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An Improved, Simple Construction of Many Halving Edges

Gabriel Nivasch

Abstract. We construct, for every even n, a set of n points in the plane

that generates Ω
�
ne
√

ln 4·
√

ln n/
√

ln n
�

halving edges. This improves Tóth’s
previous bound by a constant factor in the exponent. Our construction is
significantly simpler than Tóth’s.

1. Introduction

Let S be a set of n points in the plane in general position (no three collinear).
A k-edge of S is a directed segment −→xy, x, y ∈ S, such that exactly k points of S
lie strictly on the left-hand side of the directed line determined by −→xy. If n is even,
then a halving edge of S is an undirected segment xy, such that −→xy and −→yx are(

n−2
2

)
-edges of S.

We can generalize these notions to higher dimensions. If S is a set of n points
in general position in Rd (no d+1 points on a common hyperplane), then a k-facet
of S is an oriented (d − 1)-dimensional simplex with vertices x1, . . . , xd ∈ S, such
that exactly k points of S lie strictly on the positive side of the simplex. If n − d
is even, then a halving facet of S is an unoriented

(
n−d

2

)
-facet of S.

A related notion is that of a k-set. If S is a set of n points in Rd, then a k-point
subset P ⊆ S is called a k-set of S if there exists an open half-space γ such that
P = S ∩ γ.

The notions of k-sets and k-facets are closely related. In the plane there is a
one-to-one correspondence between the k-sets and the (k−1)-edges of S. In R3 the
number of k-sets of S is given by

(
gk−1(S) + gk−2(S)

)
/2 + 2,

where gj(S) denotes the number of j-facets of S [3]. There also exists a general
relation in Rd, though it is less direct (see Chapter 11 of [9]).

It is a long-standing open problem to determine the maximum number of k-sets
of an n-point set in Rd (the dimension d is usually taken to be a constant, while n
and k can be arbitrarily large). Even in dimension 2 there is a wide gap between
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the best known lower and upper bounds, and the gaps get larger as the dimension
grows.

The current lower bound for the maximum number of halving edges in the
plane is of the form

(1.1) Ω
(
nec

√
ln n

)
, c constant,

and it is due to Tóth [12]. Tóth showed how to get c = 0.282, and claimed (without
proof) that c can be improved to 0.744.

In this paper we improve the constant c in the bound (1.1). We show how to
construct, for every even n, a planar n-point set that generates

(1.2) f(n) = Ω
(
ne
√

ln 4·
√

ln n/
√

ln n
)

halving edges. Note that f(n) = ω
(
nec

√
ln n

)
for every constant c <

√
ln 4 =

1.1774 . . .. Although our construction follows the same general approach as Tóth’s,
it is significantly simpler.

The current upper bound for halving edges is O(n4/3), due to Dey [5] (see also
[3]). Erdős et al. [8] conjecture that the true bound for halving edges is o(n1+ε)
for every constant ε > 0.

Bounds in higher dimensions. There exists a general, non-trivial upper
bound of the form O(nd−cd) for the number of halving facets of an n-point set
S ⊂ Rd [2, 4, 13]. The proof uses fairly complex tools from combinatorics and
algebraic topology. Unfortunately, the constants cd tend very quickly to zero as d
increases.

There are better upper bounds, with more elementary proofs, for the specific
cases d = 3 and d = 4. They are O(n2.5) [11] and O(n4−2/45) [10], respectively.

The best lower bounds for halving facets in higher dimensions are derived from
the planar lower bound. Starting from a construction for Ω(ng(n)) halving edges
in the plane, one obtains a construction for

(1.3) Ω(nd−1g(n))

halving facets in Rd [6, 12] (assuming g(n) = Θ(g(n/3)), which is the case if g(n)
is “well-behaved”, e.g., if g(n) is as given in (1.1), (1.2)).

k-sensitive bounds. So far we have discussed bounds for halving facets, which
depend only on n. There are more general bounds for k-facets, which depend on
both n and k.

An upper bound of O(nd−cd) for halving facets in Rd implies an upper bound
of

O
(
nbd/2ckdd/2e−cd

)

for k-facets in Rd, for all 1 ≤ k ≤ (n− d)/2 [1]. This gives the asymptotically best
k-sensitive upper bound known for every d.

Regarding lower bounds, it is not hard to construct an n-point set in Rd with

Ω
(
nbd/2ckdd/2e−1

)

k-facets, 1 ≤ k ≤ (n− d)/2 [9, p. 267]. Alternatively, the lower bound (1.3) implies
a lower bound of

Ω(nkd−2g(k))
for k-facets in Rd (assuming g(k) = Θ(g(2k)); see [6, 12]).

An excellent survey of the topic of k-sets is Chapter 11 of [9].
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Figure 1. Middle-level cells and vertices of an arrangement of lines.

The dual setting. Following Matoušek [9], in this paper we work in the dual
setting, since it is more convenient for our purposes.

Given a non-vertical line l = { (x, y) ∈ R2 | y = ax − b }, the dual of l is the
point l∗ = (a, b) ∈ R2. And given a point p = (c, d) ∈ R2, the dual of p is the
(non-vertical) line p∗ = { (x, y) ∈ R2 | y = cx − d }. A point p lies above (on,
below) a non-vertical line l if and only if l∗ lies above (on, below) p∗.

If L is a finite set of lines in the plane, then the arrangement A(L) is the decom-
position of R2 induced by L into relatively open connected regions of dimensions
0, 1, and 2, called vertices, edges, and cells respectively. If no line of L is vertical,
then the level of a point p ∈ R2 with respect to L equals the number of lines of
L lying strictly below p. The level of an edge or cell of A(L) is the level of every
point in that edge or cell.

Let S = {p1, . . . , pn} be a planar point set, and let L = {p∗1, . . . , p∗n} be the set
of their dual lines. A k-edge of S corresponds uniquely to a vertex in A(L) at level
k or level n− k − 2. A k-set P ⊆ S corresponds uniquely to a cell in A(L) at level
k or level n − k, except when P can be separated from the rest of S by a vertical
line, in which case it corresponds to two unbounded cells in A(L), one at level k
and one at level n− k.

Suppose n is even. Then a halving edge of S corresponds to a vertex of A(L)
at the middle level, i.e. at level (n − 2)/2. Further, the middle-level cells of A(L)
touch each other at their left and right endpoints, and these endpoints are the
middle-level vertices of A(L) (Figure 1).

In Section 2 we construct, for every even n, a set L of n non-vertical lines in the
plane (no three lines concurrent) whose arrangement A(L) contains f(n) vertices
at the middle level, with f(n) as given in (1.2). This set L is the dual of a planar
n-point set S that generates f(n) halving edges.

2. The construction

We first build a sequence L0, L1, L2, . . . of sets of non-vertical lines, such that
the arrangement A(Lm) contains f(|Lm|) middle-level vertices, with f as given in
(1.2).

Each configuration Lm contains lines of two types: plain and bold. For each
Lm we also construct a set Vm of middle-level vertices of A(Lm), such that each
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Figure 2. Constructing Lm+1 from Lm.

v ∈ Vm lies at the intersection of a plain line and a bold line. (Vm does not
necessarily contain all the middle-level vertices of A(Lm).)

Our construction is inductive, and it depends on a sequence of free parameters
a0, a1, a2, . . ., which we will set at the end.

The base case L0 consists of two intersecting lines, one plain and one bold, and
the corresponding vertex set V0 contains the single intersection of these lines.

The inductive step. Given Lm and Vm, we construct Lm+1 and Vm+1 as
follows. Each plain line l ∈ Lm is replaced by a bundle of am+1 parallel1 plain lines
separated by a sufficiently small distance εm. Each bold line b ∈ Lm is replaced by
a bundle of am+1 + 1 parallel plain lines with even smaller separation δm ¿ εm.

Thus, for each vertex v ∈ Vm, lying on plain line l ∈ Lm and bold line b ∈ Lm,
we obtain a grid G = Gv of (am+1 + 1)× am+1 plain-line intersections. If εm and
δm are chosen small enough, then no two grids will overlap.

Through each such grid G we pass a new bold line b′ with an intermediate
slope between the slopes of the original lines b and l. The line b′ crosses the grid
diagonally through its center, alternately crossing the plain lines in the bundle of b
and those in the bundle of l (Figure 2).

We choose δm sufficiently small compared to εm, so that b′ is almost parallel
to the bundle of b. More precisely, we make sure that for every other grid G′ not
lying on the bundle of b, line b′ passes on the same side of G′ as the bundle of b.

Each bold line b′ ∈ Lm+1 generates 2am+1 +1 vertices within its corresponding
grid G, as shown in Figure 2. We include all these vertices in Vm+1.

Correctness of the construction. To prove that our construction is correct,
we need to show that all vertices in Vm+1 are indeed middle-level vertices. We will
in fact prove a stronger property about these vertices.

If v is a vertex of A(Lm), then we say that v is strongly balanced if the number
of plain lines that pass above v equals the number of plain lines passing below
v, and the number of bold lines passing above v equals the number of bold lines
passing below v. (Note that v must lie at the middle level to be strongly balanced.)

Lemma 2.1. For all m, all vertices of Vm are strongly balanced.

1It is sufficient for the construction that the lines be nearly parallel, so we can slightly perturb
the lines and achieve general position.
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Figure 3. A bold line in Lm with its vertices from Vm. All these
vertices lie within a single grid constructed in the inductive step
from Lm−1.

Proof. The claim is clearly true for V0.
Suppose by induction that the claim is true for Vm. Note that each bold line

b ∈ Lm contains exactly 2am + 1 vertices of Vm (letting a0 = 0). Moreover, the
plain lines of these vertices alternate between having a larger slope and a smaller
slope than b (see Figure 3).

When building Lm+1 from Lm, we replace each plain line in Lm by am+1 parallel
plain lines, and each bold line by am+1 + 1 parallel plain lines plus 2am + 1 bold
lines almost parallel to them. We refer to this property as uniform replacement.

Now, consider a vertex v ∈ Vm, lying on plain line l ∈ Lm and bold line b ∈ Lm.
Let G be the grid in Lm+1 corresponding to v, and let b′ ∈ Lm+1 be the bold line
that crosses through G. Let w be some vertex of Vm+1 within G lying on b′.

Let v1, . . . , v2am be the 2am vertices of Vm, besides v, that lie on b, and let
b′1, . . . b

′
2am

be their corresponding bold lines in Lm+1.
Partition the lines of Lm+1 into three sets. The first set S1 includes all lines

that originate from lines in Lm other than b and l. The original vertex v ∈ Vm is
strongly balanced by assumption, so by the uniform replacement property it follows
that w is strongly balanced with respect to the lines in S1.

The set S2 includes all the lines that pass through the grid G, namely the plain
lines in the bundles of b and l, and the bold line b′. It is clear that w is also strongly
balanced with respect to the lines in S2 (see Figure 2).

Finally, S3 includes the bold lines b′1, . . . , b
′
2am

. It can be verified that half of
these lines pass above the grid G and the other half pass below G. Therefore, vertex
w is also strongly balanced with respect to the lines in S3.

Therefore, vertex w is strongly balanced, as claimed. ¤

Setting the free parameters. Let nm = |Lm| and fm = |Vm|. We wish to
choose appropriately the free parameters ai, i ≥ 1, and to express fm, the number
of middle-level vertices, as a function of nm, the number of lines.

In our construction, each vertex in Vm is replaced by 2am+1 + 1 vertices in
Vm+1. Therefore,

fm+1 = (2am+1 + 1)fm.

Now let us find nm+1, the number of lines in Lm+1. First note that the number
of bold lines in Li equals the number of vertices in Vi−1 for all i ≥ 1. Therefore,
Lm+1 has

am+1(nm − fm−1) + (am+1 + 1)fm−1 = am+1nm + fm−1

plain lines and fm bold lines, so

nm+1 = am+1nm + fm + fm−1.
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We choose ai = 2i, for i ≥ 1. (This is the optimal choice of the form ai = ai,
i ≥ 1; we omit the proof.) It follows that

(2.1) fm = f0

m+1∏

i=2

(2i + 1) = Θ
(
2(m2+3m)/2

)
,

and

nm = 2mnm−1 + Θ(fm−1)

= 2mnm−1 + Θ
(
2(m2+m)/2

)
.

Let us analyze the sequence n′m given by

n′m = 2mn′m−1 + k 2(m2+m)/2 for m ≥ 1,

where k is some constant. It follows by induction that

n′m = 2(m2+m)/2(n′0 + mk),

so

(2.2) nm = Θ
(
m · 2(m2+m)/2

)
.

Dividing (2.1) by (2.2),

(2.3) fm/nm = Θ(2m/m).

From (2.2) we get m =
√

2 log2 nm −Θ(1). Finally, substituting into (2.3),

(2.4) fm = Θ
(
nme

√
ln 4·√ln nm/

√
ln nm

)
.

Thus, we have achieved the bound (1.2) for n of the form n = nm, m ≥ 1. We
can easily “fill in the gaps” and achieve (1.2) for all n, as in [12].

3. Discussion

Of course, the main challenge is to tighten the bounds on the maximum number
of halving edges in the plane. Other open problems are:

(1) Derive more direct (and hopefully stronger) lower bounds for halving
facets in d ≥ 3 dimensions (rather than just “lifting” the 2-dimensional
bound).

(2) Improve the lower bound for the maximum number of halving edges of a
dense point set in the plane. A planar n-point set S is dense if the ratio
between the largest distance and the smallest distance between any pair
of points in S is Θ(

√
n). The current lower bound for halving edges for

a dense point set is Ω(n log n). It is also known that an upper bound of
O(n1+c) for arbitrary sets implies an upper bound of O(n1+c/2) for dense
sets; see [7].
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[10] J. Matoušek, M. Sharir, S. Smorodinsky, and U. Wagner, k-sets in four dimensions, Discrete

Comput. Geom. 35 (2006), no. 2, 177–191.
[11] M. Sharir, S. Smorodinsky, and G. Tardos, An improved bound for k-sets in three dimensions,

Discrete Comput. Geom. 26 (2001), no. 2, 195–204.
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