an (l − 1)-sub-block B̂ ∈
(

V
l−1

)
. The set of l-blocks that ex-

tend B̂ can be thought of as a copy of G. The next step in our proof is to iden-
tify one such sub-block, and a set of blocks extending it (say B̂∪{v1}, . . . , B̂∪
{vm}) so that the corresponding subset of vertices {v1, . . . , vm} = VB̂ ⊂ V is
h-clique–free. Members of VB̂ are determined in a delicate way as follows. For
each block B̂ ∪ {v} ∈ Bq, if the distinguished block-assignment of that block
assigns T to v, then v is put in VB̂ (VB̂ is formally defined in Definition 4.4).
We show in Proposition 4.5 that an appropriate random selection of B̂ implies
that VB̂ is sufficiently large. Then, in Lemma 4.6 we analyze the cores and dis-
tinguished block-assignments of the blocks B̂∪{v1}, . . . , B̂∪{vm}, and deduce
that the set VB̂ must be h-clique free.

In Figure 1 the top two lines represent the block assignments of B1 and the
two bottom lines represent the block assignments of B2. The lines are labeled
by T and F to indicate the value assigned to v1 (resp. v2) by block-assignments
on that line. The center line represents the sub-block assignments RB̂. The
block assignments are aligned so that all five in the same column agree on the
assignment to B̂.

The key is that only block-assignments that are in the same column can
be consistent; thus a pair of block-assignments a1 ∈ RB1 and a2 ∈ RB2 are
consistent only if their restriction to B̂ is equal (i.e. they are in the same
column). Assuming v1, v2 are adjacent in G, we see that they must not both
assign T to v1 and v2 respectively.

We must attend a small technical issue before we continue. It would be
undesirable to have both block-assignments in a given pair influential in I[B],
for this would mean that the structure of I[B], is not preserved when reduced
to B̂. Thus, besides requiring that many of the blocks B̂ ∪ {v} extending B̂

reside in Bq (and have a well-defined core and distinguished block-assignment),
we need them to be preserved by B̂:

Definition 4.3 (preservation). Let B ∈ B, and let B̂ ⊂ B, |B̂| = l − 1.
Let us denote by a|B̂ the restriction to B̂ of a block-assignment a ∈ RB. We say
that B̂ preserves B, if there is no pair of block-assignments a1 �= a2 ∈ ECore[B]
with a1|B̂ = a2|B̂.
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RB1

RB̂

RB2

T

T

F

F

Figure 1: Aligned pairs of block assignments

It is almost always the case that B̂ preserves B̂ ∪ {v}:

Proposition 4.4.

For all B ∈ B, |{v ∈ B |B \ {v} does not preserve B}| <
(h1)2

2
.

Proof. Each pair of block-assignments a1, a2 ∈ ECore[B] can cause at
most one B̂ not to preserve B, and for any block B ∈ Bq , |ECore[B]| ≤ h1.

Consequently, the number of B̂ not preserving B is at most
(
h1

2

)
< (h1)2

2 .

The last step before identifying the required B̂ is to see that a distinguished
block-assignment for a block B̂∪{v} is useful for constructing an h-clique–free
subset in G, if it assigns T to v. Hence, for each B̂ we consider the following
set VB̂ ⊂ V :

Definition 4.4. Let VB̂ ⊆ V be:

VB̂

def=
{

v ∈ V \ B̂
∣∣∣ B = B̂ ∪ {v} ∈ Bq and B̂ preserves B and ȧ[B](v) = T

}
.

It follows from the definition of VB̂, that if v1, v2 ∈ VB̂ are connected by
an edge in G, then the distinguished block-assignments of B1 = B̂ ∪ {v1} and
B2 = B̂ ∪ {v2} are connected by an edge in the graph GB, 〈ȧ[B1], ȧ[B2]〉 ∈ EB
(see Definition 2.4). Next, let us identify a sub-block B̂, for which VB̂ is large:

Proposition 4.5. There exists B̂ ∈
(

V
l−1

)
, with

∣∣VB̂

∣∣ ≥ ε0 · m.
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Proof. Observe that

Pr
B̂, v∈V \B̂

[
v ∈ VB̂

]
≥ 1

4
ε · Pr

B, v∈B

[
v ∈ VB\{v}

∣∣ B ∈ Bq

]
≥ 1

4
ε · 1

4r
,

where the first inequality follows from Proposition 4.3 when Bq ≥ 1
4ε |B|. The

second inequality is a consequence of the fact that for any a ∈ RB, there are
at least lT = l

2r elements v ∈ B with a(v) = T; and at most (h1)2

2 (l− 1)-blocks
B̂ ⊂ B not preserving B; hence, conditioned on B ∈ Bq, the probability of
v ∈ VB̂ is at least 1

2r − (h1)2

2l ≥ 1
4r as l ≥ 2(h1)2 · r.

This inequality shows that there is at least one B̂ for which

Pr
v∈V \B̂

[
v ∈ VB̂

]
≥ ε

16r
,

hence,
∣∣VB̂

∣∣ ≥ 1
16rε ·

∣∣∣V \ B̂
∣∣∣ ≥ 1

32ε · m, as |V \B̂|
r > 1

2m, because |B̂| = l − 1 �
1
2 |V |; see Definition 2.3.

Finally, we establish ISh(G) ≥ ε0 · m by proving,

Lemma 4.6. The set VB̂ contains no clique of size h.

Proof (of Lemma 4.6). Assume, by way of contradiction, that there exists
a clique over vertices v1, . . . , vh ∈ VB̂. We show that, for Bi = B̂∪{vi}, the set
∪i∈[h]I[Bi] is not an independent set. In fact, we explicitly find two of these
blocks, Bi1 , Bi2 , such that I[Bi1 ] ∪ I[Bi2 ] is not an independent set.

Analyzing consistency between blocks B̂ ∪ {vi} leads us to consider the
common sub-block B̂, and the sub-block-assignments that are restrictions of
block-assignments in RBi

to B̂. The (l − 1)-block-assignments of B̂ ∈
(

V
l−1

)
,

are defined to be
RB̂

def=
{

a : B̂ → {T,F}
}

.

A block-assignment a ∈ RBi
has a natural restriction to B̂, denoted a|B̂ ∈ RB̂,

where for all v ∈ B̂, a|B̂(v) = a(v).
For the remaining analysis, let us name the three important entities re-

garding each block Bi, for i ∈ [h]: Bi’s distinguished block-assignment, the
core of Bi, and the extended core of Bi,

ȧi
def= ȧ[Bi], Ci

def= Core[Bi], Ei
def= ECore[Bi],

and their natural restrictions to B̂ (where the natural restriction of a set is the
set comprising the restrictions of its elements),

âi
def= ȧi|B̂, Ĉi

def= Ci|B̂, Êi
def= Ei|B̂ .

Now, recall the core-family CFBi
, which is the family of subsets, over the core

of each Bi, whose extension in I[Bi] has weight at least 3
4 . For each block Bi,
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i ∈ [h], ȧi being distinguished implies a pair of subsets

F �
i , F �

i ∈ CFBi
so that F �

i ∩ F �
i = {ȧi} .

Let their natural restriction to B̂ be

F̂ �
i

def= F �
i |B̂ F̂ �

i
def= F �

i |B̂
and note that, as B̂ preserves every Bi, it follows that, for all i ∈ [h],

F̂ �
i ∩ F̂ �

i = {âi} .(4)

Our first goal is to identify two blocks Bi1 and Bi2 whose core-families
look the same in the following sense:

Proposition 4.7. There exist i1 �= i2 ∈ [h], such that, when ∆ = Êi1 ∩
Êi2 ,

(1) Ĉi1 ∩ ∆ = Ĉi2 ∩ ∆,

(2) F̂ �
i1
∩ ∆ = F̂ �

i2
∩ ∆,

(3) F̂ �
i1
∩ ∆ = F̂ �

i2
∩ ∆.

Proof. Our proof begins by applying the following Sunflower Lemma over
the sets Êi:

Theorem 4.8 ([ER60]). There exists some integer function Γ∗(k, d) (not
depending on |R|), such that for any F ⊂

(
R
k

)
, if |F| ≥ Γ∗(k, d), there are d

distinct sets F1, . . . , Fd ∈ F , such that, when ∆ def= F1∩· · ·∩Fd, the sets Fi \∆
are pairwise disjoint.

The sets F1, . . . , Fd are called a Sunflower, or a ∆-system. This statement
can easily be extended to families in which each subset has size at most k.

We apply this lemma for R = RB̂, and F = {Ê1, . . . , Êh}. Recall (Defini-
tion 2.3), we have fixed h > Γ∗(h1, hs); hence Theorem 4.8 implies there exists
some J ⊆ [h], |J | = hs, such that{

Êi \ ∆
}

i∈J
are pairwise disjoint for ∆ def=

⋂
i∈J

Êi .

Consider, for each i ∈ J , the triplet
〈
Ĉi ∩ ∆, F̂ �

i ∩ ∆, F̂ �
i ∩ ∆

〉
, and

note that, since F̂ �
i , F̂ �

i ⊆ Ĉi the number of possible triplets is at most∣∣∣{〈
Ĉ ∩ ∆, F̂ � ∩ ∆, F̂ � ∩ ∆

〉 ∣∣∣ |Ĉ| ≤ h0, F̂ �, F̂ � ⊆ Ĉ
}∣∣∣≤ h0∑

k=0

(
h1

k

)
· 2h0 · 2h0

< hs = |J |
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(recall we have set (Definition 2.3) hs = 1 + 22h0 ·
∑h0

k=0

(
h1

k

)
). Therefore, by

the pigeon-hole principle, there must be some i1, i2 ∈ J for which〈
Ĉi1 ∩ ∆, F̂ �

i1 ∩ ∆, F̂ �
i1
∩ ∆

〉
=

〈
Ĉi2 ∩ ∆, F̂ �

i2 ∩ ∆, F̂ �
i2
∩ ∆

〉
.

From now on we may assume without loss of generality that i1 = 1, i2 = 2,
and continue to denote ∆ = Ê1∩ Ê2. We will arrive at a contradiction by find-
ing an edge between the blocks B1, B2, specifically, by finding two extensions,
one of F �

1 in I[B1], and another of F �
2 in I[B2], all of whose block-assignments

are pairwise inconsistent.

RB1

RB̂

RB2

D1

D2

C1

C2Ĉ1 ∩ Ĉ2

T
F

T
F

Figure 2: Cores and distinguished block-assignments

Figure 2 can be helpful in keeping track of the important entities in the
rest of the proof. Recall that two block assignments are consistent only if they
are in the same column and are not both in the T row. The darker circles
represent members of the core (C1 or C2). Note that there is at most one
darker circle in each T/F pair (due to preservation). The block-assignments
in F �

1 and F �
1 are labeled � and . The distinguished block-assignments are

labeled by both � and , and they assign T to v1, v2 respectively. The dashed
rectangle borders the intersection of Ĉ1 with Ĉ2, which is a subset of ∆ and is
where the restrictions of F �

1 , F �
1 are equal to those of F �

2 , F �
2 .

As a first step, let us prove that the block-assignments in F �
1 and F �

2 are
pairwise inconsistent:

Proposition 4.9.
〈
F �

1 , F �
2

〉
∈ ECL

B .
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Proof. We need to prove that for all a1 ∈ F �
1 , a2 ∈ F �

2 , 〈a1, a2〉 ∈ EB.
If 〈a1, a2〉 �∈ EB, it must be that a1|B̂ = a2|B̂ ∈ F̂ �

1 ∩ F̂ �
2 ⊆ Ê1 ∩ Ê2 = ∆.

Now, B1 and B2 are chosen as in Proposition 4.7 so that F̂ �
1 ∩∆ = F̂ �

2 ∩∆ and
F̂ �

1 ∩ ∆ = F̂ �
2 ∩ ∆. Consequently a1|B̂ = a2|B̂ ∈ F̂ �

1 ∩ F̂ �
1 ∩ ∆ = F̂ �

2 ∩ F̂ �
2 ∩ ∆;

however (4) asserts that the only block-assignment in these two intersections
is the distinguished one; hence â1 = a1|B̂ = a2|B̂ = â2. Since B̂ preserves both
B1 and B2, a1 = ȧ1 and a2 = ȧ2. However, 〈ȧ1, ȧ2〉 ∈ EB (recall Definition 2.4),
as both ȧ1, ȧ2 assign T to v1, v2 respectively and 〈v1, v2〉 ∈ E.

It may well be that F �
1 �∈ I[B1] and F �

2 �∈ I[B2], thus the proposition above
is only a first step towards a contradiction. Nevertheless, we know that F �

1 ∈
CFB1 = [I[B1]]

3
4

Core[B1]
means that

3
4 of

{
F ∈ P (RB1) |F ∩ Core[B1] = F �

1

}
are

in I[B1], and likewise for F �
2 . In what follows, we utilize this large volume of

3
4 to find extensions of these sets, that are in I, yet are connected by an edge
in ECL

B .
Let us partition the set of (l − 1)-block assignments of RB̂ into the im-

portant ones, which are restrictions of block-assignments in the cores of B1 or
B2, and the rest,

D̂ = Ĉ1 ∪ Ĉ2 and R̂ = RB̂ \ D̂

which immediately partitions the block-assignments of RB1 and RB2 , according
to whether their restriction falls within D̂:

D1 =
{

a ∈ RB1

∣∣∣ a|B̂ ∈ D̂
}

and R1 = RB1 \ D1

and similarly for RB2 ,

D2 =
{

a ∈ RB2

∣∣∣ a|B̂ ∈ D̂
}

and R2 = RB2 \ D2 .

Proposition 4.10. |D1| ≤ 4h0 and |D2| ≤ 4h0.

Proof. Simply note that |D1|, |D2| ≤ 2|D̂| ≤ 2(|Ĉ1| + |Ĉ2|) ≤
2(|C1| + |C2|) = 4h0.

Notice that F �
1 ∈ P (C1) ⊆ P (D1) and F �

2 ∈ P (C2) ⊆ P (D2); hence it
suffices to exhibit two subsets H1 ∈ P (R1) and H2 ∈ P (R2) all of whose block-
assignments are pairwise-inconsistent, so that F �

1 ∪H1 ∈ I[B1] and F �
2 ∪H2 ∈

I[B2].
Let us prove this by showing first that the families of subsets extending

F �
1 and F �

2 within I are large; and then proceed to show that this large volume
implies the existence of two subsets, H1 and H2 as required.

Let us first name these two families of subsets extending F �
1 and F �

2

within I:
I1 =

{
F ∈ P (R1)

∣∣∣ (F �
1 ∪ F ) ∈ I[B1]

}



470 IRIT DINUR AND SAMUEL SAFRA

and
I2 =

{
F ∈ P (R2)

∣∣∣ (F �
2 ∪ F ) ∈ I[B2]

}
and proceed to prove they are large:

Proposition 4.11.

µR1
q (I1) >

1
2

and µR2
q (I2) >

1
2

.

Proof. Let us prove the first case; the second one is proved by a symmetric,
but otherwise identical, argument. By definition of CFB1 = [I[B1]]

3
4
C1

, it is the
case that

Pr
F∈µ

q

[
F ∈ I[B1]

∣∣∣ F ∩ C1 = F �
1

]
>

3
4

.

Note that the only difference between this event and

µR1
q (I1) = Pr

F∈µ
q

[
F ∈ I[B1]

∣∣∣ F ∩ D1 = F �
1

]
is the condition on F not to contain any block-assignment in D1 \ C1. Sim-
plistically, if the elements in D1 \ C1 have tiny influence, then removing them
from a subset does not take it out of I[B1]. Hence, it suffices to prove that this
family, of extensions of F �

1 within I[B1], is almost independent of the set of
block-assignments D1 \C1, that is, that one can extract a small (< 1

4) fraction
of I1 and make it completely independent of the block-assignments outside
R1 ∪ C1.

Let us first observe that block-assignments in D1 \ C1 indeed have tiny
influence.

Proposition 4.12.

(D1 \ C1) ∩ E1 = φ.

Proof. There are two cases to consider for a ∈ D1 \ C1: Either a|B̂ ∈ Ĉ1

and in that case, since B̂ preserves B1 and since a �∈ C1, we deduce a �∈ E1;
or, a|B̂ ∈ Ĉ2 \ Ĉ1 and since the first condition on B1 and B2 in Proposition 4.7
is that Ĉ1 ∩ ∆ = Ĉ2 ∩ ∆, we deduce a|B̂ �∈ ∆. Now a|B̂ ∈ Ĉ2 ⊆ Ê2, implies
a|B̂ �∈ Ê1; thus a �∈ E1.

By definition of the extended core Ei (Definition 4.1), it follows that for
every a ∈ D1 \ C1, influenceq

a(I[B1]) < η. Since |D1 \ C1| < 4h0 (Proposi-
tion 4.10) we can deduce that I[B1] is almost independent of D1 \C1, utilizing
a relatively simple, general property related to influences. Namely, given any
monotonic family of subsets of a domain R, and a set U ⊂ R of elements of
tiny influence, one has to remove only a small fraction of the family to make
it completely independent of U , i.e. determined by R \U . More accurately, we
prove the following simple proposition in Section 10.
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Proposition 4.13. Let F ⊂ P (R) be monotone, and let U ⊂ R be such
that for all e ∈ U , influencep

e(F) < η. Then, when,

F ′ = {F ∈ F |F \ U ∈ F} ,

µR
p

(
F \ F ′) < |U | · η · p−|U | .

Proof. See Section 10.

Substituting D1 \ C1 for U and 1
16h0

· p5h0 for η (see Definition 2.3), we
see that this proposition asserts that the weight of the subsets that have to be
removed from I[B1] to make it independent of D1 \ C1,

I[B1]′
def= {F ∈ I[B1] | (F \ (D1 \ C1)) �∈ I[B1]} ,

is bounded by

µ
RB1
q (I[B1]′) < 4h0 · η · q−4h0 ≤ 1

4
qh0 .

Now, even if all I[B1]′ is concentrated on F �
1 , since F �

1 ’s weight in P (C1) is
at least q|C1| ≥ qh0 , µC1

q

(
F �

1

)
≥ qh0 . It follows (using Pr(A |B) ≤ Pr(A)/ Pr(B))

that,

Pr
F∈µ

R1
q

[
F ∈ I[B1]′

∣∣ F ∩ C1 = F �
1

]
≤ Pr

F∈µ
R1
q

[
F ∈ I[B1]′

]
· 1
µC1

q

(
F �

1

) <
1
4

.

Formally, we write

3
4

< Pr
[
F ∈ I[B1] |F ∩ C1 = F �

1

]
= Pr

[
F ∈ I[B1] \ I[B1]′

∣∣ F ∩ C1 = F �
1

]
+ Pr

[
F ∈ I[B1]′

∣∣ F ∩ C1 = F �
1

]
< Pr

[
F ∈ I[B1] \ I[B1]′

∣∣ F ∩ D1 = F �
1

]
+

1
4

,

implying that µR1
q (I1) = Pr

[
F ∈ I[B1] |F ∩ D1 = F �

1

]
> 1

2 , and completing
the proof of Proposition 4.11.

We complete the proof of the Soundness Lemma, by deducing from the
large volume of I1, I2, the existence of two subsets H1 ∈ I1 and H2 ∈ I2 so
that 〈H1, H2〉 ∈ ECL

B , implying
〈
F �

1 ∪ H1, F
�
2 ∪ H2

〉
∈ ECL

B , which is the desired
contradiction.

Proposition 4.14. Let I1 ⊂ P (R1) , I2 ⊂ P (R2). If (1 − q)2 ≥ q and
µR1

q (I1) + µR2
q (I2) > 1, there exist H1 ∈ I1 and H2 ∈ I2 such that 〈H1, H2〉

∈ ECL
B .
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Proof. This proposition is proved by modifying the proof for the case
of cross-intersecting families (Proposition 3.5). In that proof, we bounded
the size of a pair of cross-intersecting families by pairing each subset with its
complement, noting that at p = 1

2 their weights are equal.
In this case, we focus on the value q = pmax = 3−

√
5

2 for which (1−q)2 = q,
noting that since q ≤ pmax, the monotonicity of I1, I2 (see Proposition 3.3)
yields µpmax(I1)+µpmax(I2) > 1. Here let us partition both P (R1) and P (R2),
and define an appropriate ‘complement’ differently for each part.

Fix an (l − 1)-block assignment â ∈ R̂. Extending it to a block assign-
ment in R1 (resp. in R2) amounts to assigning a T/F value to v1 (resp. to
v2). We denote these assignments by â(v1←T), â(v1←F) ∈ R1 and respectively
â(v2←T), â(v2←F) ∈ R2. Our partition is defined according to a ‘representative
mapping’ mapping each F1 ∈ P (R1) to a function Π[F1] : R̂ →

{
TF,TF,F

}
defined as follows:

∀â ∈ R̂, Π[F1](â)
def=


TF â(v1←T), â(v1←F) �∈ F1

TF â(v1←T) ∈ F1, â(v1←F) �∈ F1

F â(v1←F) ∈ F1

(symmetrically, we define Π[F2] for each F2 ∈ P (R2)). This mapping is natural
when we consider the characteristic function of F1 and ask, for every â ∈ R̂,
the value of that function on the two extensions of â in R1, â(v1←T) and â(v1←F).

Additionally, for a function Π = Π[F1], Π : R̂ →
{
TF,TF,F

}
, let its

complement be Πc : R̂ →
{
TF,TF,F

}
defined as follows:

∀â ∈ R̂, Πc(â) def=


TF Π(â) = F

TF Π(â) = TF

F Π(â) = TF .

Observe that Πcc = Π, so that this is indeed a perfect matching of the
possible functions Π : R̂ →

{
TF,TF,F

}
. Most importantly, observe next that

Π[H1] = Πc[H2] implies 〈H1, H2〉 ∈ ECL
B . To see that, we need to verify that

H1 × H2 ⊂ EB. Indeed for every a1 ∈ H1, a2 ∈ H2, if a1|B̂ �= a2|B̂ then
immediately 〈a1, a2〉 ∈ EB. More interestingly, if a1|B̂ = a2|B̂ = â then it must
be that Π[H1](â) = TF = Πc[H2](â), namely a1 = â(v1←T) and a2 = â(v2←T).
This again implies 〈a1, a2〉 ∈ EB because by our assumption 〈v1, v2〉 is an edge
in G (part of an h-clique).

Next, observe that for a fixed Π0 : R̂ →
{
TF,TF,F

}
,

Pr
F1∈µ

R1
q

[Π[F1] = Π0] =
∏

â: Π0(â)=TF

(1 − q)2 ·
∏

â: Π0(â)=TF

q(1 − q) ·
∏

â: Π0(â)=F

q .
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Now if q = pmax, i.e. (1−q)2 = q, we have PrF [Π[F ] = Π0] = PrF [Π[F ] = Πc
0].

Since µq(I1) + µq(I2) > 1, there must be a pair Π,Πc such that

{F1 ∈ P (R1) | Π[F1] = Π}∩I1 �= φ and {F2 ∈ P (R2) | Π[F2] = Πc}∩I2 �= φ

providing the necessary pair of H1 = F �
1 ∪ F1 ∈ I1, H2 = F �

2 ∪ F2 ∈ I2 with
〈H1, H2〉 ∈ ECL

B .

Lemma 4.6 is thereby proved.

This completes the proof of the soundness of the construction (Lemma 4.1).

The main theorem (Theorem 2.2) is thereby proved as well.

5. Tightness

In this section we show our analysis of GCL
B is tight in two respects. First,

we show the 2-intersecting bound: Namely, for any value of p there is always
an independent set I in GCL

B whose size is almost p•, regardless of whether G

is a ‘yes’ or a ‘no’ instance. Next, we show that if p > (1 − p)2 (this happens
for p > 3−

√
5

2 ), then a large independent set can be formed in GCL
B , again,

regardless of the size of IS(G).

The 2-intersecting bound. We will exhibit an appropriate choice of max-
imal 2-intersecting families for almost all of the blocks B that constitutes an
independent set in GCL

B .
Accordingly the complete intersection theorem, when p ≈ 3−

√
5

2 , the
µp-largest 2-intersecting family is obtained by fixing some four block-assign-
ments and taking all subsets that contain at least three of them. We will fix
four block-assignments for almost all blocks. This will be done so that for
every pair of these blocks, always at least three of the four block-assignments
are pairwise consistent. Having a “3 out of 4” family of subsets by fixing these
four elements gives an independent set.

Let Vred ∪ Vgreen ∪ Vblue ∪ Vyellow be an arbitrary partition of V , with
roughly |V | /4 vertices in each. For every block B ∈ B, define four special
block-assignments, aB

red, a
B
green, a

B
blue, a

B
yellow defined as being true on their color,

and false elsewhere; e.g.,

∀v ∈ B, aB
red(v) def=


T v ∈ Vred ∩ B

F v ∈ B \ Vred .

Of course, not all four are well-defined for every block, as a block-assignment
a ∈ RB must contain at least t T’s, and there is a negligible fraction of the
blocks B′ ⊂ B that intersect at least one of Vred ∪ Vgreen ∪ Vblue ∪ Vyellow with
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less than t values. Neglecting these, we take for each block, the following set
of vertices

I[B] =
{
F ∈ V [B]

∣∣ ∣∣F ∩
{
aB
red, a

B
green, a

B
blue, a

B
yellow

}∣∣ ≥ 3
}

,

and let I def=
⋃

B∈B\B′ I[B].
Let B̂ ∈ V (l−1), and let B1 = B̂ ∪ {v1}, and B2 = B̂ ∪ {v2}. Assume

v1 ∈ Vred (symmetrically for any other color), and observe the following,

(1) There is no edge in EB between aB1
green and aB2

green. Similarly,
〈
aB1
blue, a

B2
blue

〉
,〈

aB1
yellow, aB2

yellow

〉
�∈ EB.

(2) For any F1 ∈ I[B1],
∣∣∣F1 ∩

{
aB1
green, a

B1
blue, a

B1
yellow

}∣∣∣ ≥ 2, and similarly for
F2 ∈ I[B2]. If (without loss of generality),

F1 ∩
{

aB1
green, a

B1
blue, a

B1
yellow

}
=

{
aB1
green, a

B1
yellow

}
and

F2 ∩
{

aB2
green, a

B2
blue, a

B2
yellow

}
=

{
aB2
green, a

B2
blue

}
,

then F1 is consistent with F2 because of there being no edge in EB be-
tween aB1

green and aB2
green.

Thus, I is an independent set.

The bound p ≤ (1−p)2. Assume p > 3−
√

5
2 . We construct an independent

set by selecting an arbitrary block assignment for each block, and taking all
subsets containing it. By removing a negligible fraction of the vertices (subsets)
in each block, we eliminate all edges between blocks.

Consider two blocks B1, B2 ∈ B, such that B1 = B̂ ∪{v1}, B2 = B̂ ∪{v2}.
Denote by R̂ the set of sub-block assignments for B̂ that are restrictions of
RB1 and of RB2 , and assume for simplicity that every sub-block assignment in
R̂ has two extensions (to F and to T) in both RB1 and RB2 .

A random subset F ∈µp
P (RB1), has expectedly p·|RB1 | block-assignments.

Moreover, there are expectedly (1 − p)2 · |R̂| sub-block-assignments in R̂ for
which â(v1←F), â(v1←T) �∈ F , and expectedly p · |R̂| sub-block-assignments for
which â(v1←F) ∈ F .

For two vertices F1 ∈ V [B1] and F2 ∈ V [B2] to be inconsistent, one of
them must deviate from the expectation, due to the following. Every â ∈ R̂ for
which â(v1←F) ∈ F1 must have both â(v2←F), â(v2←T) �∈ F2. If both F1, F2 are
near their expectation, there are roughly (1 − p)2 · |R̂| sub-block-assignments
in R̂ for which a(v2←F), a(v2←T) �∈ F2. If (1 − p)2 < p, this is not enough to
meet the expected p · |R̂| sub-block-assignments for which a(v2←F) ∈ F1.
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Standard Chernoff bounds imply that we need to remove only a tiny frac-
tion of the vertices of each block, so as to eliminate all subsets that deviate
from the expectation according to at least one sub-block B̂.

6. Discussion

Clearly, the most important open question left is finding the precise factor
within which the minimum vertex cover can be approximated. The results
presented herein appear as partial progress towards resolving that question.

One of the more likely approaches would be to strengthen the structural
properties of the graph GB, on which the biased Long-code is applied (replacing
each block by the biased intersection graph).

Following our work, Khot [Kho02] has formulated a specific type of “unique-
games” PCP system that implies such a structural restriction. Roughly, the
constraints are on pairs of variables, and are bijective (for a constraint to
be satisfied, every value for one variable leaves one value for the other, and
vice versa). In that framework our graph GB is equivalent to two-to-two con-
straints (where a value for one variable leaves at most two possible values).
Khot raised the question of whether an NP-hardness result can still hold with
such restricted constraints. In particular it was later shown in [KR03], that
a construction as hinted above, but starting from Khot’s conjectured “unique-
games” PCP system, will establish an optimal hardness factor of 2 − ε for
Minimum Vertex Cover, utilizing techniques presented herein.

Let us note that our result also implies, by direct reduction [Aro], [Tre],
a hardness of approximation of (1.36)2 ≈ 1.84 for the 2-CNF clause deletion
problem: the problem of finding the minimum weight set of clauses in a 2-CNF
formula, whose deletion makes the formula satisfiable. The best approximation
algorithm for this problem guarantees only a factor of log n log log n [KPRT97].

The framework for proving hardness results suggested herein can be tried
on other problems for which the known hardness result does not match the best
upper-bound. Of these, particularly interesting are the problem of coloring
3-colorable graphs with fewest possible colors, and the problem of approximat-
ing the largest cut in a graph.
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8. Appendix: Weighted vs. Unweighted

Given a graph G = (V, E, Λ), we construct, for any precision parameter
� > 0, an unweighted graph G	 = (V	, E	) with

∣∣∣ IS(G�)
|V�| − IS(G)

∣∣∣ ≤ �, whose

size is polynomial in |G| and 1
	 .

Let n = |V | · 1
	 . We replace each v ∈ V with nv = �n · Λ(v)� copies (�x�

denotes the integer nearest x), and set

V	
def= {〈v, i〉 | v ∈ V, 1 ≤ i ≤ nv } ,

E	
def= { {〈v1, i1〉 , 〈v2, i2〉} | {v1, v2} ∈ E, i1 ∈ [nv1 ], i2 ∈ [nv2 ]} .

If C ⊆ V is a vertex cover for G, then C	 =
⋃

v∈C {v} × [nv] is a vertex cover
for G	. Moreover, every minimal vertex cover C	 ⊆ V	 is of this form, because
whenever {v} × [nv] �⊆ C	 then by minimality C	 ∩ ({v} × [nv]) = φ. Thus we

show
∣∣∣ IS(G�)

|V�| − IS(G)
∣∣∣ ≤ � by the following proposition:

Proposition 8.1. Let C ⊆ V , and let C	 =
⋃

v∈C {v} × [nv]. Then∣∣∣ |C�|
|V�| − Λ(C)

∣∣∣ ≤ �.

Proof. For every C, C	 as above,

|C	| =
∑
v∈C

nv =
∑
v∈C

�n · Λ(v)� = n · Λ(C) +
∑
v∈C

(�n · Λ(v)� − n · Λ(v)).
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For any v, |�v� − v| ≤ 1
2 , and so∣∣∣∣ |C	|

n
− Λ(C)

∣∣∣∣ ≤ 1
2
|C|
n

≤ �

2
.(5)

To complete our proof we need to replace |C�|
n by |C�|

|V�| in (5). Indeed, taking

C = V in (5), yields
∣∣∣ |V�|

n − 1
∣∣∣ ≤ 	

2 , and multiplying by |C�|
|V�| ≤ 1, we obtain∣∣∣ |C�|

n − |C�|
|V�|

∣∣∣ ≤ 	
2 .

9. Appendix: Proof of Theorem 2.1

In this section we prove Theorem 2.1 which encapsulates our use of the
PCP theorem. PCP characterizations of NP in general state that given some
SAT instance, namely, a set of Boolean-functions Φ = {ϕ1, . . . , ϕn} over vari-
ables W , it is NP-hard to distinguish between ‘yes’ instances where there is
an assignment A to Φ’s variables that satisfies all Φ, and ‘no’ instances where
any assignment to A satisfies at most a small fraction of Φ.

Definition 9.1. Denote by Υ(Φ) the maximum, over all assignments to
Φ’s variables A : W → {0, 1}, of the fraction of ϕ ∈ Φ satisfied by A, namely

Υ(Φ) = max
A

Pr
ϕ∈Φ

[ϕ is satisfied by A] .

The basic PCP theorem showing hardness for gap-SAT states:

Theorem 9.1 ([AS98], [ALM+98]). There exists some constant β > 0
such that given a set Φ = {ϕ1, . . . , ϕn} of 3-CNF clauses over Boolean vari-
ables W (each clause is the OR of exactly three variables), it is NP-hard to
distinguish between the two cases:

Yes: Φ is satisfiable (Υ(Φ) = 1).

No: Υ(Φ) < 1 − β.

Let us first sketch the proof for Theorem 1.5, based on the above theorem
and the Parallel-repetition theorem [Raz98], and then turn to the consequent
proof of Theorem 2.1.

Proof. Given Φ as above, define the parallel repetition version of Φ:

Definition 9.2 (Par [Φ, k]). Let 〈Φ, W 〉 be a 3-CNF instance, with 3-CNF
clauses Φ over variables W . For any integer k > 0, let

Par [Φ, k] def= 〈Ψ, X, Y 〉
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be a SAT instance with Boolean functions Ψ over two types of variables: X
def=

Φk and Y
def= W k.

The range of each variable x = (ϕ1, . . . , ϕk) ∈ X, is RX = [7]k, cor-
responding (by enumerating the seven satisfying assignments of each 3-CNF
clause ϕ ∈ Φ) to the concatenation of the satisfying assignments for ϕ1, . . . , ϕk.
The range of each variable y = (w1, . . . , wk) ∈ Y , is RY = [2]k, corresponding
to all possible assignments to w1, . . . , wk.

For y = (w1, . . . , wk) and x = (ϕ1, . . . , ϕk), denote y � x if for all i ∈ [k],
wi is a variable of ϕi. The Boolean-functions in Ψ are as follows:

Ψ =
{

ψx→y

∣∣∣ y ∈ W k, x ∈ Φk, y � x
}

where ψx→y is T if the assignment to y is the restriction to y of the assignment
to x, and F otherwise. Since each test ϕ ∈ Φ has exactly three variables, each
variable x ∈ X appears in exactly 3k tests in ψx→y ∈ Ψ.

Clearly, if Υ(Φ) = 1, then Υ(Ψ) = 1. Moreover,

Theorem 9.2 (Parallel repetition, [Raz98]).There exists some constant
c > 0 such that when 〈Φ, W 〉 is a 3-CNF-instance, and let 〈Ψ, X, Y 〉 = Par [Φ, k],

Υ(Ψ) ≤ Υ(Φ)c·k .

Therefore, one may choose k for which (1−β)c·k ≤ ε/h3 and |RY | , |RX | ≤
( ε

h)−O(1); hence it is NP-hard to distinguish whether Υ(Ψ) = 1 or Υ(Ψ) < ε/h3.

Now we may proceed to proving the following:

Theorem 2.1. For any h, ε > 0, the problem hIS(r, ε, h) is NP-hard, as
long as r ≥ (h

ε )c for some constant c.

Proof. By reduction from the above theorem. Assume Ψ as above, and
let us apply the FGLSS construction [FGL+96], [Kar72] to Ψ, specified next.
Let G[Ψ] be the (m, r)-co-partite graph, with m = |X| and r = |RX |,

G[Ψ] = 〈V, E〉 where V
def= (X × RX) ;

that is, where G[Ψ]’s vertices are the sets of pairs consisting of a variable x in
X and a value a ∈ RX for x. For the edge set E of G[Ψ], let us consider all
pairs of vertices whose values cannot possibly correspond to the same satisfying
assignment:

E = {{(x1, a1), (x2, a2)} | ∃y, ψx1→y, ψx2→y ∈ Φ, ψx1→y(a1) �= ψx2→y(a2)} .

Therefore, an independent set in G[Ψ] cannot correspond to an inconsistent
assignment to Φ.
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If Ψ is satisfiable, let A : X ∪ Y → {T,F} be a satisfying assignment for
it, and observe that the set {(x, A(x)) |x ∈ X} ⊂ V is an independent set of
size |X| = m.

Otherwise, let us assume a set of vertices I ⊂ V in G[Ψ] that contains no
clique of size h, and such that |I| > ε · m, and show that Υ(Ψ) > ε

h3 . Let AI
map to each variable a subset of its range, as follows. For every x ∈ X and
y ∈ Y , set

AI(x) def= {a ∈ RX | (x, a) ∈ I} ,

AI(y) def=
⋃

ψx→y∈Ψ

ψx→y(AI(x)) .

The key is that the h-clique freeness implies that for every x ∈ X, |AI(x)| < h

and for every y ∈ Y , |AI(y)| < h. Otherwise, if |AI(y)| ≥ h for some y,
there are vertices (x1, a1), . . . , (xh, ah) so that {ψxi→y(ai)} are distinct. Hence
these vertices form a clique of size h. By the definition of AI , for every x with
AI(x) �= φ and for every ψx→y ∈ Ψ,

ψx→y(AI(x)) ∩ AI(y) �= φ .

Denote X0 = {x ∈ X |AI(x) �= φ} and observe that since there is an equal
number of ψx→y ∈ Ψ for each variable x:

Pr
ψx→y∈Ψ

[ψx→y(AI(x)) ∩ AI(y) �= φ] = Pr
x∈X

[x ∈ X0] =
|X0|
|X| >

1
h
· |I|
|X| > ε/h .

Finally, by picking for each variable x ∈ X, y ∈ Y a random assignment

∀x ∈ X, y ∈ Y, ax ∈R AI(x), ay ∈R AI(y) .

If AI(x) �= φ, the probability that ψx→y ∈ Ψ is satisfied by such a random
assignment is at least 1

|AI(x)| ·
1

|AI(y)| > 1/h2. Thus the expected number of
Boolean functions satisfied by this random assignment is > ε

h3 · |Ψ|. Since at
least one assignment must meet the expectation, Υ(Ψ) > ε

h3 .

10. Appendix: Some propositions about µp

Proposition 3.3. For a monotonic family of subsets F ⊆ P (n), q >

p ⇒ µq(F) ≥ µp(F).

Proof. For a subset F ∈ P ([n]) denote

F≤i
def= F ∩ [1, i] and F>i

def= F ∩ [i + 1, n]

and consider, for 0 ≤ i ≤ n, the hybrid distribution, where the first i elements
are chosen with bias p and the others are chosen with bias q:

µp,i,q(F ) def= p|F≤i| · (1 − p)i−|F≤i| · q|F>i| · (1 − q)n−i−|F>i| .
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Observe that
∀0 ≤ i ≤ n, µp,i,q(F) ≥ µp,i+1,q(F) ;

therefore µq(F) = µp,0,q(F) ≥ µp,n,q = µp(F).

Theorem 3.4 (Russo-Margulis identity). Let F ⊆ P (R) be a monotonic
family. Then,

dµq(F)
dq

= asq(F) .

Proof. For a subset F ∈ P (n) write

µq(F ) =
∏
i∈[n]

µi
q(F ), for µi

q(F ) =


q i ∈ F

1 − q i �∈ F.

(6)

Observe that

influenceq
i (F) =

∑
F∈F

 dµi
q(F )
dq

·
∏
j �=i

µj
q(F )

 .

Differentiating (6) according to q, and summing over all F ∈ F , we get

dµq(F)
dq

=
∑
i∈[n]

influenceq
i (F) = asq(F) .

We next show that for any monotonic family F ⊂ P (R), if U ⊂ R is a set
of elements of tiny influence, one has to remove only a small fraction of F to
make it completely independent of U :

Proposition 4.13. Let F ⊂ P (R) be monotone, and let U ⊂ R be such
that for all e ∈ U , influencep

e(F) < η. Let

F ′ = {F ∈ F |F \ U ∈ F} ;

then,
µR

p

(
F \ F ′) < |U | · η · p−|U | .

Proof. Let

F ′′ = {F ∈ P (R \ U) | F ∪ U ∈ F but F �∈ F} .

A set F ∈ F ′′ contributes at least µR\U
p (F ) · p|U | to the influence of at least

one element e ∈ U . Since the sum of influences of elements in U is < |U | · η,
we have µR\U

p (F ′′) < |U | · η · p−|U |. The proof is complete noting that,

F \ F ′ ⊆
{

F |F ∩ (R \ U) ∈ F ′′} .
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11. Appendix: Erdős-Ko-Rado

In this section we prove a lemma that is a continuous version and fol-
lows directly from the complete intersection theorem of Ahlswede and Khacha-
trian [AK97].

Let us define

Ai
def= {F ∈ P ([n]) |F ∩ [1, 2 + 2i] ≥ 2 + i} ,

and prove the following lemma,

Lemma 1.4. Let F ⊂ P ([n]) be 2-intersecting. For any p < 1
2 ,

µp(F) ≤ max
i

{µp(Ai)} .

Proof. Denote µ = maxi(µp(Ai)). Assuming F0 ⊂ P ([n0]) contradicts
the claim, let a = µp(F0) − µ > 0. Now consider F = F0 � P ([n] \ [n0])
for n > n0 large enough, to be determined later. Clearly, for any n ≥ n0,
µ

[n]
p (F) = µ

[n0]
p (F0), and F is 2-intersecting. Consider, for θ < 1

2 − p to be
determined later,

S
def= {k ∈ N | |k − p · n| ≤ θ · n} ,

and for every k ∈ S, denote by Fk = F ∩
([n]

k

)
. We will show that since most

of F ’s weight is derived from ∪k∈SFk, there must be at least one Fk that
contradicts Theorem 3.7. Indeed,

µ + a = µp(F) =
∑
k∈S

pk(1 − p)n−k · |Fk| + o(1) .

Hence there exists k ∈ S for which |Fk|
([n]

k ) ≥ µ+ 1
2a. We have left to show that µ·(

n
k

)
is close enough to maxi(|Ai∩

([n]
k

)
|). This follows from the usual tail bounds,

and is sketched as follows. Subsets in
([n]

k

)
for large enough i (depending only

on k
n but not on k or n), have roughly k

n · (2i+2) elements in the set [1, 2i+2].
Moreover, the subsets in Ai have at least i + 2 elements in [1, 2i + 2], thus
are very few (compared to

(
n
k

)
), because i+2

2i+2 > 1
2 > p + θ ≥ k

n . In other

words, there exists some constant Cp+θ,µ, for which
∣∣∣Ai ∩

([n]
k

)∣∣∣ < µ ·
(
n
k

)
for all

i ≥ Cp,µ as long as k
n ≤ p + θ.

Additionally, for every i < Cp,µ, taking n to be large enough we have

∀k ∈ S,

∣∣∣Ai ∩
([n]

k

)∣∣∣(
n
k

) = µ k

n
(Ai) + o(1) = µp(Ai) + o(1) < µ + o(1)

where the first equality follows from a straightforward computation.
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We have the following corollary,

Corollary 3.8. Let F ⊂ P (R) be 2-intersecting. For any q < pmax,
µq(F) ≤ q•.

Proof. Define a sequence p0 < p1 < . . . , by pi
def= i

2i+1 . We show that these
are the points where the maximum switches from Ai to Ai+1. More accurately,
we show for all i ≥ 0,

∀p ∈ (pi, pi+1] max
j

{µp(Aj)} = µp(Ai) .(7)

This, together with Lemma 1.4, implies the corollary, as p < pmax < 0.4
= p2 implies µp(F) ≤ max(µp(A0), µp(A1)) = max(p2, 4p3 − 3p4) = p•.

So we proceed to prove (7). A subset F �∈ Ai must intersect [1, 2i + 2]
on at most i + 1 elements. If additionally F ∈ Ai+1 it must then contain
2i + 3, 2i + 4. Thus,

µp(Ai+1 \ Ai) =
(

2i + 2
i + 1

)
· pi+1(1 − p)i+1 · p2 .

Similarly,

µp(Ai \ Ai+1) =
(

2i + 2
i + 2

)
· pi+2(1 − p)i · (1 − p)2 .

Together,

µp(Ai+1) − µp(Ai) =µp(Ai+1 \ Ai) − µp(Ai \ Ai+1)

= pi+2(1 − p)i+1

(
2i + 2
i + 1

) (
p − (1 − p)

i + 1
i + 2

)
.

The sign of this difference is determined by p − (1 − p) i+1
i+2 . For a fixed i ≥ 0,

this expression goes from positive to negative passing through zero once at
p = i+1

2i+3 = pi+1. Thus, the sequence {µp(Aj)}j is maximized at i for pi < p ≤
pi+1. (It is increasing when i ≤ 1−3p

2p−1 , and decreasing thereafter.)

12. Appendix: A Chernoff bound

Proposition 12.1. For any set I ⊂ V such that |I| = 1
r · |V |,

Pr
B∈B

[|I ∩ B| < lT] < 2e−
2lT
8 .

Proof. Consider the random variable χI : V → {0, 1} taking a 1 if and
only if v ∈ I. We have Prv∈V [χI(v) = 1] = 1

r , and for every B ∈ B =
(
V
l

)
,
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|I ∩ B| =
∑

v∈B
χI(v), so the expectation of this is |B| · 1

r = 2lT. The standard
Chernoff bound [Che52] directly gives

Pr
v1,...,vl∈V

∑
i∈[l]

χI(vi) < lT =
1
2
· l/r

 < e−
l

8r .

We are almost done, except that the above probability was taken with repeti-
tions, while in our case, for v1, . . . , vl to constitute a block B ∈ B, they must
be l distinct values. In fact, this happens with overwhelming probability and
in particular ≥ 1

2 ; thus we write,

Pr
v1,...,vl∈V

[∑
i

χI(vi) < lT

∣∣∣∣∣ |{v1, . . . , vl}| = l

]
≤ Prv1,...,vl∈V [

∑
i
χI(vi) < lT]

Prv1,...,vl∈V [|{v1, . . . , vl}| = l]

≤ e−
l

8r

1
2

= 2e−
l

8r .
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