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RELATIVE UTILITARIANISM

By AMRITA DHILLON AND JEAN-FRANCOIS MERTENS'

“If empirically meaningful interpersonal comparisons have to be based an
indifference maps, as we have argued, then the I[ndependence of Irrelevant
Alternatives must be violated. The information which enables ug to assert that
individual A prefers x to y more strongly than 5 prefers ¥ to x must be based
on comparisons by A and B of x and y not only to each other but also to other
alternatives.”

Kennetft J. Arvow, “Social Choice and Individual Values, " p. 112

In a framewark of preferences over lotteries, we show that an axiom system consisting
of weakened versions of Arrow’s axioms has 4 unique solution. “Relative Utilitarianism™
consists of first normalizing individual von Neumnann-Morgenstern utilities between 0 and
1 and then summing them.

KeywoRDs: Axiomatization, social change, social welfare function, utilitarianism, wel-
farism, Arrow's [mpossibility Theorent, expected utility.

1. INTRODUCTIQON

A SOCIAL WELFARE FUNCTION (SWE) maps profiles of individual preferences to a
sacial preference. For preferences over lotteries, we axiomatize such a map,
“relative utilitarianism” (RU), consisting of normalizing the nonconstant indi-
vidual von Neumann-Morgenstern (VNM) utility functions to have infimum zero
and supremum one, and taking the sum as social utility (Arrow (1963, Ch. III,
§6, p. 32)).2

Qur approach, in the sense of an axiomatic SWF, is very close to Arrow’s
tradition. The main difference seems to be the motivation, Given his insistence
on the full strength of Independence of Irrelevant Alternatives (IIA), his
approach seems more oriented towards understanding the voting paradox, and
getting a general social choice paradox. Because voting situations are indeed
characterized by successive votes between pairs, or at least small subsets of
~alternatives, imposing full streagth ITA is almost necessary for analyzing the
consistency between successive votes.” Qur concern is more the normative

'This text presents research results of the Belgian Programme on Interuniversity Poles of
Attraction initiated by the Belgian State, Prime Minister’s Office, Science Policy Programming. It
was partly supported by NSF Grant #SES 8922610. The authors assume scientific respansibility.
They are indebted to K. Arrow, C. d’Aspremant, and P. Hammeond for comments.

ct e.g., Rawls (1971, fn. 9, p. 22) for a very sketchy historical note on utilitarianism.

¥ Two ather aspects also of Arrow’s approach, which we share here, seem (in the current zeitgeist)
more directad towards voting situations: ane is the multi-profile formalism hy itself, and the second
consists in asking for a function rather than just a correspandence. [n our view, however, they reflect
exactly the original motivation of social choice theory, as a criterion for public policy recommenda-
tions. Indeed, to avoid complete “ad-hoc*-ness or even subjectivity, one has in such a position ta be
able to justify the way individual preferences will be taken into account, and “the™ way means a
function, while a justification must be under a “wveil of ignorance,” ie., ignaring what those
preferences happen to be.
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472 M. DHILLON AND F.-F. MERTENS

question of finding a “good” SWF, effectively and justifiably usable for public
policy recommendations. This is the original question of social choice theory, as
well as the fundamental question of normative economics, and goes back
implicitly at least two centuries ago, to the early utilitarians, and explicitly more
than half a century ago, to the work of Bergsan and Samuelson (Arrow (1963)).
The full force of ITA is then no longer compelling: as discussed in point 8, p.
481, some aspects of it are suspect, and contradict the most obvious intuition of
what a good SWF should do. It is precisely those that we avoid.

While his axioms were inconsistent, ours yield a unique solution. ITA is
substantially weakened, indeed almost dropped, its only remnants being the IRA
axiom, the manatonicity axiom (MON),* and a continuity axiom. The other
axioms are trivial cases of his Pareto axiom {or nontrivial cases of “Citizens’
Sovereignty”), except for the classical anonymity axiom {ANON]} strengthening
his nondictatorship.

This paper clearly relies strongly on the additional mileage, in the form of
mare restricted preferences, obtained in decision theory by going to lotteries.
There are many reasons for using this framework: First, “if conceptually we
imagine a choice being made between two alternatives, we cannot exclude any
probability distribution aver those two choices as a possible alternative” (Arrow
(1963, p. 20)). Another reason is methodological: in any completely symmetric
situation, e.g. where the two individuals in a committee have opposite prefer-
ences on a set of two alternatives, the only choice of society preserving this
symmetry is to randomize.® Le., the most obvious axioms on sacial choice rules
often force society to decide on a lottery. Further, policy alternatives in social
choice typically do invelve very considerable risk and uncertainty, at the level both
of the individual and of society, such as the possibility of unemployment for the
individual, or that of bad harvests and famines for whole nations. Acute debates
on the differential probability of war under alternative policies (e.g., “unilateral
disarmament™) are not far away.’

Why not take interpersonally comparable utility functions as primitives.” The
basic argument is Arrow's (1963), that primitives should be empirically meaning-

* Which can also be viewed as a weak analopue of his “Positive Association” (p. 96)—cf.
Discussion p. 480.

%S0 total indifference must be allowed for society. For much deeper results on this theme, cf.
Chichilnisky and Heal {1983). But if it were removed from the domain, a variant of our theorem
would still heold (ef. previcus versions of this paper, e.g. Dhillon and Mertens (1993, p. 47)).

® And clearly policy has to be sensitive to the individuals’ attitudes towards such risks, notwith-
standing Arrow (1963, p. 10). For example, with sufficient risk-aversion (for evidence, of, Drdze
(1981)), marginal returns from increasing a rich person’s income may decrease 50 rapidly as to give a
strong egalitarian flavor to the final outcame of RU.

? But ¢f, fn. 34 for why our results might no longer necessarily depend on this if we were to drop
ANON.
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fuld (e.g., p. 109, bottom; p. 112, top), lest the axioms themselves become
meaningless, and so the whole theory. See also Rawls (1971, e.g., p. 322) for a
more recent expression of the mythical character of any numbers behind
preferences: they are just a construct in the “cbserving mathematician® ’s mind,
and without any umiqueness property in addition. But if until Arrow this
ordinalist position was almost the consensus, apparently his theorem itself,
together with the very influential work of Harsanyi, turned the tide partially, and
led to the conclusion that interpersonal comparability was a must to abtain
SWE’s. The present theorem proves this conclusion false.

Even Harsanyi (176, p. 14} admits “the absence [for an individual] of an
objective criterion ... for comparing his fellows’ utilities with one another and
with his own.” Moreover, his justification of utility comparison by causal vari-
ables (1977, pp. 58-59), as well as his symmetry axiom, assumes utility, as
opposed to just preferences, has an objective existence. In fact, he seems quite
close ta our own position: “The metaphysical problem (in interpersonal compar-
isons} would be present even if we tried to compare the utilities enjoyed by
different persons with identical preferences and with identical expressive reac-
tions to any situation. Even in this case, it would not be inconceivable that such
persons...should attach different utilities to identical situations, for, in princi-
ple,...identical expressive reactions may well indicate different mental states
with different people. At the same time, under these conditions this logical
possibility of different susceptibilities to satisfaction would hardly be mare than
a metaphysical curiosity. If two objects or human beings show similar behavior
in afl their relevant aspects open to observation, the assumption of some
unobservable hidden difference between them must be regarded as a completely
gratuitous hypothesis and one contrary to sound scientific method. (This princi-
ple may be called the “principle of unwarranted differentiation.” In the last
analysis, it is on the basis of this principle that we ascribe mental states to other
human beings at all: the denial of this principle would at once lead us to
solipsism.) Thus in the case of persons with similar preferences and expressive
reactions we are fully entitled to assume that they derive the same utilities from
similar situations” (Harsanyi (1976, p. 15—footnotes omitted)).

Remaoving “and expressive reactions,” this eloquent argument implies one
should assign the same social preferences whenever the individual preference
profile is the same, i.e. use a true SWF. And there are good reasons to remave
it: expressive reactions that would not correspond to the expression of same
preference are just as metaphysical. For those, Harsanyi’s sentence can as well
be turned around, to “different expressive reactions may well correspond to

® This is why, while formally our result applies to any interpretation of individual preferences,
whether as tastes, as values, or as Harsanyi’s “ethical preferences,” our favored interpretation is that
of “values,” i.e., those that translate into actual choice behavior, e.g. when voting. Sacial preferences

can only be determined by those that individuals do express.



474 M. DHILLON AND F.-F. MERTENS

identical mental states with different people™: both sentences are just as true, or
just as meaningless; what is indeed the meaning of identical or different mental
states with different people (again interpersonal comparability-——of mental
states)? He concludes (1977, p. 58} as we do: “If all individuals’ personal
preferences were identical, then we could ascribe the same utility function ¥ to
all individuals.” So presumably if two individuals’ preferences coincide, we can
assume their utilities do....? :

The use of the sure-thing principle for society has been criticized by Diamond
(1967); of. Harsanyi (1976, Ch. V| also Ch. IV) and Sen (1970, p. 145) for a
discussion. Further, if Harsanyi's arguments were not coavincing enough, the
criticism apparently relies on the idea that the individuals of a two-person
society themselves strietly prefer a procedure of society consisting of choosing at
random between (1,0} and (0,1) to a fair gamble (of nature) between two
societies, one which would give them everything and the other nothing. In a
sense, they have a positive disutility per se for being “unjustly” treated by
society, in addition to their utilities for the final outcomes: their preferences
depend on the procedures, and not just on the consequences. Our thearem
remains applicable, taking the procedures as the set of alternatives."

A widespread misunderstanding of Harsanyi's theorem (1976, Ch. II) cansists
of believing that, by multiplying each individual’s utility function by the corre-
sponding scaling factor, or by using some form of symmetry, one abtains the sum
of individual utilities as social utility. With this in mind, one is then led to the
impression that the present paper adds very little: just a rather heavy axiomati-
zation for a specific normalization. While formally correct, this interpretation
hides completely the fact that an individual’s scaling factor can depend on the
whale preference profile, cf. the example on MON p. 485 (which satisfies
complete anonymity and neutrality). The “individual utility functions” resulting

A slightly more delicate argument would be: if “intensities” were to mean something, the anly
possible precise interpretation of their intrapersonal comparison is that py, is more preferved to gy
than pr is to g if, Heads and Tails being equally likely, the combination ( pg, 41} is preferred to
(g, pr) (Harsanyi (1977, Ch, IV, fn. 3; or 1976, p. 49)). So if someone’s preferences are unchanged,
his intensities are too, except possibly for being all multiplied hy the same factor; he can only claim
to have become himself more sensitive, irrespective of the specific aliernatives under consideration,
and anly relative to the athers: if everyone doubles his sensitivity, nothing changes. This is the ¢laim
of Sen’s brahmin (1973, pp. 81-85): to deserve a bigger share of the cake, being a more efficient
pleasure machine. It is one no individual can meaningfully make; such questionable judgements, as
to the relative ntensity of different individuals’ pleasures, belong to Harsany's “moral observer,”
and have no place in our framework based purely on individual values. It is Harsanyi’s “metaphysical
curiosity” in its purest form.

¥ But if aggregating inconsistent preferences thus led sociery to prefer strictly 2 random choice
between (0,1} and (1,0) to each of those pure aliernatives, there may be another pure alternative,
say (0.6,0.6), which society strictly prefers to ecach of the two, but prefers strictly less than the
random cheoice. According to such preferences, society would select the latter, leading with certainty
tg an outcome where one will regret the foregone alternative (0.6,0.6): if individuals® preferences
were really so, a strong case could be made that, rather than exposing society to such inconsisten-
cies, individual preferences should first be corrected, and made to depend only on the consequences
(Hammond (1988)), before being used in the SWF.
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from such a multiplication become then arbitrarily complex functions of the
preferences of all other individuals, making the sum-formula basically meaning-
less. The main purpose of the present axiomatization is to obtain the required
separability: each individual’s utility function in the sum-representation is inde-
pendent of the others® preferences. While Harsanyi’s Impartial Observer Theo-
rem (1977) is based an the notion of a “moral observer” who, before being born,
cousiders himself equally likely to be born as person 1 or person 2 and, assessing
(with state-dependent utilities) his preferences between the two pairs of prospects
(A, B} and (A, B') for persons (1,2} obtains a full profile of VINM utilities with
comparable scales such that his ex-ante utility for an alternative (*act’) is the
average of the individual utilities for it." Again, the moral observer fixes in the
model the scaling of each individual’s utility function; hence this scaling is left as
a degree of freedom for the user of the theory to reflect his own ethical views
(Harsanyi (1977, Ch. 4)). So this approach brings us back to square one: How
daes ane aggregate the different individuals’ “ethical preferences,” ie., those as
a moral observer? This is then the question addressed here.

“Welfarism,” on the other hand (e.g., d’Aspremont (1985}, or Moulin (1988
Part 1)), has interpersonally comparable utility functions as primitives, i.e., the
user's assignment of individual utility functions to individual preferences, and so
his own views on the “right” interpersonal comparisons.'

Observe that our approach leaves at first sight no scape for further ethical
judgement in the use of the SWF. Indeed, the primitives are just individual
preferences rather than explicit utility functions that would be associated with
them so as to reflect the user’s moral judgement. And the axioms determine the

u Harsanyi (1992, p. 681) even claims the moral observer can compare 1 in state A with 2 in state
B, but this is superfluous.

12 Sq in each case the user is in principle faced with the impassible task of empirical psychelogy to
ascertain each individual’s utility-intensity, solely by observing his expressive reactions. This impaossi-
bility means that in fact those weights are left at the user’s discretion; he should thus assign them
using his own value-judgements. Sa: {a) one contradicts one of the very foundations of the theory
used; () since the user is not going effectively through his psychological exercise for each individual,
he uses in effect only a map from preference profiles ta a social preference, i.e. 2 SWF, (¢) the only
thearetical restriction kept on this function is the Pareto axiom, leaving thus to the user, through his
choice of weights, any arbitrary selection from the Pareto correspondence to express his “values.”
This is dictatorship by the user: no need for any theary, he could (and should as said above) just as
well dictate the end-result he wants (e.g., by assigning sufficiently high weights to preferences like his
own), irrespective of the preferences of any other individual. Finally (d), this total discretion is left to
the user through the use of a completely unwieldy number of parameters, whose relation to any
explicit sacial philosaphy is very indirect, and completely obscured by the interplay with variations in
the preference profile. The end-result is that the whole scheme is self-defeating, and so ohviously
both surrealistic and ill-founded that the only effective uses of this theory we know of refrain
completely from using such weights to express some form of ethieal judgement, and start quite
understandably by assuming, not anly that all individuals with the same preferences have the same
utilities, i.e. 2 SWF, but even (to avoid having to assign different weights to different preferences)
that all have the same preferences, “hence” the same utilities.

Qur framework allows one to take fully into account the true distribution of individual prefer-
ences, as well as an explicit philosophy of the state {cf. infra), parameterized (by the universal set 4}
completely independently of individual preferences.
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map uniquely, again removing any scope for ethical judgement in the choice of
it. It could be argued that the ethical judgement is therefore completely explicit
in our axioms. However, no room being left, in the choice of the SWEF, for any
judgement based on the circumstances of the case, we would not be comfartable
with this situation, and in this respect might even to some extent have preferred
to have axiomatized a small and relatively flexible family of SWF's—if judge-
ment, and thus flexibility, did not enter the final result another way. Indeed, the
final result is strongly influenced by the choice of the set of alternatives A, in
fact, just by the best and the worst alternative for every individual. Besides the
obvious feasibility restriction on A, the axioms themselves clearly imply that 4
is also limited by justice (including the constitution, the philosophy of the state,
the social contract).”® Individualism e.g. clearly implies there are no wrong
alternatives in .4, since they are all indifferent when individuals are indifferent
among them.

This formulates the question much more operationally. Instead of needing as
input the judgement of a mythical moral observer as to the different individuals’®
intensities of feelings, or something akin, with no empirical counterpart nor
unambiguous or objective meaning, the ethical input here is the set of alterna-
tives available to society. The ethical debate acquires thus a much more
operational meaning, and one much closer to the traditional questions of social
philosophy and ethics, which is where it belongs.

In particular, to apply RU meaningfully, one has to, and it suffices ta,
consider a set of alternatives sufficiently encompassing as to include, besides the
actual alternatives of interest, each person’s best and worst alternative within
the “universal” set A, limited only by feasibility and justice. This leads in turn to
a concept of “absolute utility:” the “correct” scaling of an individual's utility is
determined solely by his own preferences and by the philosophy of the state
adopted. This brings us almost back to classical utilitarianism, but this time,
without any “moral judgement” as primitive, and with a complete axiomatiza-
tion.**

For two alternatives, RU amouats to majority rule, so our result can be
viewed as a generalization of May (1952)!5 that, for this case, majority rule is the
only “reasonable” solution. And, when viewed as a mechanism, RU suggests
letting each voter assign to every alternative some utility in [0, 1], and to choose
the alternative with the highest sum. Except possibly with very small sets of
voters, voters will clearly find that, for their vote to have a maximal effect, they
should assign either 0 or 1 to every alternative. Hence the corresponding direct
mechanism seems to be “approval voting” (Brams and Fishburn (1978)).

B Traditional ethies’ categories are good and bad, not to maximize some “goodness” function as
m utilitarianism.

" Though our title is a clear reference to Kalai and Smoradinsky (1975), possibly Bentham
himself might recognize RU as the praper interpretation of "Everybody to count for one, nobaedy for
more than one,” his version of “ane man, ane vote.”

B It shares with May's theorem 1ts refusal of interpersonal comparisons as primitives. Would a
claim that society qught to adopt the minority’s view, just on the grounds this claims “stronger
tfeelings about it," not be rejected?
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To summarize, we consider only preferences as empirically meaningful primi-
tives, and hence axiomatize their aggregation—coming thus back to the original
formulation of social choice theory (Arrow (1963)), as a guide ta policy recom-
mendations, not as the ultimate foundations of ethics. So a priori the question of
interpersanal comparisons is not even meaningful in our framework. Following
this approach requires that the set 4 consist of all feasible and just alternatives:
the ethical question lies in the choice of A and it is this that will determine
whatever (implicit) “interpersonal comparisons™ occur. The questions of justice
being accounted for by the choice of A, the choice within A4 is to be handled by
an appropriate generalization of majority voting: the SWF.

Section 2 introduces the axioms. Section 4 contains the main theorem, and
Section 6 deals with the two exceptional cases not covered there. Section 5
shows each axiom is needed, even with the others interpreted in their strongest
form. The idea of the theorem is simple, and its heuristics are presented in
Section 3: in a Pareto representation, the individual weights are in genperal
functions of the whole profile. The monotonicity axiom implies then the re-
quired separability, that each individual’s weight depends only on his own
preferences. IRA implies their consistency, and finally anonymity yields their
equality across individuals. Such a proof can in fact be pursued with slightly
stronger forms of MON, but this would not preserve the necessity results in
Section 5. So in fact we have to prove all properties together, and need all
axioms at every step of the proof.

2. THE AXIOMS

The following axioms, as well as the definition of RU on p. 471, will be
assumed throughout from Sect. 3 onwards.

FraMEWQRK: The sets A of alternatives and N of individuals are fixed, and
#N < . The set of lotteries A consists of all purely atomic probabilities on A,
or of those with finite support. Preferences on A# follow any standard axiomati-
zation, ensuring a representation by affine functionals. This typically involves a
continuity axiom; we explicitly assume, in addition if necessary, individual
preferences to satisfy the following strengthened continuity axiom: p » g = 3¢
>0: Vr,(1 — g)p + 2r » q. Equivalently, the affine functionals are bounded,
hence (duality (/,,1.)) represented by bounded real-valued utility functions
on A.'S

InpiviDuaLisM AxioM (INDIV): If all individuals are totally indifferent, so is
society.

¥ Recall our set A consists only of those alternatives that are both feasible and just. So even if
for mathematical convenience one were to consider utility functions say of income that are
unbounded over R, on the subset A they would still clearly he bounded: feasibility bounds them
upwards, and justice dawnwards.
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NoNTRIVIALITY AXIOM {(NONT): The SWF is not constantly totally indifferent.

No-ILuwite Axiom (NOILL): [t is not true that whenever all but one individual
are totally indifferent society’s preferences are opposite to his.

ANCONYMITY AXIOM (ANON): A permutation of individuals leaves social prefer-
ences unchanged.

As ta continuity,!” we first discuss it in case A is finite.

Let . be the topology on preferences with the sets {=<|p <g¢} as open
sub-basis. For A finite, it is the strongest for which the mapping from utility
functions (viewed as points in R“) to preferences is continuous (i.e., a quotient
topology). By normalizing utility functions, the space can be viewed as a sphere
plus ane point {total indifference}, with as open sets those of the sphere, and the
whale space.

Then we would require the following (separate) continuity property: Assume
(=) ), e n is & sequence of preference profiles such that for some ny €N, =,
converges to <, , which is not complete mdifference, and < = =</ ¥n #n,.
Then <™ is a limit point of <’ (i.e., either the social preference at the limit is
total indifference, or its normalized utility representation is the limit of those
along the sequence).

We want to weaken this continuity property, and to define it very directly in
terms of preferences, without using rather arbitrary topologies on preferences
for infinite 4. So we first weaken it to a closed graph property,” then take the
strongest possible convergence for preferences: convergence along “straight
lines” (even wu,(a) is fixed except for n=n,,a =a,), where all (Hausdorff
vectar} topologies coincide:

DEFINITION 11 A sequence of preferences =’ converges speciailly to =" if
Ja, € A such that ¥r <00, <" = <® on A%} and Ip” € A%} g~ p, and if
prUg=Ary:p>g¥r>r 5%

17 At least when the set 4 of alternatives is finite and under slightly stronger forms of MON (e.g.
(cf. infra) “goodwill,” or “consistency™ and §, # 0), RU follows generically (e.g., whenever any three
individuals® utilities are independent) already without continuity. {Indeed, the proof of Lemma 1
goes through without it when knowing from the outset that the A’s are nonzero, and for part V that
#A <, and the induction that follows is trivial when considering anly such profiles.)

Still, we felt it should be kept, because {a) SWE’s like those in example CONT, p. 485, are too
close to election mechanisms to be dismtissed by a mere nongenericity argument, and (h) the axiom is
really needed when #4 = =, to ensure that utility functions that achieve their bounds have the same
weights as the others.

Bie., requiring f(x,) to converge to f{x) only when, in addition to x, — x, one also knows that
flx,) converges.

1 Replacing the last clause by “where the sequence p” is manotone in the fixed preferences an
A9%—and if, in case p” is nondecreasing, ¢ =“p’¥r & g = “ag, and dually if p* is nonincreasing”
leads to an equivalent axiom, phrased even more directly in terms of preferences.

» Any constant sequence converges specially, and any specially convergent sequence has a unique
special limit.
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CoNTINUITY AXIOM (CONT): Let (=) _ v be a sequence of preference profiles
such that for some ny €N = converges specially to =<, and for n+n,
<, = =<, . If the corresponding social preferences <" converge spectally, then =

is a F-limit point 2%

INDEPENDENCE OF REDUNDANT ALTERNATIVES AXIOM (IRA): Jf 2 profiles,
such that any lottery is unanimousty indiffereni to one in A% (A C A), coincide on
AX, their social preferences do so too.

IRA restricts IIA to the case where both before and after the change the
“irrelevant” alternatives are in essence lotteries on other alternatives: deleting
them leaves the whole bargaining situation unchanged. It is so innocuous that a
much stronger® form, taking the set of feasibility utility-vectors as primitive, is
taken for granted in the formulation itself of the bargaining problem (which
differs only in the additional datum of a “disagreement” point} without ever
having been challenged.

MoNOTONICITY AXIoM (MON): Ler < and =* denote the social preferences
for the profiles (=), .y and (¥),_y, where <t ==, Yi#n and <* s

{ i

complete indifference. For any 3 Iotteries p,q,v: ¥ ~*p = q&p ~, g >, r=[g~
¥ = p = gl—and the same holds with sivict instead of weak preferences ™

To understand MON,* consider e.g. the following “goodwill” axiom:
p~Tq&p >, q=p>q.

Applying it to the pair (p,#} immediately implies MON. The following very
weak Pareto-like (in terms of n's preferences and those of the rest of society)
axiom does so too, comparing p with 3(g +r) (since g ~ r):

pr*q&p >, g=prg—and the same with strict inequalities.

an

! L., =¥ is either total indjfference, or the special limnit of =",

2 To relate completely aur axiom system to Arrow’s, note that CONT tag is an implication of
ITA: this yields that, if p =} g, then p > “g = Jrg: p > 'g¥r > ry CONT being trivially true if =,
is total indifference, the above implies the desired cenclusion whenever the limit of = U is not
total indifference, and otherwise = equals total indifference ¥, so the conclusion follows too. In a
sense, CONT relaxes ILA to hold only approximately, and only locally (i.e., when sufficiently many
“irrelevant™ pairs also compare in the same way—cf. quotation p. 471, and point 8 p. 481).

“ Implying e.g neutrality (and being its “correet” formulation for lotteries: “the different
prospects only matter by the preference relations among them™). Even our full axiom system ailows
nan-neutrality on the “exceptional profiles.”

* One could equivatently replace the clause p ~ g by p > g, for greater (?) plausibility.

¥ The Axiom is so weak that any weaker unquantified statement involving only two lotteries p
and g would be trivial. A fortiort it cannot he axiomatized in such terms, and the above s the
simplest possible axiomatization invelving no quantifiers over lotteries. This is why we now relate it
to more familiar conditions involving only pairs of lotteries.

* Tust p~*q&p >, g =p=qg,together with p ~g&p ~, g = p ~*4, also implies MON.
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Also, the following “consistency” axiom?’ daes:
p=rq&p ~, ¢ = p =qg—and the same with strict inequalities.

So any of the above mentioned requirements would already imply the axiom,*
and the requirement used can vary both with the profile and with the triplet
(p.q.7).

Notation

For any profile & the feasible set R, = ({1, (p)), - y|p € A% and d=dim R_.
Henceforth utility functions are viewecl as being in the quotient of the afﬁne
functions on A“ by the constant functions.?

PROPGSITION 1: Let S, S* and u, represent =<, <* and =, . Conditions 1-4
are each equivalent to MON:*°
1. da, p, 10 @S +pu, + 8% =0, (ay, pr,7a) = 03,0,0), min(ap, ur,7a)
=0;
2. either § = J_rS"‘ oru,=alS+15% maa,7}=0;
3. either §* = cor S=pu, + 8%, max(p, 1) = 0, (e, 1) = (0,0)
4. MON1: d, 5,5*<3
MON2: $¥'=0=d, (<2
MON3: S =0=d, 5. <2,
MON4. d, =4, ,Is* =ds=d, s=2=3p,q prq&p>rq&p>
g with one ineguéiig; strict.

The proof of this proposition is in Appendix A.

Discussion of the Axiom

The Axiom follows from three different trends of thought:

(a) A first is the idea of “monotonicity,” or “positive association:"*' if an
individual changes his preferences between p and g, while the rest of the profile
remains unchanged, then society’s preferences between p and ¢ do not change
in the opposite direction. When further the individual is totally indifferent

131

 Just the fise part, together with the very weak p~%g&p ~g = p~, ¢, also implies MON.
B and every (=, %%, <, } satisfying MON satifies the conditions of either fn. 26 or fn. 27.
e computanons are done modulo additive constants.

3 These are analytic conditions, to facilitate urderstanding and working with the axiom. Condi-
tion 1 is the mast symmetric, among the mare expiicit conditions, 2 is the simplest and preserves the
symmetry between 5 and 5%, 3 goes in the direction of natural causality, from §* and u, to §, and 4
gives the completely explicit decomposition of the axiom into four mutually disjoint geometric
conﬁgurmons of (§,8%, u,) to be excluded.

'In Dhillon and Mertens (1997) the correct interpretation of “Positive Association” in a
framewaork of preferences over lotteries is discussed, and it is shown that only the present
formulation resists contradiction with Pareto,
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before the change, this is equivalent to our above Pareto-like axiom. But this is

merely a nonnegative association, being quite compatible with a constant SWF,

completely unaffected by any changes in the profile. The minimal expression of

a truly positive association is our goodwill axiom. This together with consistency

yields (almost) the full strong form of monotonicity (translating as S = g, + 7.5*
Cwith > 0, 7> Q)

(B) One could also require that society’s preferences between p and ¢ be
unaffected if the individual is indifferent between them hefore and after the
change. That would be a very particular case of Arrow’s IIA. This postulates
indeed that social preferences between p and g are determined solely by the
profile of individual preferences between them. Its hasic difficulty is that,
without the preferences themselves between p and g changing, their intensity
might very well have changed, this being reflected in the SWF. E.g., even in
Arrow’s framework, in one case p might be at the top of someone’s list and ¢ at
the bottom, while in the other case both would be at the bottom, in the same
order. In our framework of preferences aver lotteries, such differences hecome
even more meaningful, identifying the top of the list with all “uncertain
prospects” preferred to a lottery where he is a dictator with probability 1 — ¢
and otherwise is sent for a life-term of forced labor in Siberia, and the bottom
with those less preferred than the reverse lottery.

This difficulty disappears in only one very particular case where the two
profiles (=,), o and (<?%),_, that coincide on p and g have the further
property that, for every individual n, either =, = <%, or both p~, g and
p ~% q. More precisely, in the framework of the MON axiom, this means that

[p~.q&p~tql=lp>qg=p>7ql

Indeed, for player », intensities are zero anyway, and the others did not change.
So this axiom is the only—extremely particular—case of IIA that is not
vulnerable to this criticism based on intensities. Observe that its particular case
where the individual is totally indifferent before the change is our consistency
axiom. Since this translates (Farkas) into § = pu, + 78% with 7> 0, we also get,
for some other o, $' = p'u), + 7'$* with 7' > 0: eliminating §* between both
equations yields a relation implying the general requirement. So the consistency
axiom is the exact expression of this “only nonvulnerable aspect of I[IA.”

Recall that, as observed hefore, MON already follows from either goodwill, or
consistency, or the Pareto-like axiom—just on their own.

(y) The “extended Pareto” axiom requires that, when partitioning society
into subgroups, the social preferences satisfy Pareto as a function of those of the
subgroups: it is really the logical expression of what is meant by aggregating
preferences.* On the face of it, it relates the SWE’s of different societies. But
when dealing with a single society and a single SWF, one can identify the social
preferences of a subgroup with those the full society would have if all nonmem-
bers of the subgroup were totally indifferent. With this interpretation, it be-

* Yielding thus I Kants ideal of a categorical imperative, despite Harsanyi (1976, Ch. T10),
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comes a (multi-profile) axiom for a single-society and a single SWE.* Particular-
ized to the case where ane of the subgroups is a single individual, it becomes
equivalent to the monotonicity axiom, in its full strong form above if one takes
strict Pareto, and if one just assumes weak Pareto it still implies our above
Pareto-like axiom.

[t is to allow also for this “extended Pareto” interpretation of the axiom that
we had to restrict all comparisons between two different preferences of an’
individual to anly those cases where one of the two equals total indifference—all
other interpretations were petfectly compatible with general comparisons. “Ex-
tended Pareto” is further exploited in a similar context in Dhillon {1998).

3. BASIC IDEAS UNDERLYING THE PROQF

As a lighthouse to the reader when drowning in the proof, we present here a
heuristic version in a very simplified setting. It is convenient to start from
Pareto. However this is not one of our axioms, so we first describe “why” it
follows from the others (monotonicity). We will take for this purpose the
following very strong definition of monotonicity (cf. Proposition 1): for any
profile i, denote by S; a utility representation of the corresponding social
utility, and by i_, the profile where #’s utility has been set to zero. Then 8 is
of the form Awu, + p.S; , with A > G, p > 0. By INDIV, S5 =0, hence, induction
on the number of mdmduals with nonzero utilities yields S;= X A,u, with
A, >0 V¥n, ie, strict Pareto.

Ta explain how monotonicity implies the required form of separability, we will
assume a framework that makes the meaning of this separability obvious: we
consider only profiles & for which the image in utility space of the set of lotteries
is full-dimensional. Then the vector (A,), ¢ v is uniquely defined {up to positive
multiples}, so is a well-defined function of the profile: explicitly, S.=
T A, i, Ju,. The separability property we now want to obtain is that A,
depends only on u,, not on i_,,.

Observe that monotonicity implies that ¥, A (u,,i_,)u, = S;= Au, + uS;
= Ay + wE, A u,, i, )u,. By the uniqueness of the coefﬁaents,

"Lz(uzag—z} . Az(uzaﬂy—u,zn)

’la(uaaﬂ’—z} B )la(uaaﬂ‘_a,n]

is independent of u,, hence of u, for all n & {2,3}:
Munid;)  A(uu;,0,..0)
,lj(uj,ﬂ'_j] Auy, (uy,0,..0)

iy

*RU also satifies the extended monotonicity property, where the social preferences of the
partition elements play the roie of the individual preferences in the strong form of MON. But this
extended monatonicity axiom (with INDIV) is equivalent ta the maore transparent exiended Pareto
axion: since it suffices for each one to require it for a partition of society into twa subgroups, the
equivalence reduces to that of Pareto and the full strong form of MON when #N = 2.
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It should thus be clear that A, can only depend on u,. Formally, let

au;, C(uy,0,..0)
)ll(up(”-g:o:‘-‘)) '

Flu;) =
for some fixed u; # 0. Dividing the numerator and denominator of
A, ) /A u, @) by Au, - ) we get that:

"a‘(ura E‘)—i) _ FJ(HI)
M{up ) Fw)

i.e., Afu,iu_;)/F{u;} is independent of i. Call it G; then Af(u, il )=
F{u,)G{¥). Hence 5 is represented by L, F (1, Ju,,.

Thus, monotoenicity implies first Pareto, and then the required separability of
the coeificients.

Let us now laok at the implications of IRA {plus Pareto}. Henceforth we will
use O—T-normalized versions of individual utilities., Fix the range R {in utility
space) of some profile—and recall it is assumed full-dimensional. Assume it has
less extreme points than there are alternatives. So for any profile Z with this
range, there exists some alternative a, such that iZ, is in the convex hull of the
(il,)s + a,- SO aq is unanimously indifferent to some lottery on the other alterna-
tives. When i, varies throughout R this remains true, and individual prefer-
ences on A% remain constant. By IRA, the resulting social preferences on
Al are therefore independent of this lottery. Since the image in utility space
of At equals the full-dimensional set R, those social preferences can by
Pareto be identified with a linear functional {A,-) on R, which is independent
of i, . Further, by Pareto, the social preferences on A4 must be represented by
the same linear functional, which is unique by the full-dimensionality of R. So
the vector (A, (&)}, - » is independent of the choice of i, in R. It is clear that,
by a sequence of such changes, we can transform the profile i to any other
profile 7 with the same range R. Therefore (A, (&)}, o 5 depends only {up to
proportionality) on the range R of i

Now we look at what this implies in conjunction with the separability we got
from monotonicity. We will use the previous conclusion for profiles where
u, =0¥n & {1,2} (so the “full-dimensionality” is to be interpreted in the utility
space of 1 and 2).

Fix a utility u,, and alternatives a, and a, with u,(as) = 0, u,(a;) = 1. Fix two
other alternatives @, and a, and assume, e.g., ¢ <u,(a,) < 1. Let u,(a) =ufa)
for a #a,, and say u,(a,) >ula,). So the range R of (u,u,) is a triangle,
hence has less extreme points than #4. Since ¢ <ua,) <1, we can move
u(a,) slightly downwards without changing R: A{u; — £6, )/ Mu,) is indepen-
dent of &, hence so is A(u; — &3, ). Applying this argument for appropriate
choices of u,, 44, and of w,(a,) we conclude that u,(a,) can be perturbed in
each direction without affecting A,{u;). So it can be perturbed to any other
value in 10, 1[, and thus by continuity, to any other value, without affecting .. By
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finitely many such changes, we can transform u, to any other utility: A, is
constant—and so is any other A,,.
Anonymity yields then directly that the A’s are independent of n, hence RU.

4. THE THEQREM

THEOREM 1: RU satisfies the axioms. If N> 3 and A = 5, any SWF satisfving
the axioms coincides with RU wheneuver some two individuals do not have equal or
opposite preferences.

Proor: The first sentence is obvious. For the reverse, let henceforth individ-
ual utilities be 0-1-normalized or identically zero. We will need the following
definition:

DerINITION 2: For any profile il, Ny={nlu, =0}, N, =CN,, v;=#N_, U=
L, u,, and §; (S in short) stands for the corresponding social preferences. if is
exceptional if #A4 =4, d;=2 <, U has a single maximum and a single
minimum, say a; and a,, and either u, # 0= 0<ua;) <1 for i =1,2, or all
but one of the nonindifferent individuals share a single preference or its

opposite, under which neither 4, nor a, is a most or least preferred alternative.

The result will now follow from the following propasition, of which the proof
is given in Appendix B:

PrROPOSITION 20 RU holds for all profiles with d;> 2. More specifically, if
#N =3 and #4 = 4

(a) either d;+ 1 &ii nonexceptional or vy < #N implies S; = U;

(B) Sp=2, u,;

(y) i nonexceptional = S, € {0, U};

(8) i exceptional = S, & {0, —U}.

Indeed there are no exceptional profiles for #A > 4, and ouwr condition means
de>1or O < v < #N. Q.ED.

5. NECESSITY OF THE AXIOMS

Below we give for each axiom one or more examples showing it to be
necessary, even when the other axioms are taken in their strongest form (and, if
relevant, even when assuming in addition strict Pareto).

INDIV: § =V, or ¥+ U, where I, is “imposed” in Arrow’s words, an ethical
norm.
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NONT: §=0.

NOILL: §= —U if v <k, = U otherwise.

ANON: § =X, 4,1, with A, >0

CONT: § =L, a0 with «,, >ea, a;=0 and n(v) = #{nle, = v}. For
«, =#n? the SWF is in addition invariant under replication. For p — o we get §
determined by “plurality voting.”

IRA: §=L,u,/q(u,), with g(u,) = \/Eﬂw(a)[uﬂ(a) - 1, I (if nonzero), i,
=Y wla)u,(a), and wia}> 0,1 wla)=1. With w constant neutrality is also
satisfied, but this needs finiteness of A, and is sensitive to duplications of
alternatives. Note the asymmetric treatment of pure and random prospects, and
the uncountable pathology for 4 when i, is only w-a.e. constant.

MON: § =75, A,u, with A the gradient, at the maximizer in the closure of R -
of R, of the Nash product for the nonindifferent players, with [inf u,(a)l, -
as status quo.

This example is typical of an otherwise well-hehaved SWF that fails MON;
but it fails MON1, MON2, and MON3. Cf. Appendix C for examples showing
that each of MONI-MON4 is necessary.

0. THE EXCEPTIONS

For the “exceptional profiles” in dimension 2, they form such a small subset,
and only when there are exactly 4 alternatives, that strengthening the axiom
system just to cover it is not worthwhile. Indeed it disappears just by invoking
either a dummy axiom (adding a totally indifferent individual does not affect
social preferences), or a “dummy-alternative” axiom (duplicating an alternative
does not affect social preferences). But this would take us out of the framework
of fixed sets of individuals and of alternatives; if one really wants to get rid of it
within the present framework, only CONT can be usefully strengthened: define
<! to converge separately to a nonconstant < if there exist utility representa-
tions and &y, €A such that all representations coincide on Clag}, and they
converge at ag,. Strengthen then CONT by just requiring social preferences to
converge separately. This suffices.

3 We feel confident that the rest of the axiom system is reduced to being roughly both minimal
and optimal. But for ANON no such effort was made. As said at the end of the intraduction, we
expect the resuit to remain true without ANON, when individual weights multiply the normalized
utilities. A first advantage would be that the full axiom system becomes then strictly a weakening of
‘Arrow’s. Another advantage is that it no longer depends on our argument in the introduction that
only individual preferences should oceur as primitives; the weights serve then to represent the
individuais’ relative efficiencies as pleasure machines, as determined, e.g., from their expressive
reactions. But as a side-benefit RU would already follow with a weaker, single-profile version of
ANON: that a symmetric profile has a symmetric sofution—formally, e.g., let f: 4 —.A4 be its
own inverse, and assume f permutes w, with w,, white leaving the rest of & unchanged. Then
a ~fla) Ya.



486 M. DHILLGN AND 1.-F, MERTENS

For the profiles of dimension 1, clearly invoking a dummy axiom would
solve this case too. Without that, more continuity wouldn’t help here; but the
extremely mild additional axiom, “if when # is totally indifferent society is not
so; then if # switches exactly to those preferences of society the latter does not
become ftotally indifferent,” excludes already all those exceptions save for the
case of an odd number of individuals, where nobady abstains, and the size of the
majority is exactly 1. To get rid of this last case as well would need a strong-
axiom: that if society is totally indifferent when individual 1 is, then when 1 is no
longer s0, saciety also is not.?” This is a strong axiom in the sense that it is the
only one in our system that requires a non-null effect of a single individual’s
preferences an society’s.’® And indeed such votes, when they occur, do tend to
raise eyehrows,
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APPENDIX A: PraoF oF ProOPOSITION 1

Weprove ]l =1=3=MOIN=4=1.

1=2: Either w=0,50 o= 0,720, and a§ +15* =0 (ie. §= £ 5%}, or (normalizing} = -1;
then we get u, = &8 + 75% with max(a, 7)) = 0.

2=3:0f §= +£85* set =20, 7= £1 Otherwise u, = oS+ 75%, max(a, 7} = 0—and (e, 7} =
(0,0) because u, =0 implies by definition § =5*. Then if a=0 we have r20, 50 §* = x4, and
otherwise § =(1 fadu, — {v/e)8*: since (1 /) # 0 we only need that max(l /e, —7/a) = (), which
follows from max(e, v} = Q.

3= MON: If $* = +u , MON holds, the premises p>, r, p~*r being incompatible. Else
§ = e, + 8%, (e, 7Y # (0,0), max( g, 7) = 0. Then, in case of strict preferences, ¢ > *q, g =, r, and
r~g implies x and 7= have the same sign. This can neither be zera because (g, 7} #((,0), nor
negative because max( up,7)2 0. Thus w> 0 So tivially p~*r & p», r=p>=r. And in case
g~*r,g=%rand g~r yields =0, hence 70, le, §= 5" sothat p~*g=>p~4.

¥ We have a hit more here from our proofs: as i Part I, § = U or § = {0 depending only on the
range of {J.

¥ Ohserve these are essentially the profiles covered by May’s theorem, since there exist two
alternatives {(certainly when #4 is finite) such that any other alternative is unanimously equivalent
to aone of them.

* With this strengthening, our monotonicity axiom becomes similar (in a 2 alternative world) to
May's “positive respansiveness,” ar in general, ta a weak form of Positive Assaciation. However, as
seen before, we do not assume neutrality,

% Qubstantial effort was put into the axiom system ta achieve this: except for NONT, which is
completely minirmal, the rest of the axiom system is fully campatible even with a constant SWE. The
importance of this aspect should be obvious in a warld where majority rules are so frequent—under
which typically a single ndividual oaut of millions ¢an change his preferences arbitrarily without
affecting social preferences.
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MON = 4. MON1: If there were no linear relation, € ={{{u,, p,{S* p3, {5, pi)pe a4}
would be a full-dimensional convex set in B> S it contains a small cube, within which we can find
three points, say x,, x , and x,., with xp —1 »xl, x} =yl >x,r, x; <x3 =), contradicting MON.

MON2: Assume thc (convex) range ' = {((u”, a7, (S pillpe A%} is full-dimensional, and
§% =0. €' contains then 3 points x and x,, with x| =x(]Jl >x), xﬁ <x7=x}, contradicting
MON.

MON3: If ¢ = {{x,,, p,{S*. p))l p € 4} is full-dimensional, it contains 3 paints with x) = x|
>x}, xi<xl=x} 50 §#0 by MON since p>¢ ar g »r.

MON4: If MON4 is false, the dimensian coordinates yield a unique linear relation between i, S,
and §*, with all coefficients nonzero—and of the same sign since if one of the utility functions was,
after scaling, the sum of the two others, there would be a pair (p, g} with p = g for each aof the latter
(dimensionality), hence also for their sum. So § = pur, +78% with 1 <0,7<0. Since 4, =2,
take p~, g+, r and p~¥r=*g By MON, we need r » 4. So, either # =4 >p (and then for an
apprapriate convex cambination 7 of ¥ and p we have F~g, and hence a contradiction with #
instead of #) or we have g > r > p (then for a convex combination § of ¢ and p we have r ~§, and
hence a cantradiction with § instead of g).

4=1: By MONI1, e, g, 7)#(0,0,0} with 285 + pu, + 78* = (. If exactly one of the three
coefficients is nonzera, then 1 is satisfied: indeed, the carresponding utility would be identically zera,
so, if u, =0, we would have § =5* by definition, hence another solution (1, I, — 1} satisfying 1. If
§* =1, we would have by MON2 that either o, = (), s0 we are in the previous case, or § = An,
hence anather solution (1, — &, — 1} satisfying 1; similarly if § =0, using MON3 this time.

Further, 1 is trivially satisfied if exactly twa of the coefficients are nanzero.

So assume all three coefficients are nonzero, far any such relation, and all of the same sign, lest 1
still holds. Hence the relation, a8 + pu, + 78* =0 with a > 0, p >0, 7> (, is unique; else a linear
combination would have a zero coefficient. Thus o, ¢ ¢+ =2 Since any variable can be expressed
linearly in terms of the other two, any pair of variables has dimensian two, lest o, ¢ o= = L.

Sa the pair { p, g) asserted in MON4 contradicts that e >0, &> 0, 7>,

.E} q?

i

n

APPENDIX B: Praoar oF PROPOSITION 2

Natation

@* is the set of nonconstant preferences. 5,5, ., 8 are used for S~ when everyone is totally

LR Y Ee R A T
indifferent but for one individual having utility &, or two having « and », etc. By ANON, names of
individuals don't matter, hence justifying the notation. For 4 €A, w1 CA' — 4%, and u normalized

on A let u"=wpon A else v =Y, pwu,.

LeEmma 1t §, | =u + o except possibly when v = tu#0.

The praof consists of five parts.

Part 1

(2) IMRY={—1,0,1} for |0,1{C R C[0,1], such that §, = MR, Ju Vu.
(8} IfR CR, then MRYE{0, MR'Y}. So, either MRY= 0 VR, or (R} =0 YR
(y) A ls not identically zero: the two alternatives above are mutually exclusive.

ProaF: INDIV takes care of u = (. Hence §,, = 4,1 by MON2, where A, has values in {—1,0,1}.
Far v an A’ €A, §,« and 5~ coincide by IRA an 47, sa A, «= A« if the 1anges of ¥ and & are
already obtained on {ale, = &}, then A, = A

i
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Thus A, depends only on the range of w{(0,1], 10,1] [0,1[ or J0,1[} If [0,1], then by the above
A, = Az for some indicator function i of a singleton, and any two such & have the same A as their
sum w.

If it is [0,1[, there exists a; with u{a,) strictly increasing ta 1, and ufay) = 0. By the above make
ula) = (), elsewhere preserving A. Similarly for v with a sequence &, Make further g; and &, digjoint
{if they have a common subsequence, take its even terms for a; and the athers for &, else delete the
commaon terms). Again u and o have the same i as their sum w. The case of ]0,1] is dual.

For 10,1[, use four mutually disjoint sequences 4;, g,, b, and b;, such that u(a;} and u(h,) increase -
to 1, u(g;) and o(f;} decrease to O, ula)=uo{a} =1/2 elsewhere; set w=u at a; and g;, =v
elsewhere.

Hence o, CONT implies now J, since some « with range R can be specially approximated by i&'s
with range R, if any. As to y: otherwise §, =0 Vu, hence inductively §, ., =0 Va (thus
contradicting NONT). Indeed, assume this; thcn Stereviye, = Mgy By MON2, sa = it 5 thus
=0ifd, ., . > 1 Thecase d;=1 follows now by CONT, hence the induction. Q.ED.

S

ParT IT: [mplications of MON: the product relation.

Step A

(e} Ifd, =2, there exist A, ,, b, , (unigue) such that §,, .= A, 4+ A, b
CB) Uy rea) = 0,00 = GERL), AR ) = (0,00, MR, =0 = hy o =0 ¥
(v) If MR)=0 VR, then max(h, ., A, ,)=0

Proor: By Proposition 1.3, and part [, §, |\ = pue + A R, v {since 23 =2}, with (g, 7) % (0,0),
and max( ., 7} = 0. Hence . In particular 4, , = 7A(R, ), thus the second partof 8. If A, ,= A,
=0, then (g, 7) = (0,0) implies A(R ) = 0. Duality ;\(R!,) 0, hence A, v is immediate. Q E.D.

Step B
Ay ah ph w = AL LA

Wt e o e L !

. Wheneper & =3.

RN

Proor: Consider (#N = 3} the profile (e, b, w): by A and Proposition 1.3 we obtain

(1] Sl.r,l!‘h =|“Llu+l‘rl(/\u ul’l-'—"JL W)
(2) = jrqtl + 75 Ayt + )Lw L W)
&) = + 7AWl A, D) = A+ dan A,
Since d,, ,, . =3 the A; are unique. If two of them, say A, and A4, were zero, (g, 7} # (0,0) would
1mply in (2) and (3} A, = A, =0, henee the equality. Else 7, # 0V, 50 &, . = A, /7. A, .= A4/ 7y,
Ao w =X /Ty A = N TACTI D P U WA VS0 thus hath members equal Aghy Ay /77375,
0.E.D.
Step C
)Lu,t')\{‘,w"\n',u = )Lu,lu ’\u'\!"\u,u Wheﬂﬁ\’el’ dH,[' = de!, w dn',u = 2‘

Proar: Assume d, ,, . =2, using B. Then (#4 = 4} there exists x with o, ,,, , =3 (s0 &

TR

4 y=d, , =73 If the equality daes nat hold, we get by B:
(4) LYY WD T S
{5) LYY W T I T VO
(&) LY B S R S S
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By multiplying term-wise, and subtracting,

[AH,I'A{"IV ;"Iﬂ,ﬁ - AJ'\H ;"ll’,J'AH,II'](AH‘.\'AH',.\'All".\'A.l'\H A.\'\!')\.\'IK') = G'
Since by assumption the first bracket is not zevo, we canclude that, whenever o, .. =3 one has
(AH }Al x || )()LL HA'L (A} l()=0'
Since the equality doesn't hald, A.8 yields (R, )20, MR ) =0, MR }20 by AB, 4, ,=0=4,,
<0 far all above paivs (s,¢). Then eg. A, =0 implies A lra'&[] s0 A, A, =0 by (4) and
Ay b =0 by (6): Either A, = “ w =0, thus equality; ov A, . =2A, =050 A, =0 and (3}

O vields equality we get A
=0; ar ﬁnally agam )L

imply &, , A, , =0, and since A Auc=0ord, =4

IO

Ag =004, Oimplies

o ,,, 0

0, where we conclude similarly that A,, |,

\U X

Ay v =4 =4, =0 The same clearly applLes A, =0ora, = 0 and sLleally A =0 vields
"JL.r.J.' = )L.\',u' = 0

Sod, .. ,=3implieseither A, =A, =i, ,=0ori, =i =4 ,.=0

Let w® converge specially to w, with &, ., .. =3 (posstble by #A = 4). [f (along a subsequence)
Awe=huwe=0, then X ., #0, 50 5, .= /\” welt + A wé= +w® and along a subsequence
with constant sign S, |, € {w,0, —w} by CONT Ay = [] Similarly A, =0, thus the claun. Else
Mpwe® 0= he,, 808, = *u, hence as above A, , =0, similarly; again equality follows. Q.E.D.
Step D

There exist A, >0 and A, _, such that.

(o) u=0n#0,w=0= Ao g A = Ao Ao o Ay

(BY MR }=0=4,,=0Yuzuy

(y) (Jt,,e,»’t[, W =00,0) = (MR, MR N =1(0,0)

(BY if A, A, =0Vv = tuand A(R V%0, then A, _, =1

Proor: If mwo of the utilities u, v, and w are equal, then « holds. And since A, , >0 is
compatible with 8 to &, we can henceforth assume 1 # ¢, 00 # w, W = 1. Since all relations hold, by A

and C, if A, _, is not involved, we can for instance assume w = —u: we need that Vo & {u, —u}
(7) )\u‘ —u’\—rf\t!’\p,lf = A—u,n"\n,u"\l'\ =t
and that 3 and v hold with o = —u, and we need §. If MR, J=MR_)=0,set A, _,=4_, , =0

it MR, =0+ MR_ }set &, _,=0,4_,,=1 Then all conditions are satisfied, because MR, =
O0=4,,=0Yu# +u Thus the case MR, =0, {R_,)# 0 remains.

—#

& specifies first &, _, = Ay =1 if Yes tuh_, A, =4, .4 _, =10 which is clearly com-
pauble with the other requirements. Otherwise, we have eg. A, A, _, =0 Yo+ 2o, Jo* +u
Ao, Ay, # 0. & specifies then A_, ,=1—and (7) imposes A, _, = 0—which again satisfies all

requirements.
In the remaining case Jo+ £ A, A, _, #0and Jo+ £a: A_, A, , #0 We need then a
nonzero salution (A, _,, A_, ) to the system (7}, ie. that its rank be = 1. Sq for v and w2 £,

v # w, the correspanding determinant must be zero:

?

(8) }LM.I')‘U, —J:A—u.w Aw,u = Aae,m}"m__ —u"’"—u,x“"‘l'\u‘

If W :,& - 'U‘ A'“a‘u AH.D At'l " = At'l " AH‘II' )\ll',t' and A‘f =i A—H n* Alll‘!' = A‘II‘, - A—H‘f' )\l"ll', by C' Hc[1ce
[’\H,J\)L!!,—H‘J\—u,lv’\w,u}(’\u,lv’\u',!')=[)Lu n "\w —H}L—Hl I u](}"t m Il ) mu{uplylng term- Wi.Se If (8)
did not hold, we must have A, .4, . =0. Assume by symmetry that e =0 IEalsa A, =10, we
obtain AR, =MR, =10 by ¥, hence Ay =4, =0 by 8, and thus (8). Otherwise the two
equations yield A, _ A_, ,=0=24, 4, and since thase factor the left and right-hand members,

we get again (8).
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Thus to take care of the case w= —v, remains, ie to show that 4, =2 4
Aeph Syl Cp A=A CpAL C Al WAy, Suppose the inequality holds. For w with w # tu,
ws £, we have by C
9) Ao dwhy o= Ay A,

(10} SN S SRS S TP S
(11} b SR NS W NP N N
(12} S YR SR VLD IISINT SIS

Multiplying term-wise we get

["\ Ay A ""—!',Jr_)Lu.—l')\—r:,—rr"\—n !AJ rr]("\n-,u‘ku‘lv]()" A )

[ Sl Ul () ==
X()\W,l'li',lll)(/\“'\—i')\_t.',ll') = 0

By the inequality, one of the Tast four brackets must be zero, e.g. A, 4, ,, = 0.
Observe that botil cannot be zero, otherwise () AR ,) = 0 would (3) mely our equality. Assume

L]

first A, ,=0,50by Ihand (12) A, A, =4, _ A_, =0 8ince &4, =4, _, =0implies equality,
either: &, ,=A_..,. =0, hence A, _.#0. so by (11} A_, . )L_“ =0, and A_, =0 by the
inequality; or: A, . = u _a=0 hence Ay #0,soby (10} A_, A, _,=0,and A_, =0 by the
inequality; or: A, =X_, . =0, thus as abave by (10} and (11) A_, L&, _, =A_, ,A_. _,=0s0
again x_, , =0,

Thus, A, =0 implies that either &, ,=A_, ,=Qar i, =4 _ =0ori, =Ai_,, =0—and
alsa A_, . =0, hence also the duals of those three alternatives obiained by changmg the sign of .
So &, . =A_, . =0 follows tog; otherwise if e.g. 4, , * 0 we should have both A, ,=A_, . =0and
Ay w=4A_,,, =0, hence again equality. So A, , =0=4_, . =X, . =_,,=0 S[mllarly Ay, =1
= A =i, , =k =10.

w, — 4 W, w, =4

In conclusion if our equality does not hold, then for all w & (i, —t, v, —v}: cither {a) A
Ay =A_, ,=0ar {h) A=A Cn = AL =4
in the other case nonzero (prewous argument).

Let then 1® converge specially ta u, so u® € (&, —w, 0, —v), and let w = 1=; along an appropriate
subsequence, we can assume that cither {a) holds for all 2, or {b). Assume first (a). Then
Sys0 = £, so (along an appropriate subsequence}, §, -, also converges specially, and by CONT
we obtain that §, . & (&, —u,0} so 4, , = 0. Similarly, )L_!,,, =1, and thus our equality holds. [n
case (b): §,¢ .= £v, hence §, . {v, —v,0}, 50 4, ,= 0. Similarly, A =), hence again equality.

0.E.D.

wm

woo = A _p =0 with each time afl A's mentioned

14 ., =4

PART III: There arg maps £ from p* onto (X, 2 ) totally ordered, Fip* >R, ¢:p% x p* = (- 1,1}
such that:

(e} Efd“,t, =12, then S"“, = fy gl + oy uthy with Hy o = qrr,J-F;r]]'g,,z £

(ﬂ) S0 = Son

(?} gﬂ { g"li = 3 L? % iu : glf E gl.‘ g g—!t;

() if MR)=10 for some R, then X has a srnallest element, denoted x. Qtherwise there s no x in X.
With this noration, F,=0e MR )=0={, =x

ProoF: Define the binary relation & on g¥ by wfo iff (X, <0 ar 4, = 0). By definition,
cither u#u or vu. In particular wsfu. Also w2y and uBw imply ufw. since 1.y, it suffices ta
prove this when u, v, and w are different. Then, if false, we would have &, =0 and A, #0,
hence by D{a), A, wA,, =0 Saif A, =0, ufv yields A, , =0, hence MR_}=0 by D(y), thus

A =0by D(A). So anyway A, =0 Then v#w yields A, , =0 Thus MR }=0by D(y), and
hence A, ,=0by D{8),a contradiction.

Thus there is an induced equivalence relation u ~y[=uFv and v.Fu], and F induces a total
arder = on the quotient X. £ denates the quatient mapping. Sa

(13) Loz&, Wt (A, #001ma,,=0)
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Consider now some w with AR ,) =0, if any. Then, by D{8) and (13}, £, = £, for all o £, 18 the
smallest element x of X Conversely if £,=x for some v, then & ~ u, meaning that either A, , =,
Ayo#0ar d, =4, =0 The first case is impassible by D{ 8} since A(R,}=10, s0 by D(y} we

conclude that alsa A(R,} = 0: thus & is established, except far the equivalence with F, = 0. Fram (1)
we obram:

(14) if£,>¢, then A,,=0and}, =0,
(15) ifg,=x then A, , =0Vusu,
(14) it & =¢,#x then A, =0,

“a

For each x #x, fix now some 1 € £~ '(x), and let F, =4, , /4, , Yu€ £ (x} For u and v
bath in £7*(x), define §, , = A, ./F,. By (16), F is well-defined and nonzero, hence & is so too.
Further D(«) vields, using u, for w, that &, , = &, ,. By this symmetry of &, we can divide §, , by
18 uh §0 S, = iy ptt + phy 0 with g, . =Fs, . and s, . =sign(8, ) ie, o and B hold when
Lo=4&, *Fx

For u,pe & Myl let F,=0and g,,=1: @ and 8 hold now whenever £, = £, and & always
holds. ¢ is defined on W, [£7 ' (x)* and F everywhere. If &, < £, then by (14), « is still
true—whatever s, , is. If £, > £, then A, ,# (by (14), and F, # O by §, 50 @ becomes always valid
with g, , = sign(A, ,/F,} Ta preserve 8, we need 5., to be the same—and ¢ is now defined on
o x ¢, satisfying B everywhere.

Sa a, B, and & are proved. Assume ¥ false; hence (14) Yo+ +u, A_, A, , = 0. Also MR )=
otherwise £, = £, =x by & for all 1 with the same range. And A, _, =0 by (14)—thus contradicting
D(&}) 0.E.D.

PaRT IV:: If uu® — u specially, one of the following holds for a subseguence,

() £, is strictly increasing, £, =sup_ &, and £, = £, = v = +u;

(BY £, 15 sericdly decreasing, £, =€, £,2, and £, = £, #x =0 = 41

(y) £,e i5 strictly decreasing, inf  £,c=£_, > &, andy < £, = £, =u=—1,

(§) £,c=¢&, Ve, and E,. > E;

(e} & # &e=xgmx Ve, I, £l=18, 0=, &, =&, = v=2u, and F e =0 if &, <1, else
— UJ‘,

(ZY Ve fo=xy> &, =x, and £7'(8,, x) (-}, and F,. = 0.

CoRQLLARY: If Ju e tw £, = &, #x and u® — u specially, then £, = £, eventuolly and F -~ F.

Claim

A sequence in a totally ordered set has a monatone subsequence,

ProoF oF THE CrLalMm: Extract a subsequence such that, either x;=x, ¥i>1 {so we have
finished), or x, >x(, or x; <x, Repeat with x; and the set of i > 2, ete: finally ¥i, either x; > x,
Yi»ior x;<x; ¥i>i Saane of the alternatives holds infinitely often. Take the corresponding
subsequence. Q.ED.

Proor: For o # hu we have S = +u® if £.> ¢, and §,., = o if £, < £. For a subse-
quence as in the claim, ane of bath cases halds far all small £, or £,. = £, Ve, Extracting further
subsequences to make signs constant, we conclude in the first case from CONT that 5, . = Au, 50
either £, < £, ar £, =x, and in the secand that §, , = Au, s0 either £, < £, or &, =x—and then 100
£, <&, sinee £, £

Naw, if £,- is strictly increasing it car be taken = x; with 0 =u” we get then £, > £,., ¥e. And if
£, = £,z &, Ye, similarly v= +u, so by I{y) £.=£,, thus «.

e 1
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[f &, is strictly decreasing, v = u*® vields &, < £, Ve And if £, < £, < &, ¥, either £,=x or
= tu Sa g is clear if £, =inf&,., and otherwise inf, £,- = Z_, > £,; hence £, =x by III{y), and
thus .

Take finally &,-=xq Ve. For £, #x, (otherwise §), if£, =x, then v# —u, £, <xy= &, =x (ie,
&), and atherwise, since &, = £, »xq or &, = &, <xy imply v = o, HI{y} yields Iy, £ =18, x[=&
and £.=£, =n = fu Further x, #x (s0 ¢), otherwise for ¢ # tu and £, =x we have §,c , =0 Ve
(IT1(a}); hence by CONT S, . =0, 50 £, =x by [II(a} and [TII(&). The convergence properties of F
only remain to prove.

If false, take a subsequence where F . stays away fram its stated limit. Also x; #x, lest the result
be abvious (case &). Make (Claim) F, . monotane and with constant sign. Let v =u% {s0 0 # +u),
and make 4, constant: §,. . is up to sign a canvex combination of ¢* and u, whose weights
canverge {(monotonicity of F, } Sa any monatone subsequence canverges specially, to g, sign(F, - Ju
if F,o— teo and otherwise to s,¢ [Clim F,o)u + F p]. Thus, by CONT, S, , €1{0, 5, , sign(F, u} if
F,e— +w, and otherwise S, . €0, 5,0 ,[(llm Fdu+ Folk And U1 a), III(S)) $,,» 0 since £,=
rg#x. Thus £, > £ =x and FoF s, ysye n» 0 If Fo— o and £, <xy and Sep= e Af
F,-— 0. Otherwise £, =xg,and 5, .F.=¢g, ,F..505, .= 5, ,,and hence lim F,.=F, a contradic-
tian. : Q.ED.

PART V: Lemma | follows frant Steps E and G below.

Step A
fEm=&m#Er, 0 tu, then ¥YoF - /Fmi=Fo/Fr, §n=f %1

PROGE: g, ,-[uF, - ]lg,, s gom TUF- ]1‘3!"2 {,,»] is (III{ &) and [RA) constant in = on 4. Since

d, » = 2, hoth coefficients being nonzera for o, implies that far all #, and the canstancy of their
ratio. Q.E.D,
Step B

Fix u such that Aw # L £, =&, #x, and such thar Q <u, <1 >0 such that if v, =u, for
a#agand v, —t, | <& then §, = £, and F = F,

Wy

PROOE: Fix ey, ay: b1, <i, <u, and ay#ag,a,a50 u, <1, <u,, (#4 >4} By the Part [V
Corollary v 21 £,.=£,, 1, —Le far a # 4, Far A'= Clag} let w[ A[" "2t yepresent &, : p =0
and u™' =, 50 £ = Thus it w"=vp7 thenby A §==Er=E80=&,- and F, ﬂ—F .For o
interior in P = Al"r922% queh that w = 7, [ ={n e Plc; =5} is a segment, with ¢ interior and u™
nonconstant. So {u] |7 € [} is also ane, with u,, =uj, interior and (=, =) constant. Q.E.D.

Step €
IfAw= 2w £ =& Fxand fo,=u, fora+ay, then &, =¢,, F,=F,.

I

PROCE: If o e, sup, ., 4, = 1, inf, ., &, =0, 50 by the Pare IV Corollary £, = £, for ¢, inan
apen {in [0, []} interval [ around i, Applymg Bt all v, €I {0,1}, F, is locally constant on
I~ {0,1}, hence constant there; thus by IV(5) F,=F, Yoel So V= [u,,OE[O, ¢, = ¢, and
E, = F }is 2 neighbarhood of iself, Le. openin [0,1]. F and ¢ being constant an V, IV(8) implies I
is alsa closed: I¥=1[0,1]. C.E.D.
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Step D

ff &, +x FaJo+ ti: & = & #x such that v and i differ in at most two coordinates, which are for
each inside the range of the others,

Proog: Fix a; # ay such that 1, and u, are in the range of the others (#4 = 4). For y, 2 €[0,1]
let0<e< T, uli=g+(l - Za)y if o '—a]‘ =g+l —2g)z if a=a4, —u, atherwise, Let q@ly, 2}
=g by Part I R,.o =R, yields o(y, z) £x ¥y, z. The 6" being never equal or oppasite ta
each ather, if the claim were false ¢ would be injective fram [0,1]® to X~ {x}. Then, for y going
manotonically ta vy, cases ¥ to £ are excluded in IV: ¢ is separately continugus, with the arder
tapalogy on X. So P"“—{ylfp()’?Z)Hﬂ(}*aaz)} is open, and Pr1u{yyt={ylely, 2) = olyg, 2t
closed: P e (1,00, yol, 1yq. 11,00, 1] ~ {yqth. Thus ¢, z) is monotone: otherwise, e.g., ¥, <y: <yq,
oy, 2) < olyg, 2) < @lyq, 2}, a contradiction. {210, z} < (1, )} and its complement being open
by cantinuity, either ¢(-, z) is increasing ¥z ar decreasing, and dually for @(y, -): reversing if needed
the order on v or z, @ is increasing, Now scparatc continuiry yields continuity, sq the sets above and
helaw (1, 1) contradict the connectedness of [0, 112~ {(4, £)1.%° Q.E.D.

Step E

S, =u for all w. In particidar, x does not exist.

ProcF: Pick u with (I(y)) £, # x, such that, by D, 30 # e £, = £, Use C at most owice 1o get
R,=[0,1], keeping £, #x: A[0,1]) =0 implies by {8} §,=u Vu, lest §,= —u ¥u, which
cantradiets NOILL. Q.E.D.

Step F

£, =&, and F, = F, if u and v differ only in finitely many coordinates.

Proar: Given u, pick by D. By C, £, =&, = £, 50 YuTIr+ +u £, = £, Thus Ve, o,a4 1, =1,
VYa#ag =4, = £.&F, =F, by C. Fix a #a; such that sup, . ., =sup, ., v, = L. Btmg ﬁ[St L,
to 0, then u,, to 1, next the finitely many different values of u to v qutside {al,ag} finally the value
at a,, and then at a; to thase of u. Each step preserves 0-l-normalization, so by the abave &
and F. O.E.D,

Step &
3,

w,u = 1 H 1 witenever d, =2

112

Prook Fix A" ={g;, 45,44} and w= 1, oo T show that any & has the same (£, F) as w, assume
by Fthat w, =u, =1,u, =0for u =il « For m; on {gg, a4}, «™* and w™ have same (£, F) by F,
hence (A) gun— §“ » and F a=F «¥m: since for m on (@, g} such that & =™, also w=w", £ and
F are constant. Then s, |, = stgn(F) Vu,u by E and ILA{y), hence the result by III(a). O.ED.

Lemma 20 Assume dz > 1 and that RU holds for all w-profiles with dimension d; + 1. If all u, ave
in the span of U and 8, the profile is exceptional.

% This includes the proof of the lemma: No total order on (a region with nonempty interiar of)
R*(a > 1) 1s separately continuous (Le., such that ¥p, po, x_;, {xlp, <(x,,x_,) <p,} is open).
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Proar: Cleaily d;=2,50 U+ (, § & {0,U}, hence v; = Iby Lemma 1. Let u, = o, U+ 3,5 + ¥,

=

Claim

Vi, € N, and Ya, one of the following halds:

Ca) I =Au, + ., S, = AU, + p, Ya 2 aq (for some A, p,, Ay, o 20d o)
(B) a,=w:,, §,=p5t, ¥nzn, (for some o, B,1);

(y) UIC[ﬂu} is nonconstant and U(ay) & [inf, . aoU(a),supﬂ - ﬂcIU(:;!]];

(8) 1, ey 15 nonconstant and u, (ag) € [inf,, ., o, (a),50p, . 5 2, ()l
(€} Hag) =sup, ., Ua) and u, (ay) = inf, ., u, (a);

(£) Way) =inf, aﬂU(a) and u”n(ao} =sup, . r,ﬂu”ﬂ(.ﬁr).

Proor: Assume o to { false for (g, aq) with ng € N . ¥ ta { being so, if ug (ag}=u, (ag) + &,
uy =ty , for (n,a) = (g, aq), and U%a) = £, uial, then ug and U® converge specially, either
for £ 0 or for £ < (recall U¢ always does if I/ is constant far a # a;). The special limit of u; s
i, since ng € N, and that of U¢ js U, since U # (. Finally dyz- =3, i.c, for some g # a3 we need

L‘:ua(ﬂﬂ) te— U-HO(Q) uu(aﬂ) - H"(g)

rank : : =13

uun(ﬁ') - H“{I(g) u'u(a] - u”(z_z)

Sa some 3 % 3 subdeterminant must be nonzera. It has to contain the entry (g, @), since dz= 2. Sa
itis{mg, ng,ny) X {ay, 4, a5}, and for the same reason it equals zera for £ = 0, so the coefficient of &

u, (4} — u, (@) u,(a)- “u:(@)

iy

uu,(al) iy l(g) l""nl(ai) - u'uj(ﬂ)
must be nonzero. Otherwise (1,(a) —1,(a)), 4 1y 0w g NAs 120k < 1 L2, ¥ # 1y, Ya # ag, u,(a) -
uH(g) = AHLU(G)J 80 l"‘{Jl(a‘) = Allw(a) + I“LH' Since u“(a) = aJIUﬂ + ﬁusﬂ + ‘KJ?”J we ge[

araUﬂ+ﬁJ|Sﬂ=’\ W "Lv,, V“#??.O,V(!?éaﬂ,

" a
a being false, dim{(T,, §, Ha # a9} = 2, s0 34, 4,5, 4 & Clag} such that

L=ty S0 =5,

u,-u, 5,,-5,|7"

Then Vi # g the solution of e [U, — ]+ B[S, —8,1=4[w, —w,] (i=1,2} is unique and of

the form &, = A, Fa ,ay,4), B, = A,Gla,, a;,4); thus 8, a contradiction. )
dy==3 implies =7 ==, , so (u,(a)}, ., Is nonconstant and hence, & being false, u; is

still 0-1-normalized. I/ represents thus the sacial preferences for & So $ € {0,{7} by CONT, a

contradiction. O.ED.

It remains ta show that a profile satisfying the claim is exceptional.

{a) Let Ny={nro=NKg) halds}. Then #N; < 1. Ctherwise o, = a"r,"!, B+ A" Yn#n, for
#, € Ng, i = 1,2,_ By = 33n¢lq, ”_2}3 (_aem Bl #{0,0). Say ey 2 Oy50 &' 20,6, =, /e’ Yazn!,
and 8, = e B /o) Vu+a, thus B'fe'= B, /oy, = hsay. §, = e, Vi, s0 d; <1, a contradic-
tion.

() A=A, UA; for A, ={ag< Aly holds}, 4;={ag € A7n & Ny U Ny: 5 holds at (ag, n)}: Any
agEA,UA; isin A, = (ay € Al holds). Otherwise ¢ ar { hald ¥ng € Ny U N,, and the same, say
€, lest &/ be constant. Sa «,(2q) = 0 ¥n & Ny. Thus Ny = {n} by (2); atherwise U, =0 yields U, =0
VYale). Then the u, =1,[ (U~ Uﬂq] + B8 - Sﬂq]] ¥r # n are equal (normalization), so 2 < pp— 1 =
supl, = U, =1.

)
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If a,5A,,all &, are of the farm 3,0, + 2, ¥a # 4|, 50 {7 tag. Thus by the abave o, attains at
any a &4 either its single maximum ar its single minimum over Cla}: there being at most two
such points, 3a, #a, in A, with & {e) = 8 v, + 2) ¥n,a#a, Then u, (a} is constant on Cla, 2}
¥, Otherwise, if e.g., & is not, express v and &' in terms of u): ¥u e (a) = S0 la) + g, Yazga,
= §iula)+ £,¥a = 44; v being nonconstant on Cla,, 4.} implies 8 = §, and &) = 2, 80 u,{a) =
S, (a) + &, Va,n, contradicting 4;> 1. No », having thus a single maximum or minimum on
Claga,L, Cla, a0 A, (cf. supra) A, =A. Then any u, is constant outside any pair, hence
constant: a contradiction again, so A4, = {2

() If 4, = then u,(a) (0,1} Va,n £ Ny. So § never applies (or else #, would be constant
for a+a,), contradicting (b} If A, =(ag), eg. with U, <inf,,, U, { cannat occur. Hence
Vi & Ny U Ny, Ya # ag, 1,(a) & (0,1}, with a single “17 for each n. So for a # aq, if In & Ny U Np:
ufal =10, then (e} &, = sup ¥, and therefore (a fortiori} alsa otherwise, contradicting ay = 4,.. So
#4,=2(#A4,=2is clear). Hence e and Z never hold; thus #A4; =2, so =2 by (b) since #4 = 4.
The conditions of Definition 2 follow immediately. Q.E.D.

LemMa 3: If RU holds for (d, v — 1)-, (d — 1, v — 1), and nonexceptional (d + 1, v)-profiles, then:
(ae) for nonexceptional (4, vl-profiles with d # 1 we haoe § = U,

(B) for exceptional (d, v)-profiles S=L, Au,, S#0, S= U U+,

Cy) ifd =1, then § = (0, U1},

Proor: Assume vz 2 by Lemma 1,50 d=1.If U+ 0and o= 1, RU for v— 1 and Proposition
Llyield¥r e N, o,5=p,u, + 500 —w,). If In: n, = 7,, take by Proposition 1.1 p, =7, =1 and
a, = 0,50 § = U since U = (. Otherwise, all &, heing in the span of § and {7 (trivial if n € Ny), @ is
exceptional by Lemma 2 (4 > 1 prevents exceptional {d + 1}-profiles), so d;=2 implies then 5 is
alsa in the span of the «,, and dy; ¢ =2 Thus « in case U= 0; B follows alse, since for exceptional
profiles U+ 0 and d =2,

It remains to prove o for U=0, and v. If &7+ 0, take ny, in the majority. For inf{‘”aﬂ,ln(a}g
u, (ag) < sup, . . u, la), choase ufflag)=u, (ag) + e€[0,1], &% =i elsewhere. Then dg-> 10 if
dy=1, since vz 2, the other case is obvious. Further /¢ # (), and &£* is not exceptional: if I =0,
hecause /¢ is twao-valued; otherwise d-= 1, hence u, = + U far n € Ny U {ng), so if U=u, has a
single maximum and a single minimum, they are also of the sum of utilities 7%, for £ small. Thus by
the previous case i satisfies RU.

Use CONT: if U =0, U® canverges specially to sign{e) 1, , so if § = U(=0) then § =sign{)1, ;
this yields a contradiction by changing ay {(#4 = 4). Otherwise U* converges specially to U, so
sefo,uy. Q.E.D.

PrROOF OF THE ProposiTion: If 4; > 2, clearly #N = 3 and #4 = 4, so it suffices to prove « to §,
and hence, with { = v — 4, that if they hold when § < i ar i =i;, d <d, they hold far &. Then by
inductian, if they hold for i, with 4 =0, they do so ¥4, thus for iy + 1 and o = 0. Being vacuously
true for i =4 = (), they hold then ¥/, 4 by induction on i. Sa by Lemma 3, what remains to prove is a
contradiction when up < #M and:

(@) do=1,5=0=+0 o

() & is exceptional and 4y 5 =2

Choose v & L, the span of the u,, such that, if all but one 1,(n e N} equal w or —w, with no
less of the former as of the latter, then sup, (v, +w,) =2, inf (u, +w,}=0. Set u, to u for some
Hy € Ny

YueN,, the profile (i_,,0) satisfies RU: if (a}, by Lemma I if »; < 2, otherwise the dimension
heing 2; if (b}, when = is the exceptional individual, the sum of utilities s maximal or minimal with
w, 5a the profile is not exceptional and RU was obtained far it abave, in the call to Lemma 3. When
nat, dp  =2,s0 v Lyields d; =3 Thus §§=5; ,=U+v—u, s0v&l and u, #0imply
d,, s» =2 by Propasition 1.3, S;,= wu, + 700+ 0 —u,)#0, and =uv+ 7§ since &L and

e

SeL
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[n case {a), §=0=S;, vields thus §;,= +uv. So the profile is spanned by U +v and §;,,
hence it is exceptional by Lemma 2, which is impossible by the choice of ».

In case (h), 7, = since v& L while §,Je L. Hence p,re, =75 — plJ with g, = u, — g, 80
dr=dyg=2=p=r=0=5. =0:acontradiction. QED.

APPENDIX C: NECEsSITY oF MONI-MON4

The following examples show that each of MON1-MON4 is necessary:

MONI: Let §=1%, Mu,, with A5 =1- axjf, where x* € R; is such that {,\"‘,x”") O LIS
Y& Ry, i€, A% is the gradient of —):,,(a' —nx )7 at its maximizing point x* gver R, Viewing
utility functions as points in the quotient o (v) by the constant functions, with » normahzcd

,||'1 —

Lebesgue measure an R, &= min((y/#N) & V8 ) where v = U],
(Uyu,y (U U- u“)
R Hlee, 7 T = e

#=max, max(

and 3 is the kth eigenvalue, in decreasing order, of the covariance matrix of the (u,), o 4, with
ke = min(#4 — 1, £#N).%

MON2: §=0if d; =1 and w2k, =V (“imposed™ (or U, or — {7 if k= 0} otherwise. Or, ©
satisfy strict Pareto: §=U if d;> 1 or unanimity holds, = 0 otherwise.*!

* Since £« 1, strict Pareto holds, and since 4* depends only on R, IRA also, in ifs strongest
form, and ANON clearly. As to MON, note that § =/ when vy < #N; the value of £ ensures that
for 4, gy =2 the angle of § with 7 is less than. those of i, and of ¥/ —u,, so the projection of § on
the plarLe spanned by u, and U7 —u, is a posifive linear combination of them, hence MON4. And if
Jn: 4, <2 then §=1U, s0the strongest form of MON holds. Next, x* is jointly continuous in &
and R; (Hausdorff topology) for 0 < < 1. Thus A* is so for 0 = 2 < 1. £ is continuous in the
cavariance matrix, which depends itself continuously on R when d - stays canstant: since the term /&
forces =0 in all but the highest dimension, £ and hence A* depend continuously an R.. This
yields any desired continuity property; since also ¢, =0=S=0 and S=0«U=0, (@15 = U} is
apen, using on preferences the quotient of the uniform topology an utility funetions. Finally, § = U
when &>  except if, with x* the maximijzer of {7 on R closest to the diagonal, the affine subspace
orthoganal at x* to R intersects the diaganal. So the sequential closure of {§ # U} under special
convergence is {&lu; = #N}.

L MON2 is not needed far the aggregation itself, bue just to have §, =1 replacing INDIV,
NONT, NOILL, and MON2 by this statement, the proposition still holds, adding in « that d; # 1.
Indeed: (a) in the proof of ILA, §* # 0, {(b) in that of Lemma 3, &, 5 = p,2t, + 7,00 — u,) still holds
when u, # U and otherwise u, is anyway in the span of § and Uf; {c) in the proof of the propaositian,
one no longer needs case (a), but as seen there, if d;=1 and 4z, =2, then 0=5; &L, and
further 5, + — U since max( g, 1) 2 @, sa if §; , + U the profile is spanned by I and 55 1 thus is
exceptional by Lemma 2.

[n the presentation of MON ther, (a) take for MON, weak Paretg and consistency (only the strict
inequality part), (b) in Proposition 1 drop MON2, require in 1 that Cap, 1) # (0,0} and minCap, a7}
=0, and adjust 2 and 3, and {c) in footnote 27 change “Just the first part” to “p = ¥4 &p -, g=p =
¢" and in footnote 28 add “or the weak Pareto condition.”

This may seem a simpler, more elegant, and possible weaker axiomatization: after all, §, =u is a
very obvious case of Pareto, Tts lumping together of axioms with very different (and strang) ethical
cantent, like the negotiation of abjective ethical norms (INDIV) and a strictly positive association of
sacial preferences with every single individual’s, is na good objection since, e.g., if #4 < oo it can be
further analyzed (cf. Part [} in INDIV, the particular case of MON2 where u, =0 ¥i#xr, NOILL
and the strengthening of NONT to “S, is not identically zero.” Besides the difficulty to do this for
infinite 4, the main advantage of the present approach is that this strengthening of NONT is
substantial, requiring social preferences to be affected when a single individual out of millions
changes his preferences (cf. fn. 38), while MON2 is fully in the spirit of the rest of MON, and, its
above-mentionad particular case being needed anyway, conceptually a very minor strengthening.
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MON3: Fix L3> 1. $=0if s;= #N and 30 T, ¢ gz, = 0 with 1 = A, = L = U, otherwise.
MON#: § = I/ if v, <k, = — U otherwise.?
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