
Feature Artic e

The Ellipsoid Method: A Survey

ROBERT G. BLAND, DONALD GOLDFARB and
MICHAEL J. TODD

Cornell University, Ithaca, New York

(Received August 1980; accepted July 1981)

In February 1979 a note by L. G. Khachiyan indicated how an ellipsoid
method for linear programming can be implemented in polynomial time. This
result has caused great excitement and stimulated a flood of technical papers.
Ordinarily there would be no need for a survey of work so recent, but the
current circumstances are obviously exceptional. Word of Khachiyan's result
has spread extraordinarily fast, much faster than comprehension of its signif-
icance. A variety of issues have, in general, not been well understood,
including the exact character of the ellipsoid method and of Khachiyan's
result on polynomiality, its practical significance in linear programming, its
implementation, its potential applicability to problems outside of the domain
of linear programming, and its relationship to earlier work. Our aim is to help
clarify these important issues in the context of a survey of the ellipsoid
method, its historical antecedents, recent developments, and current re-
search.

1. INTRODUCTION

IN FEBRUARY 1979 the note "A Polynomial Algorithm in Linear
Programming" by L. G. Khachiyan appeared in Doklady Akademiia

Nauk SSSR. Several months later it first came to the attention of
operations researchers, computer scientists, and mathematicians in the
West in informal discussions. By the end of 1979 Khachiyan's note had
become front-page news, not only for researchers, but for readers
of major daily newspapers in the United States, Europe, and Japan
(see Wolfe [1980]).

The Theoretical Result

The immediate significance of Khachiyan's article was the resolution
of an important theoretical question concerning the computational com-
plexity of linear programming. Most of the basic discrete optimization
problems in operations research have been known for a number of years
either to be solvable in polynomial-time (e.g., the shortest path problem

Subject classification: 660 ellipsoid method.

Operations Research
Vol. 29, No. 6, November-December 1981

0030-364X/81/1039-2906 $01.25
i 1981 Operations Research Society of America

1039

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1040 Bland, Goldfarb and Todd

with nonnegative arc lengths), or to be X9/Y-complete (e.g., the traveling
salesman problem, and the shortest path problem with arbitrary arc
lengths). (Appendix A provides an informal discussion of the notions of
polynomial boundedness and X97-completeness for the unacquainted
reader. For a rigorous treatment see Aho et al. [1976], Garey and Johnson
[1979], Karp [1972, 1975].) Yet linear programming, the most studied of
all optimization problems in operations research, resisted classification.
Most researchers considered it very unlikely that linear programming
might be theoretically as difficult as the X9-complete problems, but no
one had managed to prove its membership in , the class of problems
solvable by polynomial-time algorithms. Finally, Khachiyan indicated
how one could adapt the ellipsoid method for convex optimization devel-
oped by the Soviet mathematicians N. Z. Shor, D. B. Iudin, and A. S.
Nemirovskii to give a polynomial-time algorithm for linear programming.
This algorithm differs dramatically from the simplex method: it is not a
pivoting method; it uses metrical properties of IRn; and it does not depend
directly upon linearity of the objective function or the constraints.

Proofs of the claims in Khachiyan's note were provided by Gacs and
Lova'sz [1981] under the assumption of exact arithmetic, for ease of
exposition. (In a more recent paper Khachiyan [1980] gives proofs of his
earlier claims.) The presentation by Gacs and Lovasz at the International
Symposium on Mathematical Programming in Montreal in August of
1979 began a widespread investigation of the ellipsoid method.

The Ensuing Commotion

The resolution of this major theoretical question concerning linear
programming resulted in great (and deserved) excitement among re-
searchers. The ensuing commotion in the popular press resulted from an
unusual combination of circumstances. The great importance of linear
programming and the simplex method (see Dantzig [1963]) as decision-
making tools in government and industry led people to conclude correctly
that a major practical improvement in our ability to solve linear program-
ming problems could have substantial impact. In spite of disclaimers
from theoretical researchers, journalists inferred that the theoretical
efficiency (polynomial-boundedness) of the ellipsoid method must im-
mediately translate into a major practical advance: "Shazam!" exclaimed
the New York Times (November 11, 1979). The initial articles on Kha-
chiyan's paper in some of the popular science magazines were mostly
accurate, though some were potentially misleading. As those stories were
digested (indigested?) by newspaper writers, the tale became so distorted
that one familiar with Khachiyan's note could have legitimately wondered
whether some of the newspaper articles were discussing a different paper
by him. These articles characterized the new result as a profound break-

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1041

through in the solution of real-world problems, went on to suggest that
the work was likely to result in efficient new algorithms for the traveling
salesman problem, and ultimately some even declared the traveling
salesman problem well-solved. For details concerning these accounts see
the note by Lawler [1980], who compares the treatment of Khachiyan's
paper in the popular press to the children's whispering game, "telephone."

Theoretical vs. Practical Considerations

In order to develop means for formal comparisons of algorithms and of
problems, the theory of computational complexity builds upon certain
notions such as polynomial boundedness. These ideas have produced a
rich theory that has also yielded some important practical advances in
algorithms. However an algorithm that is superior according to theoret-
ical criteria is not necessarily superior in practice.

Suppose algorithms s? and a4 solve problem J, -4p is polynomial-time,
and s? is not. Then there is some family {Qn} of instances of J such that
the running time of s4 on (Qn,} increases faster than any polynomial
function of n, while the running time of sip on {Qn4 is bounded by some
polynomial function f (n). For "large enough" values of n, sp is guaranteed
to run faster on Qn than s?, and as n grows the discrepancy increases
rapidly. But this is an asymptotic result; how large is "large enough"?
For any positive integer n', one can easily construct a function g that is,
say exponential in n, and such that f (n) > g (n) for all n c n'. Thus it is
possible that our nonpolynomial algorithm s? might be preferable to the
polynomial algorithm sip for all instances of J of the size that we expect
to encounter in practice, although we must take care that our expectations
are not too modest. Certainly before accepting a polynomial-time algo-
rithm sip as a useful practical tool, we would at least want to examine the
particular polynomial function that bounds its computational perform-
ance. For example the known polynomial bound on the Dijkstra algorithm
for computing shortest paths in directed graphs with nonnegative arc
lengths and n nodes (see Lawler [1976]), is a small multiple of n2. Since
such a graph may have as many as ?/2(n2 - n) arcs, Dijkstra's algorithm
appears to be an attractive practical procedure. An examination of the
known polynomial bound on the ellipsoid method for linear programming
does not lead so readily to a promising conclusion, as we shall see.

We must also keep in mind that polynomial boundedness is a worst-
case criterion; the most perverse problem instances determine this mea-
sure of an algorithm's performance. How likely are we to encounter in
practice problem instances like those in {Qn4 that cause algorithm A to
behave badly? Are they pathological, contrived? This has been claimed
of those known families of problems that lead to exponential behavior of
the standard simplex pivoting rules.

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1042 Bland, Goldfarb and Todd

Researchers in computational complexity are very well aware of these
limitations to the practical significance of polynomiality. However, most
known polynomial-time algorithms for problems of interest to operations
researchers are, in fact, efficient in practice as well as in theory, perhaps
leading some to attach greater significance to polynomiality than is
merited.

Outline

Ordinarily there would be no need for a survey of work so recent as
that prompted by Khachiyan's note. The current circumstances are
obviously exceptional. Word of Khachiyan's result has spread extraordi-
narily fast, much faster than comprehension of its significance. A variety
of issues have been so muddled by accounts in the press that even a
technicaly sophisticated reader may be uncertain of the exact character
of the ellipsoid method and of Khachiyan's result on polynomiality, its
practical significance in linear programming, its implementation, its po-
tential applicability to problems outside of the domain of linear program-
ming, and its relationship to earlier work. Our aim here is to help clarify
these important issues in the context of a survey of the ellipsoid method,
its historical antecedents, recent developments, and current research.

In Section 2 we describe the basic ellipsoid algorithm for finding a
feasible solution to a system of linear inequalities. We outline the modi-
fications introduced by Khachiyan and the arguments used by him to
prove that the feasibility or infeasibility of such a system can be deter-
mined in polynomial time with this algorithm. The extension to linear
optimization is discussed in Section 5.

In Section 3 we present a detailed account of the research that led up
to the ellipsoid algorithm. We show that it was a fairly natural outgrowth
of the relaxation and subgradient algorithms of Agmon, Motzkin and
Schoenberg, and Shor, the method of central sections of Levin and
Newman and the methods of space dilation of Shor. In particular, we
observe that the ellipsoid algorithm was first introduced by the Soviet
mathematicians D. B. ludin and A. S. Nemirovskii and then clarified by
N. Z. Shor; all three were interested in its application to convex, not
necessarily differentiable, optimization. Khachiyan modified the method
to obtain a polynomial-time algorithm for the feasibility problem for a
system of linear inequalities.

If the ellipsoid algorithm is to be more than just a theoretical tool, it
must be implemented in a numerically stable way and modified to
increase its rate of convergence. In Section 4 three modifications to the
basic algorithm are described. These are the use of deep cuts (i.e., violated
inequalities), surrogate cuts (i.e., valid cuts formed by combining several
inequalities), and parallel cuts (i.e., the use of two parallel inequalities,

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1043

one of which is violated). The numerical implementation of the ellipsoid
method is considered in Section 6. Although several possibilities are
discussed, we recommend the use of a Cholesky or LDL T factorization of
the positive definite matrix which determines the metric corresponding
to each ellipsoid.

Section 5 describes three methods to adapt the ellipsoid algorithm of
Section 2 to solve linear programming problems. The first method com-
bines the primal and dual constraints and the weak duality inequality
with its sense reversed. The second uses bisection to find the optimal
value, while the third (closely related to the algorithms of ludin and
Nemirovskii, and Shor) is a sliding objective function method. A final
subsection outlines how (in polynomial time) an exact solution to the
linear programming problem can be obtained from the approximate one
produced by the ellipsoid algorithm.

In Section 7 we discuss the relationship of the ellipsoid algorithm to
other methods including the simplex method. Extensions to convex
optimization and linear complementarity problems are also cited.

Section 8 concerns combinatorial applications of the ellipsoid method
from the point of view of Grotschel et al. [1981]. This exceptionally
interesting paper examines the ellipsoid method in greater generality,
establishes theoretical results based on the general form of the algorithm,
and uses those results to develop polynomial-time algorithms for a
number of combinatorial optimization problems. We illustrate the ap-
proach of Grotschel, Lova'sz, and Schrijver in the context of examples
familiar to many operations researchers, and relate it to the technique of
column generation.

Section 9 consists of a few brief concluding remarks.
Three appendices are included. In the first we present, rather infor-

mally, some of the main ideas of computational complexity, including
discussion of polynomial solvability and the classes of problems Y and

. In the second appendix we give a proof that the ellipsoid constructed
by the deep cut version of the ellipsoid method has the smallest volume
among all ellipsoids containing the portion of the current ellipsoid on the
appropriate side of that cut. In the third appendix we present an example
which shows that convergence of the ellipsoid algorithm can be extremely
slow, even if deep cuts are used. This example also demonstrates that the
ellipsoid method, without the modifications introduced by Khachiyan,
may converge to an infeasible point when applied to a system of inequal-
ities whose solution set is nonempty, but not full-dimensional.

The paper is designed so that fairly complete coverage of essential
aspects of the algorithm can be obtained without reading every section.
The reader interested merely in the basic form of the algorithm and its
application to linear programming should read Sections 2 and 5 (possibly
omitting the last subsection) and the concluding remarks.

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1044 Bland, Goldfarb and Todd

2. THE ELLIPSOID ALGORITHM

In this section we describe the ellipsoid method for determining the
feasibility of a system of linear inequalities, and outline arguments that
establish that the method can be made polynomial. We follow the
interpretation by Gaics and Lovasz of Khachiyan's arguments.

Suppose we wish to find an n-vector x satisfying

ATx b (2.1)

where AT ism x n and b is an m-vector. The columns of A, corresponding
to outward normals to the constraints, are denoted a,, a2, ... , am, and
the components of b are denoted fl1, /2, * 8, /m. Thus (2.1) can be
restated as

aiT x Bi, i=1, 2, * ,m.

We assume throughout that n is greater than one.

The Basic Iteration

The ellipsoid method constructs a sequence of ellipsoids Eo,
E1, * , Ek, *. , each of which contains a point satisfying (2.1), if one
exists. On the (k + 1)st iteration, the method checks whether the center
Xk of the current ellipsoid Ek satisfies the constraints (2.1). If so, the
method stops. If not, some constraint violated by Xk, say

aTx:c/8 (2.2)

is chosen and the ellipsoid of minimum volume that contains the half-
ellipsoid

{x E EkIaTx ' aTxk} (2.3)

is constructed. (See Figure 1 (a).) This new ellipsoid and its center are
denoted by Ek+l and Xk?1, respectively, and the above iterative step is
repeated.

Except for initialization, this gives a (possibly infinite) iterative algo-
rithm for determining the feasibility of (2.1). In essence Khachiyan
showed that one can determine whether (2.1) is feasible or not within a
prespecified (polynomial) number of iterations by: (i) modifying this
algorithm to account for finite precision arithmetic, (ii) applying it to a
suitable perturbation of system (2.1), and (iii) choosing Eo appropriately.
System (2.1) is feasible if and only if termination occurs with a feasible
solution of the perturbed system within the prescribed number of itera-
tions.

Algebraically, we can represent the ellipsoid Ek as

Ek = {X 6 E |1 (X - Xk)T B (x - Xk) C 1} (2.4)

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1045

where xk is its center and Bk is a positive definite symmetric matrix. In
terms of this representation the (k + 1)st iterative step of the ellipsoid
method is simply given by the formulas

Xk+1 X Xk - T(Bka/ la)TBka) (2.5)

and

Bk+l = 6(Bk- a(Bka(Bka)T/(aTBka))) (2.6)

where

= 1/(n + 1), a = 2/(n + 1), and 8 = n2/(n 2-1). (2.7)

That Ek+i determined by xk+i and Bk+i as in (2.4)-(2.7) is the ellipsoid of
smallest volume that contains the half-ellipsoid (2.3) is proved in Appen-
dix B. We call , a, and 8 the step, dilation, and expansion parameters,
respectively. Note that if Bk is a multiple of the identity so that Ek is a
ball, then Ek+i is shrunk in the direction a by the factor

E/

b)<f
Figure 1. The ellipsoid method: (a) without deep cuts, (b) with deep

cuts.

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1046 Bland, Goldfarb and Todd

A/8(1-a) = n/(n + 1) and expanded in all orthogonal directions by the
factor v1 = n//n2 - 1. (See Figure 2.)

It is intuitively clear that a smaller ellipsoid E[+1 can be employed
since it is only necessary that the new ellipsoid contain the section of Ek,

{x E EkI a x C/,}, (2.8)

rather the entire half-ellipsoid (2.3). (See Figure 1 (b).) This is indeed
true, but we defer discussion of these "deep" cuts until Section 4.

Note that if Ek is a ball, then it is also possible to construct a ball S
that contains the set (2.8) and is smaller in volume than Ek. Such a ball
can have its center xk+i on the open line segment (xk, xk + 2(xk -x)),

where xk is the projection of xk onto the hyperplane {x E R' IaTx = ,8.
(See Figure 3.) The ball S will be smallest if xk+l is Xk. As we shall see in
the next section such "ball" methods are well-known and predate the
ellipsoid method.

aTx~~~V XkaTX

\ ~~~~~\1 I

k

Figure 2. Geometric interpretation of the parameters.

.le

Figure 3. The ball method.

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1047

Polynomial Solvability

We now outline arguments that can be used to prove that the feasibility
or infeasibility of (2.1) with integer data can be determined in polynomial
time. For proofs see Gaics and Lovisz, or, for greater detail, see Padberg
and Rao [1980a]. These analyses are based on the simplifying assumption
that all computations are performed in exact arithmetic. In Padberg and
Rao [1980b], Grotschel et al., and Khachiyan's recent paper [1980], proofs
are supplied for the case of finite precision arithmetic.

We assume that the entries of A and b are integers. Then the length L
of the input can be described in terms of the number of symbols required
to encode it, i.e.,

L =
E1?i?m,1:?j?n,aj=AO

LlogIaijaj +
Eij?im,1,i#qO Llog I/I J (2.9)

+ Llog nj + Llog m] + 2mn + 2m + 4.

(See the explanation of (A.2) in Appendix A. The encoding involves four
distinct symbols: +, -, 0, and 1; so the actual number of bits required is
2L. Henceforth we take the liberty of using the term "bit" interchangeably
with "symbol.")

We need to show that the number of steps is polynomial in L. There
are two main issues in the proof. First, the formulas (2.5)-(2.7) for Xk+1

and Bk+i assume exact arithmetic. To perform an algorithm in polynomial
time with accepted models of computation one must use finite-precision
arithmetic. Khachiyan indicated that 23L bits of precision before the
point and 38nL after suffice. Note that if the values of Xk+j and Bk+, are
rounded to this specified number of bits, the ellipsoid Ek+1 may not
contain the required half-ellipsoid. Khachiyan showed that if Bk+1 is
multiplied by a factor slightly larger than one before being rounded, then
Ek+1 Will stil contain this half-ellipsoid. Khachiyan uses the factor2l/4n;
Grotschel et al. replace 8 in (2.6) by (2n2 + 3)/2n2 to achieve the
same effect. Unless otherwise noted we will assume throughout that exact
arithmetic is used.

Second, we must provide a polynomial bound on the number of
iterations required. We start by examining a special case in which for
some known aO E IRn and R > r > 0, and unknown a * E IRn

S(a*, r) C P C S(ao, R), (2.10)

where P is the solution set of (2.1) and S (y, p) denotes the ball of radius
p centered at y. In this case we initialize with Eo = S(ao, R). We now use
the fact that when the formulas (2.4)-(2.7) are employed,

vol Ek+?/vol Ek = (n/(n + 1))(n2/(n2 - 1))(n-1)/2 < e-1/2(n +l) (2.11)

Suppose k > 2n(n + 1)log(R/r). Then, assuming the ellipsoid algorithm

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1048 Bland, Goldfarb and Todd

continues this far, the volume of Ek wil have shrunk to less than (rIR)f
times its original value; thus it cannot contain a ball of radius r. But, as
we have remarked above, the sequence of ellipsoids generated satisfies
S (a *, r) C P C Ek for all k. This contradiction proves that the algorithm
must terminate with Xk E P for some k ' 2n (n + 1)log(R/r). Hence if R
and r in (2.10) are regarded as part of the input, or log(R/r) is polynomial
in L, then the number of steps required is polynomial.

In many practical problems, a priori bounds as in (2.10) may be
available and should be used. However, to provide a polynomial algorithm
we must assume that nothing is known about the system (2.1) other than
its description in terms of A and b. In this case Khachiyan proved that,
if P is nonempty, then

P n S(O, 2L) $ 0; (2.12)

thus 2L can play the role of R in (2.10), and we can initialize the algorithm
with Eo = S (0, 2L). Clearly, however, P need not contain a ball of any
positive radius. Therefore let us perturb (2.1) to obtain the system of
inequalities

2LaiTx ' 2L,8i + 1, i = 1, 2, * , m (2.13)

with solution set P'. Khachiyan proved that P is nonempty if and only if
P' is. Moreover, a solution to (2.1) can be obtained (in polynomial time)
from a solution of (2.13) (one method for obtaining exact solutions from
approximate solutions is described at the end of Section 5), and the
number of bits needed to represent (2.13) is at most (m (n + 1) + 1)L,
hence polynomial in L. The reason for considering (2.13) is that if (2.1)
has a feasible solution, say x, then S (xS, 1/maxi 12Lai II) is contained in P'.
Since 11 ai C 2L, we obtain

S(A 2L2L) C p' (2.14)

if x E P. Note that the bound in (2.12) can be improved-certainly P
contains a point within 2L - 2 2L of the origin if it is nonempty, and we
can choose such a point for x. Thus, if (2.1) is feasible,

S(X, 2-2L) C P' n S(O, 2L) C S(0, 2L). (2.15)

Now by applying the arguments given above, if (2.1) is feasible and if the
ellipsoid algorithm is applied to (2.13), then it must terminate with a
feasible solution within 2n(n + 1)log(2L/2-2L) = 6n (n + 1)L iterations.
Hence if it fails to terminate in this many iterations, we can conclude
that (2.1) is infeasible.

It has been convenient for exposition of the arguments above to apply
the ellipsoid method to the perturbed system (2.13), as in Gacs and
Lova'sz. However, it is not necessary to implement the ellipsoid method

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1049

in this way; indeed, Khachiyan's approach, although essentially the same,
does not explicitly perturb the original system (2.1).

A constraint 2LaiTx < 2L18 + 1 of (2.13) is satisfied at the current iterate
Xk if and only if the corresponding constraint aiTx c< fi of (2.1) has residual
aiTx -i - 2-L. The procedure outlined above in terms of (2.13) can be
described in the context of the original system (2.1) by merely requiring
that the next cut be chosen from the constraints having residual larger
than 2-L at Xk. The half-ellipsoid (2.3) is the same whether the cut
aTx - a TXk is viewed as aiTx < aiTXk from (2.1) or 2LaiTx c 2LaiTxk from
(2.13); hence Ek+1 and Xk+j are also the same. If the iterate Xk has
maximum residual O(Xk) maxi aiTXk -,i < 2-L then Xk satisfies (2.13),
and, as noted above, (2.1) must also have a solution.

Khachiyan works directly in terms of (2.1), using the condition
O(Xk) < 2-L to test for feasibility of (2.1). He generates the next cut from
the constraint having maximum residual O(Xk), which must be larger than
2-L if feasibility has not been detected. So Khachiyan's condition for
recognizing feasibility of (2.1) and his choice of cuts implicitly test
whether Xk satisfies (2.13), and, if not, then selects the next cut to
correspond to a constaint 2LaiTx C< 2Lf8 + 1 of (2.13) violated at Xk.

Therefore the proof above that at most 6n (n + 1)L iterations are required
when cuts are generated from (arbitrary) violated constraints of (2.13)
implies the same polynomial bound for Khachiyan's choice of a cut from
an inequality with maximum residual (again assuming exact arithmetic).

3. HISTORICAL DEVELOPMENT

The publicity that arose from Khachiyan's announcement that a poly-
nomial algorithm exists for linear programming has tended to blur the
facts that the basic ellipsoid algorithm is not due to Khachiyan and arose
in connection with convex, rather than linear, programming. In this
section we describe the development of the method and give some
perspective on its place in mathematical programming. We shall see that
it is closely related to three earlier methods, two of which are quite well
known. These antecedents are the relaxation method for linear inequali-
ties, the subgradient method and the method of central sections for
convex minimization.

The Relaxation Method

Relaxation algorithms for inequalities were introduced simultaneously
by Agmon [1954] and Motzkin and Schoenberg [1954]. For the problem
(2.1) they produce a sequence {Xk} of iterates. At iteration k + 1, if Xk is
feasible the algorithm terminates; otherwise a violated constraint, say
(2.2), is chosen and we set

Xk+1 = Xk - Xka(a TXk - 3)/aTa, (3.1)

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1050 Bland, Goldfarb and Todd

where Ak = 2 in Motzkin and Schoenberg's method and 0 < Ak < 2 in
Agmon's method. The choice Xk = 1 corresponds to projection of Xk onto
the hyperplane {x E IR' I aTx = ,B). It can be seen that this method, with
O < Ak < 2, corresponds to the "ball" method of Section 2-see Figure 3.
Of course, it is unnecessary to have an a priori bound to define Eo in
order to implement the algorithm; however, if such a bound were available
it would be straightforward to define a corresponding sequence {Ek} of
balls. Agmon showed that if (2.1) is feasible, if at each iteration the
chosen constraint (2.2) is most violated in the sense of the Euclidean
norm, and if Ak is bounded away from 0 and 2, then his method converges
linearly (i.e., at the rate of a geometrical progression). Indeed, he showed
that each iterate comes closer by some fixed ratio to the set of feasible
solutions than its predecessor. This ratio translates into a bound on the
ratio of the volumes of the balls Ek?1 and Ek. The main difference from
the ellipsoid method is that this ratio depends on the data of the problem
rather than just the dimension. Bounds on the ratio have been provided
by Agmon, Hoffman [1952], Goffin [1978] and Todd [1979]. Todd [1979]
and Goffin [1979a] demonstrate that an exponential (in the data) number
of steps may be required.

The Subgradient and Space Dilation Methods

The subgradient method for minimizing a convex, not necessarily
differentiable, function f:IR' --> IR was, apparently, first introduced by
Shor [1964]. It has the general form

Xk+1 = Xk - Ilk gkl/jgk 1 (3.2)

where g, is a subgradient of the function f at Xk. Note that if we wish to
solve (2.1) we can minimize

f(x) = max{maxi{aiTx - /i, 0); (3.3)

then a = ai is a subgradient of f at xk if aiTx ' /8i is a most violated
constraint from (2.1). Thus (3.2) includes as a special case a version of
(3.1) in which a constraint with largest residual is chosen. Ermolev [1966]
and Polyak [1967] give choices for /k that ensure global convergence; for
example, Ilk -* 0 and >2/k = oo suffice. However very slow convergence
results. Polyak [1969] and Shor [1968] demonstrate linear convergence
for certain choices of the step lengths /1 under suitable conditions on f.
However, the rate of convergence is still heavily dependent on the
function f.

Shor [1970a, b] was the first to realize that improvements could be
made by working in a transformed space. The idea is exactly that which
leads from the steepest descent algorithm (with linear convergence, the
rate depending on the function) to. Newton's method (with quadratic

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1051

convergence for smooth functions) and quasi-Newton algorithms (with
superlinear convergence for smooth functions). The iteration now takes
the form

gk =jk gk || j gk ||,

Xk+1 = Xk - akJkgk, (3.4)

Jk+l = Jk(I - /kgkgk),

for suitable parameters ak, 8k. The update of the matrix Jk corresponds
to "space dilation" in the direction of the subgradient gk. Shor [1970b]
describes precisely the difficulties with the linear convergence rate of his
earlier subgradient method [1968]. His modified algorithm (3.4), when f
satisfies certain conditions allowing the parameters ak and 8k to be
estimated, provides linear convergence whose rate depends on the func-
tion f, but is invariant with respect to linear transformations. When f is
quadratic and strictly convex, the parameters can be chosen so that the
method becomes a method of conjugate gradients (see Shor [1970a]). For
this algorithm, the minimum value of f must be known; Shor's later
method [1970b] relaxes this requirement. Shor and Zhurbenko [19711
perform the "space dilation" in the direction of the difference yk= gk+

- gk between successive subgradients; this method is even more reminis-
cent of quasi-Newton minimization methods. This paper contains results
of some limited computational experiments.

The Method of Central Sections

A third method on which the ellipsoid algorithm is based is that
developed independently by Levin [1965] and Newman [1965], who
addressed the problem of minimizing a convex function f over a bounded
polyhedron P0 C 1W. The method produces a sequence of iterates {xk)
and polytopes {Pk} by choosing xk as the center of gravity of Pk and

Pk+= {x E PkI gkhx C gkXk),

where again gk is a subgradient of f at Xk. Since f is convex, Ph+, contains
all points of Pk whose objective function value is no greater than that of
Xk. In this case, the volume of Pk+1 is at most (1 - e-1) times that of Pk.
However, calculating the centers of gravity of polytopes with many facets
in high dimensional spaces is an almost insuperable task. Levin proposed
some simplifications for n = 2.

The Ellipsoid Method

The ellipsoid method was first described, rather cryptically, in a paper
of ludin and Nemirovskii [1976b]. In two papers [1976a, b] they discuss

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1052 Bland, Goldfarb and Todd

the question of the "computational complexity" of convex programming
problems: given a limited number of function and/or subgradient calls,
with unlimited side calculations, how close can one get to the optimal
value? To obtain upper bounds on such a deviation from optimality,
specific methods must be proposed. ludin and Nemirovskii [1976a] use a
variant (the method of centered cross-sections) of the method of Levin
and Newman; the burdensome "side calculations" of the centers of gravity
are not counted in their analysis. For problems with parallelepipeds as
their feasible regions, this method uses only a constant factor more
iterations than an optimal method to obtain a given quality of solution.
In their second paper, ludin and Nemirovskii [1976b] discuss the com-
putational difficulties of Levin's method and describe the modified
method of centered cross-sections, using ellipsoids instead of polyhedra.
The modified method is described for minimizing a convex function f
with convex constraints; however, for the unconstrained problem of
minimizing f in (3.3) it becomes the ellipsoid method of Section 2. This
modified method may take n times as many iterations as the unmodified
method to obtain a given quality of solution, but it is computationally
implementable. ludin and Nemirovskii describe the ellipsoid method
implicitly in terms of a sequence (Ok} of systems of coordinates. They
also point out the rather surprising fact that the ellipsoid method is a
special case of Shor's algorithm (3.4) with space dilation in the direction
of the subgradient, when the parameters ak and /8k are suitably chosen
(in fact, ak = 3k/2T, /k = 1 - (1 _ a)1/2). Shor [1977a] gives the first
completely explicit statement of the ellipsoid method as we know it.

As we have seen, one of the keys to the ellipsoid method is the ratio of
volumes of successive ellipsoids. Iudin and Nemirovskii [1976b] state a
geometrical lemma concerning an ellipsoid containing that portion of the
unit ball in En with a "x < cos p IIxII, where h1ail = 1 and 0 c p < /2. If
0 = 7/2, this part is precisely half the ball and the new ellipsoid is that
given in Section 2. For 0 < 7T/2, it is the unit ball with a pointed circular
cone cut out, and the new ellipsoid contains more than half the unit ball.
Thus ludin and Nemirovskii consider cuts that are "shallower" than cuts
through the center but not cuts that are "deeper." (See Figure 1 (b) for
a deep cut; these will be discussed in Section 4.) However, their formulas
are valid for 0 < 0 (i.e. deep cuts) also. (They used the shallower cuts in
algorithms where subgradients are not available and must be approxi-
mated by using function values. By cutting off less than half the current
ellipsoid they could still guarantee that the desired solution was contained
in the new ellipsoid in spite of the use of approximate subgradients.)

Khachiyan's [1979] contributions were precisely those described in
Section 2. He gave a modified form of the ellipsoid algorithm for the
feasibility problem of (2.1) with integer data and showed that feasibility
or infeasibility could be determined in polynomial time by this algorithm.

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1053

We conclude this section by mentioning other related papers in the
Soviet literature. For surveys on nondifferentiable optimization see Shor
[1976, 1977b] and Polyak [1978]. Shor [1977b] states that computational
comparisons of subgradient algorithms, subgradient algorithms with
space dilation in the direction of the subgradient (Shor [1970a, b]) or in
the direction of the difference of successive subgradients (Shor and
Zhurbenko) and the "conjugate subgradient" methods of Lemarechal
[1975] and Wolfe [1975] tend to favor the method of Shor and Zhurbenko,
at least for dimensions up to 200-300. For higher dimensions, storing and
updating the extra space dilation matrix becomes too expensive, and
subgradient or conjugate subgradient methods become preferable. The
paper also demonstrates the application of the ellipsoid algorithm to
computing saddle points.

The interesting paper by Nemirovskii and ludin [1977] concerns an
application of the ellipsoid method where the "effective" dimension may
be much less than n. In this case a projection method can lead to faster
convergence. Finally we note that, for Shor's earlier method [1970a, b],
Skokov [1974] suggested updating the symmetric matrix Bk = JkJk' to
save storage and reduce computation. His formulas are analogous to
those of Gadcs and Lovasz which we have given as (2.5)-(2.7). We will
show in Section 6 some of the dangers of this approach.

4. MODIFICATIONS OF THE BASIC ALGORITHM

In this section we describe several simple modifications to the basic
algorithm to improve its rate of convergence. The most obvious way to
do this is to use deep or, possibly, "deepest" cuts at each iteration to
generate smaller ellipsoids. As already mentioned in Section 3, Iudin and
Nemirovskii's [1976b] description of the ellipsoid algorithm allows for
cuts that do not pass through the center of the ellipsoid. Although they
were interested in "shallow" cuts, their formulas apply to deep cuts as
well. Shor and Gershovich [1979] were the first to propose the use of
deep cuts to speed up the ellipsoid method. Because both of these papers
were unknown to most researchers, much of the recent work on improving
the ellipsoid algorithm has involved the rediscovery of their formulas.

Deep Cuts

As before, suppose that xk violates constraint (2.2). The ellipsoid Ek+1

determined by formulas (2.5)-(2.7) contains the half-ellipsoid {x E Ekl a TX

c aTxk}. As we only require that Ek+1 contain the smaller portion of Ek,

{x E EklaTx c ,B}, it seems obvious that we can obtain an ellipsoid of
smaller volume by using the "deep cut" aTx -< , instead of the cut aTx
c aTXk, which passes through the center of Ek. This is illustrated in

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1054 Bland, Goldfarb and Todd

Figure 1 (a) and (b). The smallest such ellipsoid is given by x*+1 and Bk?l

as in (2.5)-(2.6) with the parameters T, a, and 6 chosen as

T = (1 + na)/(n + 1), a = (2(1 + na))/((n + 1)(1 + a)), (4.1)

and 8 = (n2/(n - 1))(1 - a2)

where

a = (aTxk-/8)/ aTBka. (4.2)

For a proof of this see Appendix B.
The quantity a which now appears in the updating formulas represents

the (algebraic) distance of Xk from the half-space H = {x E IR nI aTx -< /}
in the metric corresponding to the matrix B (i.e., 11 yll =

(yTB-ly)1/2). Another way of viewing a is to represent the ellipsoid Ek as

Ek = {x E IRE x = Xk + JkZ, iZil < 1) (4.3)

where Jk is an n X n nonsingular matrix. This is the representation used
by Khachiyan [1979]. Observe that l1 zl < 1 is equivalent to 11 J-1(x -X) xk

<1; hence it follows from (2.4) and (4.3) that Bk = JkJk. In terms of the
z variables, Ek is the unit ball and H is the half-space H = {z E 1Rt I
a TZ < -a) , where a = JkTa/ II JkTa II. Consequently, in this transformed
space I a I is the ordinary Euclidean distance of the bounding hyperplane
of H from the origin. If a > 0 then, clearly, the origin lies outside of H, or
in the untransformed space, Xk lies outside of H. If a < -1 Ek is contained
in H; if -1 < a ? 1 the set Ek n H is nonempty; and if a > 1 the set
Ek n H is empty, implying that (2.1) is infeasible. The same statement
holds if Ek and H are replaced by the unit ball {z E IRl In 11Zl < 1) and H,
respectively.

Formulas (2.5), (2.6), (4.1) and (4.2) are only valid for determining Ek+1
for -1/n < a < 1; if a < -1/n the smallest ellipsoid containing Ek fl H is
Ek. Moreover, for -1/n -< a < 1 the ratio of the volume of Ek+1 to that of
Ek iS

r(a) = ((n2(1 - a2))/(n2 _ 1))(n1l)/2(n(1 - a)/(n + 1)). (4.4)

This ratio decreases monotonically from one, when a = -1/n and
Ek+1 Ek, to zero, when a = 1 and Ek+j degenerates to a point. For
-1/n a a < 0 the cut aTx c ,8 is "shallow," i.e. Ek n H contains more
than one-half of Ek including xk. Clearly such shallow cuts need never be
used.

By computing a for each inequality in (2.1) we can select the deepest
cut possible; that is, the cut corresponding to the largest a. If this or any
other a is greater than one, then the system (2.1) is infeasible. Using deep
cuts should help to speed up the ellipsoid algorithm. However, as we shall
show in Appendix C, the improvement obtained can be rather disappoint-
ing.

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1055

Krol and Mirman, and Goffin [1979b] give relaxations of the deep-cut
version of the ellipsoid method by allowing different formulas for , a and
S. Krol and Mirman hypothesize that such a choice may result in a faster
algorithm, since a locally optimal strategy for volume reduction is not
necessarily globally optimal.

Surrogate Cuts

By combining inequalities in (2.1) one can sometimes obtain cuts that
are deeper than any cut generated by a single constraint in (2.1). Any cut
of the form UTATx C u'b, (i.e. aTx c /8, with a = Au and /8 = uTb) is
valid as long as u - 0, for then no points that satisfy (2.1) are cut off by
this inequality. In Goldfarb and Todd [1980], where the term "surrogate"
cut was introduced, and in Krol and Mirman the idea of using such cuts
with the ellipsoid method was proposed. Clearly the "best" or "deepest"
surrogate cut is one which can be obtained by solving

maxu2: uT(ATXk - b)/(uTA TBAu) 1/2,

which is equivalent to solving a quadratic programming problem. Let

ATx -< b (4.5)

be any subset of the constraints (2.1), where the columns of A are linearly
independent and at least one of the constraints in this subset is violated
by Xk. One can easily prove (see Goldfarb and Todd) that if

u = (ATBA)-l'(Axk - b) (4.6)

is nonnegative, then the surrogate cut UTA T dT6 is deepest with
respect to that subset. It is shown in Goldfarb and Todd, and Todd
[1979], that if A TB,A has nonpositive off-diagonal entries-i.e., the con-
straint normals in A are mutually obtuse in the metric given by Bk-and
if Xk violates all constraints in (4.5), then the u- given by (4.6) is non-
negative.

Solving a quadratic programming problem or computing ui by (4.6) for
a large subset of constraints may be too high a price to pay to obtain the
deepest or nearly deepest surrogate cut. Consequently in Goldfarb and
Todd it is recommended that only surrogate cuts which can be generated
from two constraints be considered.

Krol and Mirman give necessary and sufficient conditions for forming
a surrogate cut using a deepest cut together with another less violated-
possibly even satisfied-constraint. These conditions indicate whether or
not the u in (4.6) for the 2-constraint case is nonnegative. Since the
surrogate cut is deeper than either of the cuts from which it is generated,
the process can be repeated iteratively using the newly formed surrogate
cut and a regular cut. If a valid surrogate cut cannot be formed, then
either the point on the current deepest (surrogate) cut closest to the

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1056 Bland, Goldfarb and Todd

center of Ek in the metric Bk is a solution to the system of linear
inequalities (2.1), or that system is infeasible. The iterative procedure
described in Krol and Mirman which is based upon these observations
can be viewed as a relaxation method for solving the feasibility problem
for (2.1) independent of the ellipsoid algorithm. This is illustrated in
Figure 4. If implemented efficiently the main computational cost on each
step comes from the computation of the inner products of all m constraint
normals with the normal to the current deepest (surrogate) cut in the
metric Bk. If deepest cuts are to be found efficiently, the quantities
aJTBkaj, i = 1, * , m should be updated on each iteration as described
in Goldfarb and Todd.

Parallel Cuts

If the system of linear inequalities (2.1) contains a parallel pair of

constraints

aTx ' fi and -aTx-<-,

it is possible to use both constraints simultaneously to generate the new
ellipsoid Ek+l. Let a = (aTxk - 8)T/%aTBka and& = ('a - aTxk)/ra7Bka,
and suppose that acx < 1/n and a c -a' c 1. Then formulas (2.5)-(2.6)
with

a= (l/(n + l))(n + (2/(a-a (1- aa&-p/2))

T = ((oa -a/)/2), = (n/(n (a2 + a2 - p/n)/2),

and p = J4(1 - CX2)(1 -_ 2) + n2(2 - a2)2

generate an ellipsoid that contains the slice {x E Ek j/3 c aTx c /3} of Ek.

Whenf, = fi, i.e., aTx = f8 for all feasible x, 'a = -a and we get T = a,

A~~~

first surrogate /
,.

a
/

a +',

a'uu1a1tU2o3>/ / c 1 2
3wy ~~~a3

second surrogate
a +u2a2 2 Os 02

Figure 4. Krol and Mirman's iterative procedure for generating
surrogate cuts.

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1057

a = 1, and 8 = (n2/(n2 - 1))(- a2); that is, rank (Bk+1) = rank (Bk) - 1

and Ek+1 becomes flat in the direction of a.
As in the case of deep cuts, Shor and Gershovich were the first to

suggest the use of parallel cuts and provide formulas for implementing
them. They also derive formulas for circumscribing an ellipsoid (of close
to minimum volume) about the region of a unit ball bounded by two or
more hyperplanes which intersect in the interior of this ball and whose
normals are mutually obtuse. The formulas for parallel cuts were also
derived independently by Konig and Pallaschke, Krol and Mirman (pri-
vate communication), and Todd [1980]. Proofs that they give the ellipsoid
of minimum volume can be found in Konig and Pallaschke, and Todd

[1980].
Given a violated constraint, say ax c , Konig and Pallaschke show

how to generate a parallel constraint -aTX c-, which does not cut off

any points in Ek that satisfy (2.1) and which yields a slice {x E Ek* c
acT'x C 1} of Ek that has minimum volume. Whenever there is a constraint
whose (outward) normal makes an obtuse angle with a in the metric
defined by Bk and whose bounding hyperplane intersects the semi-infinite
open line segment 5 = {xIx = Xk - TBka/v'YIBka, T < 1} this can be
done; see Figure 5 (a) and (b). Formulas for the appropriate / and
corresponding 'a are given in Konig and Pallaschke. Note that the case
g> ,B can occur, as illustrated in Figure 5 (c), indicating that the set {x
E EEkaTx cx ,} is empty.

5. SOLVING LINEAR PROGRAMMING PROBLEMS

So far we have considered only the feasibility problem for systems of
linear inequalities. Here we address the linear programming problem,
which we write in inequality form as

X t 9- o~~~~~~~~~~~~~~~~-
Xi a awxB

(a) (b) (c)

Figure 5. Generation ot parallel constraint for the case Bk = I. (a)
Parallel constraint derived from the better of two candidates. (b) No
parallel constraint possible. (c) Parallel constraint indicating an empty
slice.

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1058 Bland, Goldfarb and Todd

maximize CTX subject to ATx b, x >- 0, (5.1)

where AT is m x n. There are several ways this problem can be attacked
by the ellipsoid algorithm. We discuss each approach both from a theo-
retical viewpoint, to establish the existence of a polynomial algorithm for
(5.1), and from a practical viewpoint. We conclude this section with a
discussion of how to compute in polynomial time an exact optimal
solution from a sufficiently accurate approximation.

Simultaneous Solution of the Primal and Dual in IRm+n

The problem dual to (5.1) is

minimize bTy subject to Ay > c, y > 0. (5.2)

By strong duality, (5.1) has a finite optimal solution if and only if (5.2)
does, in which case the objective function values are equal. For any
primal feasible x and dual feasible y we have cTx c bTy by weak duality.
Thus x * and y * are optimal solutions to (5.1) and (5.2) respectively if
and only if they solve the system of linear inequalities

ATx' b

-x' 0

-Ay '-c (5.3)

-yS0
-cTx + bTy : 0.

Hence we may apply the ellipsoid method to (5.3) to solve (5.1) and (5.2)
as pointed out by Gaics and Lova'sz. Clearly, a polynomial algorithm for
linear inequalities yields in this way a polynomial algorithm for linear
programming problems. In addition this method directly produces an
optimal dual solution.

From a practical viewpoint there are several disadvantages to this
approach. The ellipsoid algorithm is applied to a system of linear ine-
qualities in IRm'+; the high dimensionality slows convergence. In many
practical problems the feasible region of (5.1) is bounded and explicit
bounds are known; thus a method working only in primal space can be
initialized with an ellipsoid of large but not astronomical volume, speeding
convergence. Bounds on the dual variables may be harder to obtain and
hence the initial ellipsoid for (5.3) may be much larger than necessary.
Next, all solutions to (5.3) lie in the hyperplane cTx = bTy; hence, even if
(5.3) is feasible, the feasible set has zero volume. Thus perturbation of
the right hand sides in (5.3) (or a related modification of the algorithm)
is necessary. Moreover, even if (5.3) is feasible, the volume of the feasible
set of the perturbed problem will be very small; thus the number of

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1059

iterations is likely to be very large. Another disadvantage is that if the
algorithm determines that (5.3) is infeasible, yet no feasible primal or
dual solution is produced, it is not clear whether (5.1) is infeasible or
unbounded.

Some of these difficulties can be mitigated by the strategy used to
choose constraints of (5.3) to generate cuts for the ellipsoid algorithm.
Note first that, except for its final constraint, (5.3) separates into two
subsystems. Thus if no cut is based on this last constraint, the matrix Bk

defining the ellipsoid Ek remains block diagonal, with two blocks corre-
sponding to the x- and the y-variables. When such a matrix Bk is updated,
as long as the final constraint is not used as the cut, only one of the blocks
is (nontrivially) updated, and only one of Xk and yk changes. Thus the
high dimensionality is not too drastic a problem until feasibility is
reached. It seems reasonable to base cuts only on the primal constraints
until a primal feasible x is generated, then only on the dual constraints
until a dual feasible y is generated. (A similar strategy can be used for
problems with block angular structure, i.e. block diagonal constraints
with coupling constraints; note that staircase systems can be permuted
to this form. In this case, Bk remains block diagonal until a cut based on
a coupling constraint is used-such cuts should be postponed as long as
possible.) Suppose that, before perturbation of (5.3) as in Section 2, L
bits are necessary to define the system. Then one can show that, using
the strategy above, if no primal feasible solution (to the perturbed system)
is generated in 6n(m + n + 1)L steps, (5.1) is infeasible; if a primal
feasible solution is generated in k steps but then no dual feasible solution
is generated after a further min {k + 6m(m + n + 1)L, 6(m + n)(m + n
+ 1)L - k} steps, (5.1) is unbounded.

Jones and Marwil [1980a] present a variant of this approach of simul-
taneously solving the primal and dual using the complementary slackness
conditions for (5.1) and (5.2) to reduce the dimensionality of the problem
as iterations are performed. If a, given by (4.2), is less than -1 for one of
the constraints of (5.1) or (5.2), then the ellipsoid Ek is contained in the
interior of the halfspace associated with that constraint; hence, one can
conclude that the complementary constraint must be binding at any
solution to (5.3). Consequently, -when such a situation occurs, Jones and
Marwil project the current iterate Xk onto this binding constraint and
collapse the ellipsoid into its intersection with that constraint. All con-
straints with a < -1 can be temporarily eliminated. When a solution to
(5.3) excluding these constraints is found, if they are satisfied by that
solution we are done. Otherwise it is necessary to continue iterations
after reintroducing any violated constraints into the problem.

It can be shown from (4.4) that for a given a, r(a), the ratio of the
volumes of Ek+i and Ek, increases with the dimension n. The volume
reduction from a cut based on the primal constraints will therefore be

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1060 Bland, Goldfarb and Todd

smaller in the product space JRn+ than in the primal space 1R'. Hence it
is desirable to handle the objective function of (5.1) without increasing
the dimension of the problem. We now discuss two such approaches
based upon systems of linear inequalities of the form

ATx c b, -x 'O, -cTx c _D (5.4)

for various values of t. These methods do not directly yield optimal dual
solutions.

Bisection Method

This method initially applies the ellipsoid algorithm to the constraints
of (5.1) to obtain a feasible solution x if one exists; if there is none, we
terminate. Then D = cTx is a lower bound on the optimal value of (5.1).
Next we obtain an upper bound on this value. If the feasible region of
(5.1) is bounded and contained in the current ellipsoid Ek given by (2.4)
then - = cTxk + (cTBkc)l/2 is such an upper bound. Otherwise, we may
apply the ellipsoid algorithm to the constraints of (5.2) to obtain a dual
feasible solution y if one exists, and set f = bTy; if (5.2) is infeasible,
we terminate. From now on, each major iteration starts with an interval
[D, D] that contains the optimal value, where = cTx for some known
feasible solution x, and applies the ellipsoid algorithm to (5.4) with D =

(D + t)/2. If a feasible solution Xk is generated, we set x <- Xk, D - CTXk

and proceed to the next major iteration. If it is determined that (5.4) is
infeasible, we set D <- D and proceed to the next iteration. The process
stops when f - D is sufficiently small. This approach has the advantage
of operating only in R' (except for possibly one application in IRl').
Polynomial-time algorithms combining bisection with the ellipsoid
method are given by Padberg and Rao [1980a] for linear programming,
and by Kozlov et al. [1979] for convex quadratic programming.

From a practical viewpoint, the main disadvantage of bisection is that
the systems (5.4) with D too large will be infeasible and may take a large
number of iterations. It is therefore imperative to use the deep cuts of
Section 4 and the resulting tests for infeasibility to allow early termination
in such cases. Note that when a major iteration is started with a new D

greater than the old (i.e., a feasible solution x has just been generated),
the final ellipsoid of the previous major iteration with center x can be
taken as the initial ellipsoid of the new major iteration. If, instead, D has
just been decreased, we can initialize with the last recorded ellipsoid with
a feasible center-the algorithm backtracks. Avoiding such backtracking
leads to the final method that we shall consider.

Sliding Objective Function Method

We start as before by generating a feasible solution x to (5.1). We next

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1061

consider (5.4) with D D = cx. Although x is feasible in this problem, we
may proceed with the ellipsoid algorithm using the cut cTx>-cTx = ,
since the next ellipsoid can be defined even when the current iterate lies
on the chosen cut. Hence in this method, we are always considering
feasible systems (except possibly the first). Whenever a feasible iterate Xk
satisfies cTXk > cTx = we set x-- Xk and -- cTxk and proceed as
above.

This method is probably the most efficient for practical implementa-
tion. It always considers feasible systems and never backtracks. All
computation takes place in IR'. If the feasible region of (5.1) is bounded
and known to lie in Eo, then upper bounds k can be found;

Dk= mint {k_, cTXk + (CTBkc)/1}".

Computation can be terminated when D and Dk are sufficiently close. A
refinement to the method to improve its performance is to set x<-- xk +
Os whenever Xk is feasible; here s is an ascent direction (e.g., s = c or s =

Bkc) and 0 is as large as possible so that x is feasible.
We mention briefly the modifications required to obtain a polynomial

algorithm using this strategy. First we use the ellipsoid algorithm to
determine whether (5.1) is feasible. If so, we next determine whether it is
unbounded, by applying the ellipsoid algorithm either to the constraints
of (5.2) or to the system

ATx O

-x 'O

-CTX <-1;

any solution to these inequalities yields an unbounded ray for (5.1).
Suppose we have determined that (5.1) has a finite optimal solution. Let
this, as yet unknown, solution be x* and have value t*. Let us assume
that the feasible region of (5.1) contains a ball S(ao, r); otherwise we
ensure this by making suitable perturbations. Then the feasible region
also contains the "cone" C with vertex x* and this ball as its base. For
any D < t*, we can easily obtain a large enough lower bound on the
volume of C =C n {x E IR' I cTx 2 t} so that the "sliding objective
function" method for (5.1) obtains feasible solutions with objective func-
tion values within E of '* in a number of steps polynomial in L, I log 1/r I
and log(1/E). Note that C assumes the role played by the ball S(ao, r) in
the inequality case. From these solutions optimal solutions can be ob-
tained when E is sufficiently small.

The sliding objective function method was first proposed by Iudin and
Nemirovskii [1976b] and Shor [1977a]. Grotschel et al. use it as a tool for
demonstrating polynomial equivalence of certain combinatorial optimi-
zation problems. Goldfarb and Todd add the refinement of stepping as

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1062 Bland, Goldfarb and Todd

far as possible in a steepest ascent or Newton-like direction, while still
remaining feasible, before effecting an objective function cut. Pickel
[1979] proposes stepping to a vertex by a simplex-like approach before
effecting an objective function cut.

Exact Solutions from Approximate Solutions

Thus far we have only addressed the approximate solution of linear
programming problems. For e> 0, x is defined to be an E-approximate
solution of (5.1) if there exist a feasible solution y and an optimal solution
x* of (5.1) such that IIy - xi c E and cT(x* - x) c <. A nice technique for
obtaining an exact solution from an E-approximate solution in polynomial
time is discussed in Grotschel et al. It involves choosing an appropriately
small E> 0 and rounding an E-approximate solution, as we shall explain.
We will assume that (5.1) is known to have an optimal solution-we have
already observed that primal and dual feasibility can be checked in
polynomial time.

Suppose that A is a positive integer and x* is a rational vector of the
form

(pil/qi ***XPnlqn ; (5.5)

Pi, qi integer and I qi A i, i = 1, * ,n.

Given x E aRn such that x* is in the interior of the ball S(x, 1/(2A 2)), then
x* is the unique rational vector of form (5.5) in this ball. For y E

S(x, 1/(2A2)) implies that 11 y -x* 11_ 1/A2, but if y is also of the form
(5.5) and for some j, yj #& xj*, then I yj-Xj* x > 1/A2 implying that 11 y
- x* 11-1/i2. Therefore if x, x* are as above, x is known, and x* is
unknown, we can obtain x* by rounding each component of x to the
nearest rational p/q having I q I C A by the method of continued fractions
(see Niven and Zuckerman [1966]).

We will be interested in the situation where x* is an optimal extreme
point of the linear programming problem (5.1), and x is obtained from
the ellipsoid method. Grotschel et al. point out that one can replace the
objective function vector c of (5.1) by a perturbed vector d = ync +

? , n-l)T such that the problem

maximize dTx subject to ATx ' b, x ? 0 (5.6)

has a unique optimal solution at an extreme point x*, and x* also solves
(5.1); for example we can set y - 2Ln+L+. It is important to note that log
-y is polynomial in L and n, so that the size of (5.6) is a polynomial
function of the size of (5.1). By Cramer's Rule x* is of the form (5.5) for
A greater than or equal to the absolute value of the largest determinant
of any n x n submatrix of the constraint matrix of (5.1); in particular we
can take A = 2L. Now we would like to be able to guarantee that for

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1063

sufficiently small E > 0

lIx* - xlI < 1/(2A2) (5.7)

for every E-approximate solution x of (5.6). If, in addition, E can be chosen
so that

log(1/E) is polynomial in n and L, (5.8)

then an E-approximate solution x of (5.6) can be computed by the ellipsoid
method in time polynomial in n and L. It follows from a derivation in
Grotschel et al. that one can specify E as a function of n, L, and 11 c so
that (5.7) and (5.8) are satisfied. With A = 2L and -y = 2Ln+L+1 one can set
l/E=- n3/2 2(f2+2f+2)L+2f+5 + 1c lIn"' 22nL+3L+5 Since xj < 2L for each compo-
nent xj of x, the rounding of x by continued fractions requires at most
O[n(p + L)] arithmetic operations each involving numbers with at most
p + L binary digits, where p is the number of binary digits of precision
maintained in the ellipsoid method.

Continued fractions are also used by Kozlov et al. to round an approx-
imate optimal objective function value to the exact optimal value in
polynomial time. (See Section 7.)

6. IMPLEMENTATION

In our description of the ellipsoid algorithm, we have followed Gacs
and Lovasz in representing an ellipsoid Ek by its center Xk and a positive
definite symmetric matrix Bk. This representation results in particularly
simple updating formulas for determining, Xk+1 and Bk+1, and hence Ek+l.

Unfortunately, however, if these formulas are used to implement the
ellipsoid algorithm on any currently available finite precision computer,
roundoff errors will almost invariably cause the computed matrices Bk to
become indefinite. Consequently, the quantity aTBka, whose square root
is required, may turn out to be zero or negative.

To avoid such numerical difficulties one must implement the ellipsoid
algorithm in a numerically stable way. One approach that can be used is
to represent the ellipsoid Ek as in (4.3)-i.e. by its center Xk and a
nonsingular matrix Jk which transforms the unit ball into Ek shifted to
the origin. Recall that

Bk = JkJk * (6.1)

If we make this substitution in formulas (2.5)-(2.6) and define ak =

Jk a/ii JkTa || and Wk = Jkak, we obtain

Xk+1 = Xk - TWk (6.2)

and Bk+1 = S(JkJkT - UJkakakk 'JkT)

= Jk(I - Uakak)Jk

= Jk(I - Takak)(Ia- akakT)Jkk

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1064 Bland, Goldfarb and Todd

where I - = -(_ a)112. From this we obtain that

Jk+1 = 8 a Jk(I vakakT). (6.3)

It is evident from (6.1) that Jk can be replaced by JkQk, where Qk is an
n x n orthogonal matrix, (i.e. QkTQk = I) without any effect on the
ellipsoid Ek. Consequently, although Bk in (2.4) is unique, Jk in (4.3) is
not. This also follows from the observation that replacing Jk by JkQk in
(4.3) corresponds to first rotating the ball {z E IRn R I 1I Z 1 1) before
applying Jk to it. If one chooses Qk+l to be an orthogonal matrix whose
first column is the vector ak, one obtains

Jk1l= Jk+lQk+l (6.4)

81- Jk(I - vTacAka)Qk+l

- Jk4 / (Qk+1 - rTakelT) = JkQk+lAk (6.5)

where e1 denotes the first column of I and Ak= diag(3112(1 -r), 81/2

.**, 81/2). Except for a factor of 21/8n2 introduced by Khachiyan to
compensate for roundoff effects, (6.5) is the updating formula given in
Khachiyan [1979] along with (6.2).

Since Bk is symmetric positive definite, we can always choose Jk to be
a lower triangular marix-i.e. Bk = JkJk is the Cholesky factorization of
Bk. By properly choosing Qk+i in (6.4) one can ensure that Jk?i is also
lower triangular. This approach has the advantage of saving approxi-
mately one-half of the memory locations and one-third of the operations
required for storing and updating a nontriangular Jk.

Even better yet, one can work with the factorization

Bk = LkDkLk
T (6.6)

where Lk is a unit lower triangular matrix and Dk is a (positive definite)
diagonal matrix. Formula (2.6) involves only a rank-one change to Bk.

Hence Xk, Lk and Dk can be updated in 2n2 + 0(n) operations. Some care
has to be exercised in how this is done since we are subtracting rather
than adding a rank-one term to Bk, and roundoff errors may cause
diagonal elements of Dk to vanish or become negative. A specific numer-
ically stable algorithm which ensures that Dk+l is positive definite is given
in Gill et al. [1975]. On the other hand, we note that formula (6.3) can
result in Jk losing rank as a result of roundoff errors.

It is possible to keep Jk in (6.3) and Lk in (6.6) in product form. Indeed
such implementations are analogous to the product form of the inverse
and the Bartels-Golub LU factorization for the basis matrix in the simplex
method (see Bartels [1971]).

7. RELATIONS TO THE SIMPLEX METHOD AND OTHER METHODS

In this section we indicate some of the relations of the ellipsoid method

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1065

to the simplex method and other computational procedures. Extensions
to optimization problems other than linear programming are also cited.

Some interesting observations are contained in the paper by Halfin.
His view of the ellipsoid algorithm is similar to the analyses originally
taken by both Shor [1970a], ludin and Nemirovskii [1979b] and more
recently by Krol and Mirman, and Jones and Marwil [1979]. In effect, all
of these authors consider the space 1R to be transformed at each iteration
so that the current ellipsoid is a sphere. Recall from (4.3) that the ellipsoid
Ek C En is transformed by z = T(x)-- Jk1(x - Xk) into the unit sphere.
If one performs this "space dilation," to use the terminology of Shor, then
instead of the ellipsoid shrinking in volume on each step, the feasible set
(2.1) in the "dilated" space of the z variables, Pk = {zl (A)Tz bk,

where Ak = JkTA and bk = b - ATxk, expands. If the feasible set has a
nonempty intersection with the initial ellipsoid, a unit ball, then, since
this set expands and is contained in the unit ball after each transforma-
tion, after a polynomially bounded number of steps 0 E Pk, indicating
feasibility.

One can of course view simplex pivoting in a similar way. If one uses it
to find a feasible point satisfying the constraints Ax = b, x- 0, given in
standard form, then each simplex pivot (on an infeasible row) can be
thought of as an affine transformation from one space of nonbasic
variables to another obtained by exchanging one nonbasic and basic
variable. Partitioning A and x into basic and nonbasic parts A = [B I N]
and XT = [XBT, XNT], it is clear that simplex steps are performed until
XN = 0 is contained in the transformed polytope P = {XN I XN ! 0,

B-1NXN c B-1b), or infeasibility is detected.
Unlike the other authors who keep an explicit form of the operator Jk

and update it as in (6.3) on each iteration, Halfin applies the "space
dilation operator" V1'2[I - ra Wa(k)T] (cf. (6.3)) to Ak to obtain Ak+l, while
simultaneously updating bk to b kl. Here a(kl is a column of Ak corre-
sponding to a violated constraint normalized by its length. Computation-
ally there is little to recommend this approach to that of updating Jk,

just as in the simplex method there is little to recommend the standard
tableau version over the revised simplex method using an explicit inverse.
In the second variant of the ellipsoid method given by Krol and Mirman,
both the matrix Jk and the constraint data Ak and bk in the affine-
transformed space are updated on each iteration.

Halfin also remarks that there is a similarity between the update of
Ak_i.e, a (k+l) = o1/2(a (k)

- (7ra)T a (*)/a)Ta(k))a Mk)), j - 1, j .., m-and
a simplex pivot. Whether this observation will lead to further understand-
ing of the relationship of the ellipsoid algorithm to the simplex method
remains unclear. In fact, the above iterative formula appears to bear a
closer resemblance to Gram-Schmidt orthogonalization (S = a= 1) than
to a simplex pivot. Although this resemblance is not mentioned in Halfin,

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1066 Bland, Goldfarb and Todd

it is shown that a (k) becomes "more orthogonal" to al of the other a (*'s

after a space dilation based upon a (k). However, in Goldfarb and Todd it
is observed that if ap , a(*) and a(*) are mutually obtuse, then as a
consequence of such an ellipsoid step a(k) and a(k) will become more
obtuse, even though they become more orthogonal to a (k). For the special
case of a full-rank system of linear equations Goffin [1979b] proves that
ABknAT _ (n(1- _))k(D + t2), where D is a positive definite diagonal
matrix, t2 is a matrix with elements whose order of magnitude is
(1 - a)k, when the cuts are chosen cyclically. Thus in the metric corre-
sponding to Bk the constraint normals progressively become more and
more orthogonal. Goffin also shows that in this special case not only does
the volume of the ellipsoid shrink, but each of its axes shrinks as a
geometric series, and the iterates xk converge to the solution A-lb at a
geometric rate which depends only upon n.

Just as in the simplex method, there are many ways to implement the
ellipsoid method. These include using and updating: (i) the positive
definite matrix Bk as described in Section 2 (see Gacs and Lovisz,
Padberg and Rao [1980a], Grotschel et al.); (ii) the matrix Jk which
transforms a sphere into the ellipsoid Ek translated to the origin (see
Shor [1970a], Khachiyan [1979], Krol and Mirman); (iii) the Cholesky or
LDLT factorization of Bk (see Jones and Marwill [1979], Goldfarb and
Todd); and (iv) the problem data under the transformation induced by
Jk (see Halfin, Krol and Mirman). A product form version of (iii) is
discussed in Goldfarb and Todd. One of the principal computational and
practical drawbacks of the ellipsoid method is that it is not possible to
implement it and take advantage of any sparsity in the problem data
other than block diagonal structure. To save work, it also has been
suggested that the ellipsoid and relaxation methods be combined into a
hybrid algorithm (Goldfarb and Todd, Telgen [1980]. If a is large enough
one can simply scale Bk; i.e., set T = a, 8 = 1 - a2 and a = 0 in (2.5) and
(2.6). If a >- 1/n the volume ratio is <(1 - (1/n2))n'2 < e-&12n; hence such
an algorithm is polynomial. A hybrid algorithm which combines the
ellipsoid method with the simplex method is proposed in Pickel.

Although relatively little computational experience with the ellipsoid
method has been reported, at present, the general consensus is that it is
not a practical alternative to the simplex method for linear programming
problems. A list of papers reporting computational results appears in
Wolfe [1980]. In fact the only mildly encouraging results are those
reported by Krol and Mirman. (However, at the Spring 1980 ORSA
meeting, Krol and Mirman expressed pessimism about the practicality of
the method.) Our own computational experience indicates that the slow
convergence exhibited in the example analyzed in Appendix C is typical.
We found that in spite of using deepest cuts, surrogate cuts of several

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1067

types, and other refinements, on the average the parameter a (see 4.2)
was approximately 1/n. Thus, unless further breakthroughs in implemen-
tation occur, it is unlikely that the ellipsoid method will replace the
simplex method as the computational workhorse of linear programming.

It is also important to mention that the ellipsoid method can be applied
to problems other than systems of linear inequalities and linear programs.
As stated in Section 3, the ellipsoid method was developed for solving
convex (not necessarily differentiable) optimization problems (Shor
[1970a], ludin and Nemirovskii [1976b]). Clearly much of our discussion
in the preceding sections is applicable to this more general setting. More
is said in the next section about the full generality of the method. It is
more likely that the ellipsoid method will be found to be of greater
practical value for nonlinear and nondifferentiable problems than for
linear programming. In particular, as the subgradient algorithm has been
used successfully to generate bounds for certain combinatorial optimiza-
tion problems (e.g. the traveling salesman problem, see Held and Karp
[1970, 1971]), the ellipsoid method may be useful in this context.

Kozlov et al. [1979] describe a polynomial-time algorithm based upon
the ellipsoid method and the bisection method for solving convex quad-
ratic programming problems. After obtaining an approximate optimal
value, they round it to the exact optimal value f (x*) tls in polynomial
time using a continued fraction expansion. To obtain an exact optimal
point for the quadratic programming problem, they first find Im, the index
set of the constraints which are active at an optimum. This is accom-
plished by determining the compatibility of a sequence of m systems of
theformaiTX=fA, iEEIkU {k},aiTx 3i, i=k+ 1, ...,m and f(x)<
t/s, where Io = 0 and Ik = Ik-i U {k}, k = 1, * , m, if the kth system is
compatible, and Ik = Ik-i if it is not. They then find a point x which
minimizes f(x) over these active constraints. Adler et al., Chung and
Murty [1979], and Jones and Marwil [1980b] have also used the ellipsoid
method to attack the linear complementarity problem.

8. COMBINATORIAL IMPLICATIONS

It is intriguing that the overall approach of the ellipsoid method does
not depend directly on the availability of an explicit list of the defining
inequalities, or even on linearity. In a very interesting paper, Grotschel,
Lova'sz and Schrijver examine the ellipsoid method in a general frame-
work, establish theoretical results based on the general form of the
algorithm, and use those results to design polynomial-time ellipsoid
algorithms for a number of combinatorial optimization problems. (Be-
cause of the history of misleading and fallacious conclusions concerning
the ellipsoid method and its relationship to combinatorial problems, we
hasten to add that the combinatorial problems solved in Grotschel et al.

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1068 Bland, Goldfarb and Todd

are not among the A2-hard problems, unless - = AY.) In this section we
will attempt to portray the interesting way in which Grotschel et al. have
applied the ellipsoid method to combinatorial optimization problems.
(We recently learned of work by Padberg and Rao [1980c] which deals
with the same general approach as Grotschel et al.)

Consider the problem

maximizecTx, xEPCR'.

The basic operations of the ellipsoid method can be divided between two
routines. The master, or optimization routine (Opt) performs the calcu-
lations associated with updating xk and Bk, and testing for termination.
It then calls (with z = Xk) a separation routine (Sep) which solves the
separation problem:

given z E IR determine that z E P, or find a hyperplane

that separates z from P, i.e. find a vector 7T E Rn (8.1)

such that rTz > gTy, Vy Ep

The separation routine supplies the optimization routine either with the
information that Xk E P, or with 7 as in (8.1). In the former case a, the
outward normal to the next cut, is set to -c; in the latter case it is set to
v. The optimization routine can then calculate xk+l and Bk+1. The essential
character of Opt is as described in Sections 2 and 5, although certain
important technical details (e.g., the use of factorizations) can vary; Sep
is less predictable. In standard implementations of the ellipsoid method
for conventional linear programming problems, e.g., as described in
Sections 2 and 5, Sep is provided with a list of all defining inequalities
aiTx C 8i of P, which it searches for violations at x= Xk. However the
updates of xk and Bk in Opt depend only on the specific inequality
reported by Sep, not on the manner in which it was computed, nor on
any further information concerning the feasible region P. So Sep need
not work by exhaustive search; any method of solving the separation
problem (8.1) will do. We will see in a moment why it might be interesting
in certain kinds of problems to use a separation routine not based on
exhaustive search of the defining inequalities.

An Example: Network Synthesis

The character of the combinatorial results of Grotschel et al. can best
be explained with the help of an example. Although the following network
synthesis problem (see Gomory -and Hu [1961, 1962, 1964]) is not dis-
cussed by Grotschel et al., it nicely illustrates their approach in attacking
combinatorial problems with the ellipsoid method, and its context is
familiar to most operations researchers. The data for any instance of this

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1069

problem consist of a positive integer n and two lists of n' = n(n - 1)/2
nonnegative integers: dij and r1j for all 1 c i < j c n. The problem is to
design at minimum cost an undirected communication network with n
nodes and prescribed two-terminal flow values. We denote the set of
nodes by N = {1, * ., n}. In the n'-vector x = (xij) of nonnegative
decision variables each component xi1 represents the capacity of the link
{i, j} between nodes i and j # i. (In the discussion of this example we
will denote the center of the kth ellipsoid by xk rather than Xk, so that x
is the {i, j}-component of xk.) The network must have sufficient capacity
to accommodate a flow rate of rij units between nodes i and j # i when
they act as the unique source-sink pair. The cost of providing capacity xij
on link ti, j} is dij . xij, and the objective is to provide sufficient capacity
to meet all n' requirements r1j at minimum total cost dTx = 1lstCi<j<n dijxij.
Note that the decision variables are permitted to assume noninteger
values. For example when n = 3 and d = r = (1, 1, 1)T, the unique optimal
solution is x = (1/2, 1/2, 1/2)T

In the special case where all dj = 1 (or d is constant over all links)
Gomory and Hu [1961] (see Ford and Fulkerson [1962]) give a beautifully
simple procedure for solving the synthesis problem. Gomory and Hu
[1962] also point out that the general problem, although not solvable by
their simple procedure, is at least a linear programming problem, one
which unfortunately has an enormous number of defining inequalities.
From the Max-Flow Min-Cut Theorem of Ford and Fulkerson we know
that a given x E IRn' satisfies the single requirement rij if and only if the
capacity of every i - j cutset is at least rij, i.e., if and only if for every
Y c N having i E Y, jE Y N\Y

X(Y, Y) -EheY,k(=- Xhk ~> rij. (8.2)

Thus the set of all feasible solutions x of our synthesis problem can be
described as the polyhedron P consisting of all x - 0 satisfying (8.2) for
all 1 - i < j - n. A large number of the conditions (8.2) can obviously be
discarded. If n > 3 then for a given 0 # Y c N there will be different pairs
ti, j} and ti', j'} such that i, i' E Y and j, j' E Y, so one of the constraints
x(Y, Y) > rij and x(Y, Y) - rij is implied by the other. Hence we can
write the network synthesis problem as the linear programming problem

minimize dTx (8.3a)

subject to x(Y, Y) ry for all X 5, Y i N, (8.3b)

x : 0 (8.3c)

where ry = max{rij: i E Y, i E Y}. This still leaves us with 2n - 1
distinct inequalities of the form (8.3b), each involving only n' = n(n - 1)/
2 variables. Moreover all of the conditions (8.3b) having ry > 0 define

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1070 Bland, Goldfarb and Todd

facets of P; none can be deleted without properly relaxing the feasible
set. To apply the ellipsoid method in the standard way directly to (8.3)
would result in two overwhelming problems caused by the large number
of inequalities (8.3b) relative to the size

1 = llog nj + L1Si<jsn,rij#O [log ri>j

+ ElXi<j-n,dc41o llog dijj + 2(n2 - n + 1)

of the problem encoding.
The first difficulty concerns the performance of the optimization rou-

tine, Opt. The size L of an explicit encoding of our linear programming
problem (8.3) is not bounded by a polynomial function of 1. If the
parameters that prescribe the number of iterations, the number of digits
of accuracy, etc., are set at values based on L, as in Sections 2 and 5, then
the amount of work performed by Opt will be at least proportional to L,
which can be larger than 2n-1. As noted in Section 2, we can help ourselves
here if we can provide x0 E P, R > 0, p > 0 such that S(xo, p) 5 P C
S(x?, R), and log R and log(1/p) are bounded by polynomials in 1.

Note that (8.3) is obviously feasible-we can set x r, or for an initial
interior point of P we can set x??; = rij + 1 for all 1 c i < j ' n. Now let
rm = max{rij: 1 < i <jc n} and let R = NI (rm + 2). The ball S(x0, R)
of radius R about xo is an appropriate initial ellipsoid. Any x E 1R' not
in S(x?, R) has at least one component less than zero or strictly larger
than rm; in the former case x - P, in the latter either x 0 P or there
exists x E P n S(x, R) such that dTi T< d Tx for all nonnegative d. (It is
easy to see from the nonnegativity of all constraint coefficients in (8.3)
that S(x?, R) in fact contains all extreme points of P.) Furthermore
S(x?, R) n P contains S(x?, 1). Because log R is bounded by a polyno-
mial function of 1, this initialization guarantees that the number of
iterations to compute an E-approximate solution of (8.3) and the number
of digits of accuracy can be set to values bounded by polynomials in I and
log(1/E).

Our second major obstacle concerns the performance of the separation
routine. Given a class A'of optimization problems in En in which the
feasible region of each K E Kis described in the problem encoding by a
list of defining inequalities, then exhaustive testing of those inequalities
is a straightforward algorithm that solves the separation problem in time
obviously bounded by a polynomial function of the size of the encoding.
In combinatorial problems such as our network synthesis problem the
description of the feasible region in the problem encoding is not in terms
of the explicit list of defining inequalities (8.3), and, as we have seen,
enumeration of such a list cannot be performed in time bounded by a
polynomial function of 1, the size of the encoding. Therefore, we must
provide an efficient subroutine for the associated separation problem that

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1071

somehow generates a violated inequality if the current test point is not
feasible. This is especially easy for the network synthesis problem; in fact
the separation routine that we will now describe was suggested by
Gomory and Hu [1962] for another purpose, as we shall see later.

Suppose that x E 1E", and we wish to solve the separation problem for
(8.3) at x. Clearly if any component Xij < 0, then the nonnegativity
constraint x-1 > 0 separates x from P. Suppose x >- 0. Let us solve for
each 1 c i < j 5 n the i - 'maximum flow problem in the complete graph
on N with capacity function x; let vij be the computed i - j maximum
flow value. If vij3 rij for all 1 - i < j c n, then x E P. If some vij < r2j,
then the flow algorithm produces an i - j cutset (Y, Y) having
x(Y, Y) = vij < rij, so x(Y, Y) > rij is a violated inequality. Thus we can
solve the separation problem for (8.3) in at most n' = n(n - 1)/2
repetitions of a maximum flow routine. (In fact Gomory and Hu [1961]
have shown that we will need only n - 1 repetitions, since one can quickly
determine n - 1 "dominant requirements" whose satisfaction implies
satisfaction of all n' requirements.) There are several polynomial-time
implementations of the maximum flow algorithm; the flow algorithm of
Malhotra et al. [1978] will solve each of our flow problems in 0(n3)
computations, each involving numbers with at most (p c log[(2R + 2)n]
+ p binary digits, where p is the number of digits of accuracy maintained
in the updates.

Based on the comments above it should now be evident that we can
compute an E-approximate optimal solution of (8.3) in time polynomial in
1 and log(1/E). We can then round our E-approximate solution to an exact
solution as described in Section 5. For this to be done in time polynomial
in 1, we need to choose A and E so that log(1/E) is bounded by a polynomial
in 1, (not L, the size of the encoding of the linear programming formulation
(8.3) of the problem). That our linear programming basic solutions can
arise from nonsingular systems with 2n-1 - 1 rows and columns looks
discouraging. Note however that all but q c n' basic columns are slack
(unit) vectors. So the values assumed by the basic xij-variables arise from
a q x q subsystem Ax = b, where A is a submatrix of the (0,1)-constraint
matrix of (8.3). It follows that det A c [n(n - 1)/2]! < (n2)! < n2n,

permitting us to select A = n2n2 , which allows E to be chosen so
that log(1/E) is polynomial in 1. (One suitable choice is 1/E =

2n?4n2n4+4n3?4n2?n + 25lidiIn4n3+6n2+/2.) Thus we achieve a polynomial-time
algorithm for the network synthesis problem.

This approach may seem a roundabout attack on a straightforward
problem. One could have deduced immediately that the network synthesis
problem is solvable in polynomial time, since it can be posed as a linear
programming problem whose size is a polynomial function of 1, as noted
in Gomory and Hu [1964]. First form the directed graph G =
(N, E), where E is the set of all n' ordered pairs (i, j), 1 c i < j 5 n. Now

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1072 Bland, Goldfarb and Todd

for each of the n' possible source-sink pairs s, t define n' flow variables
flS, one for each (i, j) E E. The network synthesis problem can be posed
as

minimize dTx

subject to: for every s, t E N, s # t

Xi?+1j-n fAS PZ- 1ii ft = 0 for all i E N\{s, t) (8.4)

Zs+1-j-n <nf,:t- E,1,s-_1 f'j,
t

r8t

-xi; c f1dJ cxij for all 1 c5 i < j c< n.

The size of the linear programming formulation (8.4) is evidently poly-
nomial in 1, so direct application of the ellipsoid method to (8.4) yields a
polynomial-time algorithm. However, while (8.3) has approximately 2n-1

rows and n2 columns, the numbers of rows and of columns in (8.4) are
both 0(n4). (Gomory and Hu's [1961] result on dominant requirements
permits this to be reduced to 0(n3).) The significance of the development
above is that while the total size of the formulation (8.3) is much larger
than the total size of (8.4) for large n, the smaller number of columns in
(8.3) yields a much better bound on the number of ellipsoid computations.
In particular it illustrates that the ability to generate violated constraints
efficiently can result in polynomial behavior, even if the total number of
defining constraints is exponential in the size of the problem description.

Most combinatorial optimization problems can, like the network syn-
thesis problem, be recast as linear programming problems in which the
number of defining inequalities is exponential in the size of the original
problem encoding (although it is usually very difficult to find an explicit
description of the defining inequalities). In many of these problems,
including many A&-complete problems, one can specify values of xo, R,
p, p, and A that guarantee a polynomial bound on the number of
computations performed in the optimization routine of the ellipsoid
method. In the terminology of complexity theory, the ellipsoid algorithm
provides a polynomial Turing reduction from the optimization problem
to the separation problem (see Garey and Johnson [1979]). To solve such
problems in polynomial time it suffices to give a polynomial-time sepa-
ration routine. Grotschel et al. have indicated how to accomplish this for
a variety of problems including: optimum branching, undirected Chinese
Postman tour, minimum weight perfect matching, maximum weight
matching, minimization of a submodular set function, and stability num-
ber in a perfect graph. For the latter two problems no polynomial
algorithm was previously known. Though the others were known to be in
P, the approach of Grotschel et al. is new, and the ease with which it

embraces a variety of problems is provocative.

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1073

The casual reader should resist any temptation to conclude that one
should be able to immediately show that Y = A by exhibiting a
polynomial-time separation routine for, say, the traveling salesman prob-
lem. Certainly one can use the approach of Grotschel et al. to establish
that separation problems associated with some -hard problems are
also .4'9-hard, as in the example that follows. But it might be naive to
expect it to be any easier to find a polynomial-time algorithm for such a
separation problem than for the problems previously known to be A5f-
complete.

The forthcoming example of an AY-Lhard separation problem is a special
case of the problem of finding an optimum extreme point of a (possibly
unbounded) polyhedron.

Optimal Extreme Points of Polyhedra

First consider the problem

maximize (cTx: x E Ext(P)}, (8.5)

where P C JRn is a polytope (bounded polyhedron) given by a list of
defining inequalities, c E IRn is given, and Ext(P) is the set of extreme
points of P. The ellipsoid method, since it is a polynomial-time algorithm
for linear programming, provides a polynomial-time algorithm for (8.5).
However if we remove the condition that P be bounded, problem (8.5) is
ADI-complete. If P is unbounded, we cannot simply solve (8.5) by employ-
ing the ellipsoid method (or the simplex method) on the associated linear
programming problem

maximize (cTx: x E P}. (8.6)

The difficulty is that (8.6) may have no (finite) optimal solution even
when (8.5) does-i.e., cx may assume arbitrarily large values over x E
P-as occurs in the example of Figure 6.

To see that the general (i.e., possibly unbounded) form of (8.5) is A?-
hard, consider the special case of a directed graph G = (V, E) with
distinct vertices s and t, and let PG be the polyhedron given by the
solutions x: E -> IR of

>(i,j)eE X(i, i) -(h,i),E x(h, i)= -1,i=t
O, i E V\{s, t}

x(i, j)-O V (i, j) E E.

The extreme points of the unbounded polyhedron PG are precisely the
incidence vectors of directed s - t paths in G. Thus the unbounded
version of (8.5) includes as a special case the problem of finding a longest

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1074 Bland. Goldfarb and Todd

directed s - t path in a directed graph G. The latter problem is -A'P-
complete; it includes as a special case the Hamiltonian path problem and
is, therefore, very closely related to the traveling salesman problem.

Example: An A4YHard Flow Decomposition Problem

To illustrate how the ideas of Grotschel et al. can be used to show that
certain combinatorial problems are -A'Y-hard, we consider application of
the ellipsoid method to the linear programming problem

maximize (cTx: x E PG}, (8.7)

where PG is the convex hull of the extreme points of PG, and the problem
description provides only the facets of PG, not those of PG. This is clearly
equivalent to the longest path problem, which is A9-complete. Yet there
is no difficulty in overcoming the technical considerations needed to
ensure that the computations performed by the optimization routine will
be polynomial-bounded. The inherent difficulty of this problem must
therefore be a reflection of an.inherently difficult separation problem.

The separation problem for (8.7) concerns.flow decompositions in two-
terminal directed networks. Given a vector x: E -E JR one must decide

X2

PI

p3

p2

Xi

Figure 6. The two-dimensional unbounded polyhedron P has three
extreme points; Ext(P) = {p 'p2, p3}. With respect to the maximization
of x2 both p' and p3 are localy optimal among the points in Ext(P).
Should the locally optimal solution pl be discovered by the ellipsoid
method, or the simplex method, that it is globally suboptimal would not
be deducible without backtracking.

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1075

whether x E PG. It is easy to determine if x E PG; one simply checks
x 2 0 and the conservation of flow conditions. This is equivalent to
determining whether x decomposes into a sum of directed s - t path
flows and conservative flows around directed cycles. However member-
ship in PG is more complicated. Given that x E PG, answering if x E PG
is equivalent to answering whether the s - t flow x can be decomposed
into a sum of directed s - t path flows only. It follows that the problem
of determining whether a nonnegative s - t flow in a directed network
decomposes into a sum of directed s - t path flows is A-hard; there
exists a polynomial-time algorithm for this problem only if =.

Polynomial Equivalence of Optimization and Separation

Our comments thus far have not fully conveyed the strength of the
results of Grotschel et al. Suppose that -kis a class of polytopes K each
with known x? and 0 < p < R such that

S(x?, p) C K C S(x?, R}. (8.8)

We have observed so far that the existence of a polynomial separation
algorithm for Y implies the existence of a weak (i.e., E-approximate)
optimization algorithm that is polynomial in log R, log(l/p), log(l/E) and
L, the size of the encoding. Grotschel et al. show that it suffices to have
a polynomial algorithm for all K E kfor the weak separation problem:

given z E IRn either determine that there exists y E K

such that liz - Yfl C E, or give a vector 7T E Rn,

1LvT11 > 1, such that TTZ> 7Ty - E, Vy E K.

Furthermore they establish the converse of this result, namely, if the
optimization problem is weakly solvable for X then so is the separation
problem. These results formalize a notion that underlies much previous
work in combinatorial optimization: the idea that a good characterization
of a class of polytopes seems to go hand in hand with a good optimization
algorithm over that class. As Lovasz [1980] points out, the absence until
Khachiyan [1979] of a known polynomial-time linear programming al-
gorithm was a prominent challenge to this notion. Recent work by Karp
and Papadimitriou [1980] also deals with the relationship between opti-
mization and separation in general combinatorial optimization problems,
under different assumptions than Grotschel et al.

Grotschel et al. demonstrate the polynomial equivalence of weak
separation and weak optimization for any class Yof convex (not neces-
sarily polyhedral) bodies satisfying (8.8), and they use this additional
generality in solving the stability number problem for perfect graphs in
polynomial time. Since Khachiyan's work was motivated by the work of

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1076 Bland, Goldfarb and Todd

Shor [1970a], and ludin and Nemirovskii [1976b] in convex optimization,
it should not be surprising that these results go beyond the polyhedral
domain. However, the rounding arguments that establish the equivalence
of weak and strong (exact) optimization depend on polyhedral structure.

Grotschel et al. give an interesting algorithmic application of their
result that polynomial-time optimization algorithms yield polynomial-
time separation algorithms. The well known greedy algorithm is a poly-
nomial-time algorithm for the maximum weight independent set problem
in matroids. Thus one gets a polynomial-time algorithm for the related
separation problem. Now given k matroids our ability to solve the
separation problems in each, immediately yields a polynomial-time sep-
aration algorithm for k-matroid intersections, and hence one for (frac-
tional) maximum weight independent vectors in the intersection of k
matroids. When k = 2 the vertices of the intersection of the two matroid
polyhedra will be integer, and thus Grotschel et al. provide an alternative
to the algorithms of Edmonds [1968], and of Lawler [1976] for the (2-)
matroid intersection problem.

As with the application of the ellipsoid method to general linear
programming, one must be careful not to confuse the lovely results of
Grotschel et al. concerning theoretical efficiency with practical consid-
erations. They do not suggest that their polynomial-time combinatorial
algorithms should be used, as is, in the practical solution of such problems.
Even in the network synthesis example which has a reasonably modest
bound on the number of iterations and a very easy separation routine,
the required number of bits of accuracy to guarantee the polynomial
bound is orders of magnitude beyond what one would be willing to
maintain in practice.

A Connection with Column Generation

It is also interesting from a practical point of view to note that the
general approach of Grotschel et al. has a dual relationship with a well-
known technique in linear programming, that is, column generation. In
the same sense that one can iterate the ellipsoid method without explicit
knowledge of all of the rows of the constraint matrix, so can one iterate
the simplex method without explicit knowledge of all columns. Moreover
while the amount of work performed by the ellipsoid method seems much
more sensitive to the number of columns than the number of rows,
experience with the simplex method has been exactly the reverse. That
the network synthesis problem can have an enormous number of rows,
but a manageable number of columns, coupled with our ability to easily
generate rows by a flow algorithm, makes the ellipsoid method seem well
suited for this problem. Note that the linear programming dual of the
network synthesis problem (8.3) has few rows and many columns. Fur-

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1077

thermore the same separation routine that generates rows for the ellipsoid
method could be used to generate columns for the simplex method
(applied to the dual of (8.3)). Indeed Gomory and Hu [1962] proposed
exactly that. (Note the substantial advantages of using column generation
to solve the dual of (8.3) as opposed to solving (8.4), or the 0(n3) version
of (8.4).) Clearly any combinatorial problem that is solvable by the
ellipsoid method in conjunction with a polynomial time separation algo-
rithm Y'can also be solved (in its dual form) by the simplex method using
92to generate columns. And the same problem characteristics that make
the ellipsoid method well suited also commend the simplex method. Of
course the simplex method (in its conventional implementations) is not
polynomial. But from a practical standpoint we might not expect to
achieve any better performance from the ellipsoidal approach to these
problems.

9. CONCLUDING REMARKS

We conclude the main body of this paper with some remarks on the
potential value of the ellipsoid method, and we address several questions
raised by Khachiyan's result.

From a practical point of view, analytical and computational investi-
gations of the ellipsoid method have not been encouraging. There are
two principal reasons for this. First, the rate of convergence of the
ellipsoid method, even with the use of deep cuts and surrogate cuts, is
rather slow, especially when compared to practical experience with the
simplex method. The worst-case bound for the simplex method, in any of
its several implementations, is an extremely poor indicator of the
method's actual performance; in fact, practitioners have observed that
the number of iterations tends to be proportional to the number of
constraints, m. On the other hand, testing thus far indicates that the
worst-case bound for the ellipsoid method appears to be a better measure
of the dependence of its computational effort on problem size.

Second, the ellipsoid method does not seem to be able to exploit
sparsity. Thus, even if the number of iterations could be reduced signif-
icantly, the ellipsoid method would still not be a practical algorithm for
solving large sparse linear programming problems unless this drawback
could also be overcome. The method may be of greater interest in the
solution of convex, not necessarily differentiable, optimization problems.

One criticism directed against the ellipsoid method is that it does not
provide optimal dual variables and it does not lend itself to sensitivity
analysis or to the addition or deletion of constraints or variables. How-
ever, once a problem has been solved by the ellipsoid method, this
information can readily be obtained by conventional techniques.

It is important to point out that because of the limitations of finite

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1078 Bland, Goldfarb and Todd

precision arithmetic it is unlikely that any reasonable implementation of
the method would be polynomial. Indeed some researchers have been so
distressed by the presence of L, the length of the problem encoding, the
bound on the number of iterations, that they are unwilling to consider
the algorithm to be polynomial even with full precision. The presence of
L is certainly unpleasant from a practical point of view, but is perfectly
natural to the accepted Turing machine model of computation. Also, note
that L is bounded by (mn + m + n) (2 + log a), where a is the magnitude
of the largest number in the data. Even in such elementary polynomial-
time algorithms as Dijkstra's 0(n2) shortest path algorithm (see Lawler
[1976]), the total computational effort depends on log a, in that each of
the 0 (n 2) steps involves operations on numbers with as many as 1 + log
a bits. Because log a appears in the bound on the number of iterations in
the ellipsoid method, the bound on its total computational effort is a
function of (log a)2. If log a is well accepted, (log a)2 should cause no great
distress.

It should be clear from our discussion of Grotschel et al. in Section 8
that the ellipsoid method is a powerful theoretical tool and a unifying
element in the analysis of the computational complexity of combinatorial
optimization problems. This is especially striking given the noncombi-
natorial nature of the method. One of the most important and long-
lasting effects that Khachiyan's result may have is to expand our per-
spective of linear programming and related combinatorial problems.
Given the extensive use of the simplex method, it is ironic that many
fundamental questions concerning its computational behavior remain
unanswered. Perhaps the excitement caused by the ellipsoid method will
generate further research in this area.

APPENDIX A: COMPUTATIONAL COMPLEXITY AND LINEAR
PROGRAMMING

For the reader unfamiliar with computational complexity we will
attempt to convey some of the background relevant to the question of
the existence of a polynomial-time linear programming algorithm. The
discussion will be informal; the reader is encouraged to consult Aho et
al., Garey and Johnson, and Karp [1972, 1975] for rigorous treatments of
computational complexity. Note that in these references the problems
that go under the familiar names linear programming, traveling salesman,
etc., are not the usual optimization problems from the operations research
literature, but related "yes-no" decision, or feasibility, problems. For
example, the decision problem of determining whether there exists a
traveling salesman tour of length no greater than k, a constant specified
in the input, replaces the usual problem of finding a minimum length
traveling salesman tour. However, for the traveling salesman problem,

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1079

linear programming, and most of the problems of interest here, the
optimization and decision versions are equivalent in a certain sense. It is
easy to solve the optimization problem in polynomial-time, given a
polynomial-time subroutine for the decision problem, and vice versa. (See
the discussion of Turing reducibility in Garey and Johnson.) Thus the
results on L and AY9described in the aforementioned papers, though they
explicitly deal only with decision problems, yield information about the
computational difficulty of the associated optimization problems.

In order to evaluate the effectiveness of an algorithm we might examine
how its running time varies with problem size. Running time can be
represented by the total number of elementary arithmetic operations:
comparisons, additions, multiplications, etc. The size of a problem is
taken to be the length (number of symbols) of an encoding of the problem
data in which integers are represented in, say, binary form. (It is always
assumed that a method of encoding the problem data is part of the
problem definition.) For example the m x n linear programming problem

maximize cTx subject to ATx< b, x> 0 (A.1)

can be encoded by a list of integers: n, m, and the entries ai1 of A, /i of b,
and cj of c in some specified order, separated by sign bits. The binary
expansion of a nonnegative integer p has 1 + Llog pj bits if p is positive,
and 1 bit if p = 0, where logarithms are base 2 and LxJ is the greatest
integer less than or equal to x. So the length of such an encoding of the
linear programming problem (A.1) is

L = (2 + Llog nj) + (2 + Llog mi)

+ (2mn + c Llog I ai jij) (A.2)

+ (2m + EX1iim,#i o Llog 18i11J)+ (2n +
Ej5n,cj0 Llog I cjIJ).

Let J denote a (generic) problem, i.e. an infinite family of (specific)
problem instances Q E S. For example J might represent the linear
programming problem (A.1), and each choice of n, m, A, b, and c
constitutes an instance Q E J. Let - be an algorithm that solves S. For
every Q E Q denote by fI(Q) the running time of s' in solving Q, and let

I Q I denote the length of the encoding of Q. In order to claim that v is
efficient we would like to be able to exhibit for each positive integer s a
"guarantee"

f,(Q) - g(s) for all Q EC9 such that I Q I c s (A.3)

with the property that g does not grow too rapidly as a function of s. We
might be displeased if the best possible guarantee g had g(s + 1) : 2g(s)
for all s (or even g(s + k) - Xg(s) for all s ? t, where X > 1, and k and t
are positive integers) indicating exponential growth in the number of

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1080 Bland, Goldfarb and Todd

computations performed by 4 as problem size increases. sl is said to be
a polynomial-bounded or polynomial-time algorithm if there exists a
polynomial function g(s) satisfying (A.3). Problem 9 is called polyno-
mially solvable if there exists a polynomial-time algorithm for J. The
class of all polynomially solvable (decision) problems is denoted by 9.
Note that in the determination of whether a problem is polynomially
solvable it does not matter whether we encode integers in their binary
expansions, or decimal expansions, or expansion in any base { larger than
1, since such a change increases the length of the encoding by at most a
factor of log 4.

Polynomial boundedness was proposed by Edmonds [1965] and inde-
pendently by Cobham [1965] as a theoretical criterion for algorithmic
efficiency, and has been widely studied. Among the problems for which
there are known polynomial-time algorithms are the assignment, shortest
path, maximum flow, and minimum cost flow problems. There are a large
number of classical optimization problems in operations research for
which there is no known polynomial-time algorithm. These include the
traveling salesman problem, integer linear programming, and various
production scheduling problems. No one has managed to show that there
exists no polynomial-time algorithm for these problems, but the theory
of A2-completeness offers substantial evidence of their difficulty. It
implies, roughly, that there exists a polynomial-time algorithm for, say,
the traveling salesman problem if and only if every problem solvable by
a polynomial-depth branch-and-bound algorithm is solvable by a poly-
nomial-time algorithm.

The decision form of each of the problems noted above is a member of
the class . Informally we can regard AY to be the class of all (decision)
problems solvable by a backtrack search (or branch-and-bound) algo-
rithm for which the depth of the search tree and the number of compu-
tations at each node (subproblem) can be bounded by fixed polynomials
in the size of the problem encoding. (So for every "yes" (feasible) instance,
there is some sequence of branches that leads to a "yes" answer in
polynomial time.) -41A includes a large number of well-known problems;
indeed it should be clear that l C 4aY since a polynomial-time algorithm
is trivially a polynomial-depth backtrack search algorithm (that never
backtracks). Of course the breadth of a polynomial-depth tree may grow
exponentially, as unfortunately occurs in the obvious backtrack search
algorithms for the traveling salesman problem, so we might well imagine
that there could be problems in A'Y not in M. The question of whether
9 4 or e = A0 is unresolved; it is often called the "biggest" open
problem in theoretical computer science. Most researchers consider it
very unlikely that 9= Y.

Although the < AY question is unresolved, problems that must be in

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1081

,VY\g, if Y #4 7A have been identified. Among these are the AY-com-
plete problems first examined by Cook [1971]. Essentially, Cook showed
how to devise from a polynomial-depth backtrack search algorithm for
any problem 9, a polynomial-time algorithm ,w that transforms instances
of -9 into equivalent instances of the satisfiability problem in the propo-
sitional calculus. Every problem . in A2 is in this way polynomially
reducible to satisfiability, which is itself in A'?. Hence satisfiability can
be regarded to be as hard as any problem in A2; it is said to be complete
in 4, or 14-complete. In particular a polynomial-time algorithm a? for
satisfiability would yield for each Q in 1 a polynomial-time algorithm
for &9, which first performs , and then a?.

Now suppose that a problem 9 is known to be 49-complete, e.g. the
satisfiability problem, and suppose further that there is a polynomial-
time reduction that takes instances of -9 to instances of problem ?2'. Then
?2' is said to be 1Y-hard. (The terms "A4-hard" and "AY-complete" are
used in several different senses, corresponding to different notions of
reducibility. The use of "149-hard" in Section 8, as in Garey and Johnson,
is in the weaker sense of Turing reducibility. A problem that is 14-hard
in any of these senses has no polynomial-time algorithm unless 7 =

-4/9.) If the 147k-hard problem 2' can be shown to be in AY, then .9' is
149-complete. Cook's Theorem thereby simplifies the requirements for
demonstrating that additional problems are also A7-complete. He showed
in this way that the clique problem for graphs is 47-complete. Karp
[1972] used Cook's Theorem to show that many well-known optimization
problems, including the traveling salesman problem, are 47-complete. A
host of researchers have since contributed to the list of 1Y-complete
problems, which includes many familiar to all operations researchers.
(More than 300 of these problems are collected in Garey and Johnson.)
In fact the decision versions of most of the standard (deterministic)
discrete optimization problems in the operations research literature were
shown to be in ?, or to be 147k-complete, some time ago. However, one
problem that until recently resisted classification was linear program-
ming, perhaps the most widely studied of all of the problems in operations
research.

Although Dantzig's simplex algorithm, in its usual implementations,
has been overwhelmingly successful in the solution of real-world linear
programming problems, these implementations are not polynomial-
bounded. Klee and Minty [1972] gave the first example of an infinite
family of linear programming problems in which the number of simplex
pivots (with the "approximate steepest ascent" pivoting rule) grows like
2n, while problem size grows like a polynomial function of n. Jeroslow
[1973], Avis and Chvital [1976], and Goldfarb and Sit [1979] have shown
that similar behavior can occur with other pivoting rules. Edmonds (in

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1082 Bland, Goldfarb and Todd

an unpublished note), Zadeh [1973], and Cunningham [1979] have shown
that even within the special class of network flow problems, simplex
pivoting rules can exhibit such nonpolynomial behavior.

On the other hand, it was considered extremely unlikely that linear
programming might be -4"Y-complete, because the duality theorem of
linear programming would then yield an unlikely duality for all problems
in -A2. Some researchers felt that linear programming must occupy a
middle position in -I', neither in 3 nor -4'Y'complete. Many believed
linear programming to be in 3, but failed to provide a proof. Khachiyan
[1979] reported how to implement the ellipsoid method to solve the linear
programming problem in polynomial time, and thus settled the issue of
where linear programming resides in the 9 - 4A' hierarchy.

APPENDIX B: MINIMUM VOLUME ELLIPSOIDS

Here we show that the formulas given in (2.5)-(2.7) and (4.1)-(4.2)
yield an ellipsoid Ek+j of minimum volume containing the appropriate
part of Ek. Since affine transformations multiply volumes by a constant
factor, we may assume Ek is the unit ball and a E R' is a multiple of the
first unit vector. We denote the jth unit vector by ej, j = 1, 2, , n.

Hence suppose

E={xEERIIIxII C1} and H=f{xEIRnI e,Tx5 --a)

and consider the general ellipsoid

E+ = {x E P' 1Jl(-o 1<1 (B.1)
= {x E IR'I (x-xo)TBl(x-xo) c 1)

where B = jjT.

THEOREM B.1. If -1/n c a < 1, the minimum volume ellipsoid con-
taining E n H is E+, where

xo = -Tei and B = - eelT) (B.2)

and

T= (1 + na)/(n + 1), a= 2(1 + na)/((n + 1)(+ a))

and 8 = (n2/(n2 - 1))(1 - a2) (B.3)

The theorem will follow from Lemmas B.3 and BA4 below, but first we
need to prove

PROPOSITION B.2. (Hadamard's Inequality). Let Y be an n x n nonsin-
gular matrix. Then

I det Y H c XIi=, 1I YejI

with equality if and only if the columns of Y are orthogonal.

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1083

Proof. Since Y is nonsingular A = yTy is positive definite and has a
Cholesky factorization A = LL T where L is lower triangular. By definition

ajj= Ej-Xl 12i + 12j (B.4)

Thus

(det Y)2 = det A = (det L)2 = fIJ=1 1l_JP a11 = =Yej2.

Equality holds if and only if ji = 0 for all] j 7 i by (B.4), i.e., if and only
if A = yTy is diagonal or, equivalently, the columns of Y are orthogonal.

Now we come to the first lemma. Note that E n H contains the 2n -

1 points -ei and -aei ? (1-? a2)112ei i = 2, e , n. Let -y (- a2)1/2.

LEMMA B.3. If-I < a < 1, the ellipsoid of minimum volume containing
the points -e1 and -aeoe1 + yei, i = 2, * * , n, is E+ given by (B.1)-(B.3).

Proof Let Y = J` with columns yi, y2, * * *, yn and let yo = J-lxo.
Suppose E+ in (B.1) contains the specified points. Then

1-y - yol1 (la)yi + (ay, + yo) 1 (B.5)

and

II-ayl ? yyi -you = j?yyi + (ay, + yo) c 1 (B.6)

for i = 2, , n.
From (B.6) we deduce that

j81 ayi + yol (B.7)

and from (B.7)

(1 (- a)yi 11 '5 1 + ,8. (B.8)

Since one of ?yyi makes an acute angle with ayi + yo, (B.6) gives

1 _YYi 112 + 1 Iayl + yo 112 ' 1

or (B.9)

-lyyll 11 _#2)1/21 ...**

Now (B.8) and (B.9) with Hadamard's inequality yield

I det Y I -< I-I',=, lYlyj1 (B.lO)
C5 ((I +'8)(I _

82)(n-l)/2)/((l - a)(I _ .2) (n-l)/2) = f(fi8) f(_a),

where f(q) =(1 + q)(1 - 72)(n)/2 It is easy to check that f'(f8) =

(1 - f2)(n-3)/2 X (1 - n,8)(1 + ,G); thus f(f8) is maximized for 0 c 8 c 1 by
8= 1/n. Hence, assuming E+ contains the specified points, we have

vol E+/vol E = I det J I = 1/I det Y I > (f(-a))/f(1/n)

-(n/(n + 1))(n2/(n2 - 1))(n-l)/2(1 - a)(1 - 2)(n-l)/2

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1084 Bland, Goldfarb and Todd

Now equality is achieved if and only if we have equality in (B.8), (B.9)
and Hadamard's inequality in (B.10), and ,B = 1/n. Thus yi, Y2, * * , Yn
are mutually orthogonal, whence B1 =J-J- = YTY and B are
diagonal. Furthermore

ejTB-lej=yTyj= f{(n + 1)2/(n2(1 - a)2) for 1= 1

11 n 2
- 1)/(n'(1 - a 2)) for ~> 1

from equality in (B.8) and (B.9) and,8 = 1/n; thus B is as given in (B.2)-
(B.3). Finally, equality in (B.8) implies equality in (B.5) and that yo is
parallel to yi with IYo -= 1 ? Y11. Then (B.7) implies that the negative
sign must be taken, so that

yo ((1 -lIY1P)/IIY1IP)Y1 -Ty

with T = (1 + na)/(n + 1). Thus xo = Jyo =-TJyl = -Tee and the proof
is complete.

LEMMA B.4. If -1/n c a < 1, the ellipsoid E+ given by (B.1)-(B.3)
contains E n H.

Proof. Let xT= (i, * * , (n) and note that

B- =diag((n + 1)2/(n2(1 - a)2), (n2 - 1)/(n2(1 -a2))

, (n2 - 1)/(n 2(1 - a) 2)).

Hence

(x - xo)TB1(x - Xo) = ((n2 _ 1)/(n2(1 - a2))) 1X 112

+ ((n + 1)2/(n2(1 - a)2)

- (n2_ 1)/(n2(1 -a2))) 12

+ 2((n + 1)(1 + na)/(n2(1 - a)2)) 41

+ (1 + na)2/(n2(1 - a)2)

= ((n2 - 1)/(n2(1 - a2))) (liX 112)

+ (2(n + 1) (1 + na)/(n2(1

- a2) (1 -a)))4i2

+ (2(n + 1) (I + naf)/(n 2(1- ab)2)) (,

+ 2(n + 1)(1 + na)a/(n2(1

- a2)(1 - a)) + 1

= ((n2- 1)/(n2(1 - a 2)))(11 X12- 1)

+ (2(n + 1) (1 + na)/(n2(1 -a)(

-
a))){t 1~ +a) ({i 1) + 1.

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1085

Thus if -1/n c a < 1, -1 < (-a and 1 x I < 1, the above expression is
at most one, and x E E+.

The uniqueness of the minimum volume ellipsoid containing E n H is
a special case of a result of K. Lowner (see Danzer et al. [1963], p. 139):
every compact set in Rn with positive volume has a unique circumscribing
ellipsoid of minimum volume. See also John [1948]. Konig and Pallaschke
give another proof of Theorem B.1 using this uniqueness result.

A more general version of Theorem B.1 involving cuts by two parallel
hyperplanes is given in Shor and Gershovich, Konig and Pallaschke, and
Todd [1980]; according to Shor and Gershovich this result originated
with Gulinski and Polyak.

APPENDIX C: AN EXAMPLE

We describe an example where the iterates {Xk} and {Bk} can be given
explicitly and which demonstrates that convergence can be very slow
even when the deep (or even deepest) cuts of Section 4 are used. This
example also shows that the iterates {Xk} need not converge to the
feasible set if that set has zero volume. If the feasible set is empty, then
even an infinite sequence of iterations employing deepest cuts will not
necessarily reveal infeasibility.

We again use ej for the jth unit vector, and denote the components of
x (Xk) by (j ((k,j). Suppose we are trying to find x E Rn satisfying

(jc 0, -(j- 0 for j= 1, 2, ... , n; (C.1)

even though the solution set has zero volume, suppose we ignore the
perturbations of Section 2.

Let us start with

xO =(1,1,..,1)T and Bo=n2I.

The outward normals to the constraints are ?e1, j = 1, 2, ..., n, and
(+ej)TBo(+ee) = n2 for all i. Thus the a corresponding to each constraint
is ?1/n.

The algorithm chooses one of the violated constraints, say (i _ 0, as
the cut; thus from (4.1) T = 2/(n + 1), a = 4n/(n + 1)2 and 8 = 1. It
follows that

x= (-(n - 1)/(n + 1), 1, , 1)T and

B1 = diag(n2((n - 1)/(n + 1))2, n2, ... , n2).

Note that again each a is ?1/n.
Suppose that after k iterations, our algorithm has made ikj cuts based

on j > 0 and i*j cuts based on (j _ 0, where i*j are nonnegative integers
with i-j -i,j = 0 or 1 and f']=, (ikj + i-j) = k. Then one can show by
induction that

k,j = (-(n -)/(n + l))iIj+iki j-1, * . n

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1086 Bland, Goldfarb and Todd

and Bk is the diagonal matrix

Bk = n2 ,j=1 ((n - 1)/(n + k))2(iti+ik,)ejeyT;

hence again each a is ?1/n.
If the algorithm always chooses the (deepest) cut with the lowest index

j-i.e., it alternatively chooses 4, c 0 and -, c 0-then k,k -* 0 but
~k,2 = =k,n =1 for all k; hence the sequence {xk} does not converge
to the feasible set. Moreover, if the same algorithm is used on the
infeasible problem obtained by replacing the constraint-(n - 0 by -$

-1/2, the same sequence of iterates {;xk} is generated, and infeasibility
is not detected, a is always less than one, no matter how many iterations
are performed (assuming exact arithmetic is used). This example dem-
onstrates the significance of perturbing the feasible set, if it is not known
to have positive volume. (See Section 2.)

Choosing the coordinates in turn in the example results in a sequence
of cuts compatible with perturbation. Hence the arguments of Section 2
guarantee that feasibility will be detected after at most 6n(n + 1)L
iterations. Even so, the convergence is still extremely slow being only
linear with ratio ((n - 1)/(n + 1))l/n. This is not a great improvement
over that obtained when cuts through the center are employed. With
a = 1/n, the volume reduction achieved using a deep cut is equivalent
to that obtained with 4 to 5 iterations with cuts through the center; thus
we might expect the total number of iterations to be reduced by a
factor of four or five. Indeed, with r(a) denoting the volume reduction
using a deep cut (see (4.4)), it can be shown using Taylor expansions
of ln[r(1/n)/(r(0))4] and ln[r(1/n)/(r(0))5] that (r(O))5 c r(1/n) =

(n - 1)/(n + 1) c (r(O))4 for n - 2.

ACKNOWLEDGMENT

This work was supported in part by National Science Foundation
Grants ENG-7910807, MCS-8006065, and ECS-7921279, by U.S. Army
Research Office Grant DAAG29-77-G-0114 and by an Alfred P. Sloan
Foundation Research Fellowship awarded to the first author.

M. Akgiil, A. H. G. Rinnooy Kan and A. Schrijver offered several
suggestions that improved the exposition.

REFERENCES

ADLER, I., R. P. McLEAN AND J. S. PROVAN. An Application of the Khachian-
Shor Algorithm to a Class of Linear Complementarity Problems, undated
(received April 1980), Cowles Foundation Discussion Paper No. 549, Cowles
Foundation for Research in Economics, Box 2125, Yale Station, New Haven,
CT 06520.

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1087

AGMON, S. 1954. The Relaxation Method for Linear Inequalities. Can. J. Math.
6, 382-392.

AHO, A. V., J. E. HOPCROFT AND J. D. ULLMAN. 1976. The Design and Analysis
of Computer Algorithms. Addison-Wesley, Reading, Mass.

Avis, D., AND V. CHVATAL. 1976. Notes on Bland's Pivoting Rule. Math. Program.
Stud. 8, 24-34.

BARTELS, R. H. 1971. A Stabilization of the Simplex Method. Numer. Math. 16,
414-434.

CHUNG, S. J., AND K. G. MURTY. 1979. A Polynomially Bounded Algorithm for
Positive Definite Symmetric LCPs, Technical Report No. 79-10, Department
of Industrial and Operations Engineering, The University of Michigan, Ann
Arbor (December).

COBHAM, A. 1965. The Intrinsic Computational Difficulty of Functions. In Proc.
1964 International Congress for Logic, Methodology, and Philosophy of Sci-
ence, pp. 24-30, Y. Bar-Hillel (ed.). North-Holland, Amsterdam.

COOK, S. A. 1971. The Complexity of Theorem-Proving Procedures. Proc. ACM
Symp. Theory Comput. 3, 151-158.

CUNNINGHAM, W. H. 1979. Theoretical Properties of the Network Simplex
Method. Math. Opns. Res. 4, 196-208.

DANTZIG, G. B. 1963. Linear Programming and Extensions. Princeton University
Press, Princeton, N.J.

DANZER, L., B. GRUNBAUM AND V. KLEE. 1963. Helly's Theorem and Its Rela-
tives. Proc. A.M.S. Symposium on Convexity, pp. 101-177, V. Klee (ed.).
American Mathematical Society, Providence, R.I.

EDMONDS, J. 1965. Paths, Trees and Flowers. Can. J. Math. 17, 449-467.
EDMONDS, J. 1968. Matroid Partition. In Mathematics of the Decision Sciences,

Part I, pp. 335-345. G. B. Dantzig and A. F. Veinott, Jr. (eds.) Lectures in
Applied Mathematics 11, Amer. Math. Soc., Providence, R.I.

ERMOLEV, IU. M. 1966. Methods of Solution of Nonlinear Extremal Problems.
Kibernetika 2(4), 1-17 (translated in Cybernetics 2(4), 1-14, 1966).

FORD, L. R. JR., AND D. R. FULKERSON. 1962. Flows in Networks. Princeton
University Press, Princeton, N.J.

GAcs, P., AND L. LovAsz. 1981. Khachiyan's Algorithm for Linear Programming.
Math. Program. Stud. 14, 61-68.

GAREY, M. R., AND D. S. JOHNSON. 1979. Computers and Intractability: A Guide
to the Theory of NP-Completeness. Freeman, San Francisco.

GILL, P. E., W. MURRAY AND M. A. SAUNDERS. 1975. Methods for Computing
and Modifying the LDV Factors of a Matrix. Math. Comput. 29, 1051-1077.

GOFFIN, J.-L. 1978. Acceleration in the Relaxation Method for Linear Inequalities
and Subgradient Optimization, Working Paper 79-10, Faculty of Management,
McGill University, Montreal, Canada (to appear in the proceedings of a task
force on nondifferentiable optimization held at IIASA, Laxenburg, Austria,
December 1978).

GOFFIN, J.-L. 1979a. On the Non-polynomiality of the Relaxation Method for
System of Inequalities, Faculty of Management, McGill University, Montreal,
Quebec (November).

GOFFIN, J.-L. 1979b. Convergence of a Cyclic Shor-Khachian Method for Systems

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1088 Bland, Goldfarb and Todd

of Linear Equalities, Working Paper No. 79-54, Faculty of Management, McGill
University, Montreal, Quebec (December).

GOLDFARB, D. AND W. Y. SIT. 1979. Worst Case Behavior of the Steepest Edge
Simplex Method. Discrete Appl. Math. 1, 277-285.

GOLDFARB, D., AND M. J. TODD. 1980. Modifications and Implementation of the
Shor-Khachian Algorithm for Linear Programming, Technical Report 406,
Department of Computer Science, Cornell University, Ithaca, N.Y. (January).

GOMORY, R. E., AND T. C. Hu. 1961. Multi-Terminal Network Flows. J. SIAM 9,
551-570.

GOMORY, R. E., AND T. C. Hu. 1962. An Application of Generalized Linear
Programming to Network Flows. J. SIAM 10, 260-283.

GOMORY, R. E., AND T. C. Hu. 1964. Synthesis of a Communication Network. J.
SIAM 12, 348-369.

GROTSCHEL, M., L. LovASZ AND A. SCHRIJVER. 1981. The Ellipsoid Method and
Its Consequences in Combinatorial Optimization. Combinatorica (to appear).

HALFIN, S. The Sphere Method for Khachiyan's Algorithm, undated (received
March 1980), Bell Telephone Laboratories, Holmdel, N.J.

HELD, M., AND R. M. KARP. 1970. The Traveling Salesman Problem and Mini-
mum Spanning Trees. Opns. Res. 18, 1138-1162.

HELD, M., AND R. M. KARP. 1971. The Traveling Salesman Problem and Mini-
mum Spanning Trees: Part II. Math. Program. 1, 6-25.

HOFFMAN, A. J. 1952. On Approximate Solutions of Systems of Linear Inequali-
ties. J. Res. Natl. Bur. Stand. 49, 263-265.

IUDIN, D. B., AND A. S. NEMIROVSKII. 1976a. Evaluation of the Informational
Complexity of Mathematical Programming Problems. Ekonomika i Matema-
ticheskie Metody 12, 128-142 (translated in Matekon: Translations of Russian
and East European Math. Economics 13, 3-25, Winter '76-'77).

IUDIN, D. B., AND A. S. NEMIROVSKII. 1976b. Informational Complexity and
Effective Methods of Solution for Convex Extremal Problems. Ekonomika i
Matematicheskie Metody 12, 357-369 (translated in Matekon: Translations of
Russian and East European Math. Economics 13, 25-45, Spring '77).

JEROSLOW, R. 1973. The Simplex Algorithm with the Pivot Rule of Maximizing
Criterion Improvement. Discrete Math. 4, 367-377.

JOHN, F. 1948. Extremum Problems with Inequalities as Subsidiary Conditions.
In Courant Anniversary Volume, pp. 187-204. Interscience, New York.

JONES, P. C., AND E. S. MARWIL. 1979. A Variant of Khachiyan's Algorithm for
Linear Programming. EG & G Idaho, Inc., P.O.B. 1625, Idaho Falls, Idaho
83415 (November).

JONES, P. C., AND E. S. MARWIL. 1980a. A Dimensional Reduction Variant of
Khachiyan's Algorithm for Linear Programming Problems. EG & G Idaho,
Inc., P.O.B. 1625, Idaho Falls, Idaho 83415 (January).

JONES, P. C., AND E. S. MARWIL. 1980b. Solving Linear Complementarity
Problems with Khachiyan's Algorithm. EG & G Idaho, Inc., P.O.B. 1625, Idaho
Falls, Idaho 83415 (January).

KARP, R. M. 1972. Reducibility Among Combinatorial Problems. In Complexity
of Computer Computations, R. E. Miller and J. W. Thatcher (eds.). Plenum
Press, New York.

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1089

KARP, R. M. 1975. On the Computational Complexity of Combinatorial Problems.
Networks 5, 45-68.

KARP, R. M., AND C. H. PAPADIMITRIOU. 1980. On Linear Characterizations of
Combinatorial Optimization Problems, pp. 1-9. In Proc. 21st Annual Sympo-
sium on Foundations of Computer Science.

KHACHIYAN, L. G. 1979. A Polynomial Algorithm in Linear Programming. Dok-
lady Akademiia Nauk SSSR 244, 1093-1096 (translated in Soviet Mathematics
Doklady 20, 191-194, 1979).

KHACHIYAN, L. G. 1980. Polynomial Algorithms in Linear Programming. Zhurnal
Vychisditel'noi Matematiki i Matematicheskoi Fiziki 20, 51-68.

KLEE, V., AND G. L. MINTY. 1972. How Good is the Simplex Algorithm? In
Inequalities III, pp. 159-175, 0. Shisha (ed.). Academic Press, New York.

KONIG, H., AND D. PALLASCHKE. 1981. On Khachiyan's Algorithm and Minimal
Ellipsoids. Numerische Mathematik 38, 211-223. University of Bonn.

KOZLOV, M. K., S. P. TARASOV AND L. G. KHACHIYAN. 1979. Polynomial Solva-
bility of Convex Quadratic Programming. Doklady Akademiia Nauk SSSR
248 (translated in Soviet Mathematics Doklady 20, 1108-1111, 1979).

KROL, Y., AND B. MIRMAN. Some Practical Modifications of Ellipsoid Method for
LP Problems (undated, received January 1980). Arcon, Inc., Boston.

KROL, Y., AND B. MIRMAN. Private communication.
LAWLER, E. L. 1976. Combinatorial Optimization: Networks and Matroids. Holt,

Rinehart & Winston, New York.
LAWLER, E. L. 1980. The Great Mathematical Sputnik of 1979. The Sciences

(September).
LEMARECHAL, C. 1975. An Extension of Davidon Methods to Non-Differentiable

Problems. Math. Program. Stud. 3, 95-109.
LEVIN, A. Iu. 1965. On an Algorithm for the Minimization of Convex Functions.

Doklady Akademiia Nauk SSSR 160, 1244-1247 (translated in Soviet Mathe-
matics Doklady 6, 286-290, 1965).

LovAsz, L. 1980. A New Linear Programming Algorithm-Better or Worse than
the Simplex Method? Math. Intelligencer 2, 141-146.

MALHOTRA, V. M., M. P. KUMAR AND S. N. MAHESHWARI. 1978. An O(V3)

Algorithm for Finding Maximum Flows in Networks. Info. Proc. Letters 7, 277-
278.

MOTZKIN, T., AND I. J. SCHOENBERG. 1954. The Relaxation Method for Linear
Inequalities. Can. J. Math. 6, 393-404.

NEMIROVSKII, A. S., AND D. B. IUDIN. 1977. Optimization Methods Adapting to
the "Significant" Dimension of the Problem. Automatika i Telemekhanika
38(4), 75-87 (translated in Automation and Remote Control 38(4), 513-524,
1977).

NEWMAN, D. J. 1965. Location of the Maximum on Unimodal Surfaces. J. Assoc.
Comput. Mach. 12, 395-398.

NIVEN, I., AND H. S. ZUCKERMAN. 1966. An Introduction to the Theory of
Numbers. John Wiley & Sons, New York.

PADBERG, M. W., AND M. R. RAo. 1980a. The Russian Method for Linear
Inequalities, Graduate School of Business Administration, New York Univer-

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

1090 Bland, Goldfarb and Todd

sity, New York (January).
PADBERG, M. W., AND M. R. RAO. 1980b. The Russian Method for Inequalities

II: Approximate Arithmetic, Graduate School of Business Administration, New
York University, New York (January).

PADBERG, M. W., AND M. R. RAO. 1980c. The Russian Method and Integer
Programming, GBA Working Paper, New York University, New York (Janu-
ary).

PICKEL, P. F. 1979. Some Improvements to Khachiyan's Algorithm in Linear
Programming, Math. Department, Polytechnic Institute of New York, Far-
mingdale, N.Y. (December).

POLYAK, B. T. 1967. A General Method for Solving Extremum Problems. Doklady
Akademiia Nauk SSSR 174, 33-36 (translated in Soviet Mathematics Doklady
8, 593-597, 1967).

POLYAK, B. T. 1969. Minimization of Unsmooth Functionals. Zhurnal Vychisdi-
tel'noi Matematiki i Matematicheskoi Fiziki 9, 509-521 (translated in USSR
Computational Mathematics and Mathematical Physics 9, 14-29, 1969).

POLYAK, B. T. 1978. Subgradient Methods: A Survey of Soviet Research. In
Nonsmooth Optimization, IIASA Proceedings, Vol. 3, C. Lemarechal and R.
Mifflin, (eds.). Pergamon Press, Oxford.

SHOR, N. Z. 1964. On the Structure of Algorithms for the Numerical Solution of
Optimal Planning and Design Problems, dissertation, Cybernetics Institute,
Academy of Sciences of the Ukrainian SSR, Kiev.

SHOR, N. Z. 1968. The Rate of Convergence of the Generalized Gradient Descent
Method. Kibernetika 4(3), 98-99 (translated in Cybernetics 4(3), 79-80, 1968).

SHOR, N. Z. 1970a. Utilization of the Operation of Space Dilatation in the
Minimization of Convex Functions. Kibernetika 6(1), 6-12 (translated in Cy-
bernetics 6(1), 7-15, 1970).

SHOR, N. Z. 1970b. Convergence Rate of the Gradient Descent Method with
Dilatation of the Space. Kibernetika 6(2), 80-85 (translated in Cybernetics
6(2), 102-108, 1970).

SHOR, N. Z. 1976. Generalized Gradient Methods of Nondifferentiable Function
Minimization and Their Application to Problems of Mathematical Program-
ming. Ekonomika i Matematicheskie Metody 12, 337-356.

SHOR, N. Z. 1977a. Cut-off Method with Space Extension in Convex Programming
Problems. Kibernetika 13(1), 94-95 (translated in Cybernetics 13(1), 94-96).

SHOR, N. Z. 1977b. New Development Trends in Nondifferentiable Optimization.
Kibernetika 13(6), 87-91 (translated in Cybernetics 13(6), 881-886, 1977).

SHOR, N. Z., AND V. I. GERSHOVICH. 1979. Family of Algorithms for Solving
Convex Programming Problems. Kibernetika 15(4), 62-67 (translated in Cy-
bernetics 15(4), 502-507, 1979).

SHOR, N. Z., AND N. G. ZHURBENKO. 1971. A Minimization Method Utilizing the
Operation of Space Expansion in the Direction of the Difference of Two
Successive Gradients. Kibernetika 7(3), 51-59 (translated in Cybernetics 7(3),
1971).

SKOKOV, V. A. 1974. Note on Minimization Methods Employing Space Stretching.
Kibernetika 4(4), 115-117 (translated as Cybernetics 4(4), 689-692, 1974).

TELGEN, J. 1980. On Relaxation Methods for Systems of Linear Inequalities,

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Ellipsoid Method 1091

Technical Report, Management Science Program, University of Tenn. (Janu-
ary).

TODD, M. J. 1979. Some Remarks on the Relaxation Method for Linear Inequal-
ities, Technical Report 419, School of Operations Research and Industrial
Engineering, Cornell University, Ithaca, N.Y.

TODD, M. J. 1980. Minimum Volume Ellipsoid Containing Part of a Given
Ellipsoid, Technical Report No. 468, School of Operations Research and In-
dustrial Engineering, Cornell University, Ithaca, N.Y.

WOLFE, P. 1975. A Method of Conjugate Subgradients for Minimizing Nondiffer-
entiable Functions. Math. Program. Stud. 3, 145-173.

WOLFE, P. 1980. A Bibliography for the Ellipsoid Algorithm, IBM Research
Center Report (July 7).

ZADEH, N. 1973. A Bad Network Problem for the Simplex Method and Other
Minimum Cost Flow Algorithms. Math. Program. 5, 255-266.

This content downloaded from 129.97.91.149 on Thu, 13 Jun 2013 16:31:39 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 1039
	p. 1040
	p. 1041
	p. 1042
	p. 1043
	p. 1044
	p. 1045
	p. 1046
	p. 1047
	p. 1048
	p. 1049
	p. 1050
	p. 1051
	p. 1052
	p. 1053
	p. 1054
	p. 1055
	p. 1056
	p. 1057
	p. 1058
	p. 1059
	p. 1060
	p. 1061
	p. 1062
	p. 1063
	p. 1064
	p. 1065
	p. 1066
	p. 1067
	p. 1068
	p. 1069
	p. 1070
	p. 1071
	p. 1072
	p. 1073
	p. 1074
	p. 1075
	p. 1076
	p. 1077
	p. 1078
	p. 1079
	p. 1080
	p. 1081
	p. 1082
	p. 1083
	p. 1084
	p. 1085
	p. 1086
	p. 1087
	p. 1088
	p. 1089
	p. 1090
	p. 1091

	Issue Table of Contents
	Operations Research, Vol. 29, No. 6 (Nov. - Dec., 1981), pp. i-xx+1039-1252
	Volume Information [pp. xv - 1252]
	Front Matter [pp. i - xiv]
	Feature Article
	The Ellipsoid Method: A Survey [pp. 1039 - 1091]

	A New Linear Programming Approach to the Cutting Stock Problem [pp. 1092 - 1104]
	Analysis of Preference Dependencies among Objectives [pp. 1105 - 1120]
	Optimal Smoothing Rules for University Financial Planning [pp. 1121 - 1136]
	Supply-Demand Decomposition of the National Coal Model [pp. 1137 - 1153]
	Optimal Whereabouts Search for a Moving Target [pp. 1154 - 1166]
	Congestion Formulas for a Heterogeneous Server Loss System with Random Selection Discipline [pp. 1167 - 1180]
	Optimal Preventive Maintenance Policies for Repairable Systems [pp. 1181 - 1194]
	Single Machine Scheduling with Series-Parallel Precedence Constraints [pp. 1195 - 1207]
	Technical Notes
	The Optimal Estimation of the Expected Number in a M/D/∞ Queueing System [pp. 1208 - 1211]
	Further Results on an Infinite Capacity Shuttle with Control at a Single Terminal [pp. 1212 - 1217]
	On Location Dominance on Spherical Surfaces [pp. 1218 - 1219]
	Bounds in the Generalized Weber Problem under Locational Uncertainty [pp. 1219 - 1227]
	An Upper Bound Useful in Optimizing Search for a Moving Target [pp. 1227 - 1230]
	A Note on the M/M/1 Queue with λ =μ [pp. 1231 - 1234]
	Analysis of a Preference Order Traveling Salesman Problem [pp. 1234 - 1237]

	Errata: A Preference Order Dynamic Program for a Stochastic Traveling Salesman Problem [p. 1238]
	Back Matter [pp. 1239 - 1240]

