
Rank Aggregation: Together We’re Strong

Frans Schalekamp∗ Anke van Zuylen†

Abstract

We consider the problem of finding a ranking of a set of
elements that is “closest to” a given set of input rank-
ings of the elements; more precisely, we want to find
a permutation that minimizes the Kendall-tau distance
to the input rankings, where the Kendall-tau distance is
defined as the sum over all input rankings of the number
of pairs of elements that are in a different order in the
input ranking than in the output ranking. If the input
rankings are permutations, this problem is known as the
Kemeny rank aggregation problem. This problem arises
for example in building meta-search engines for Web
search, aggregating viewers’ rankings of movies, or giv-
ing recommendations to a user based on several different
criteria, where we can think of having one ranking of the
alternatives for each criterion. Many of the approxima-
tion algorithms and heuristics that have been proposed
in the literature are either positional, comparison sort
or local search algorithms. The rank aggregation prob-
lem is a special case of the (weighted) feedback arc set
problem, but in the feedback arc set problem we use
only information about the preferred relative ordering
of pairs of elements to find a ranking of the elements,
whereas in the case of the rank aggregation problem, we
have additional information in the form of the complete
input rankings. The positional methods are the only
algorithms that use this additional information. Since
the rank aggregation problem is NP-hard, none of these
algorithms is guaranteed to find the optimal solution,
and different algorithms will provide different solutions.
We give theoretical and practical evidence that a com-
bination of these different approaches gives algorithms
that are superior to the individual algorithms. Theo-
retically, we give lower bounds on the performance for
many of the “pure” methods. Practically, we perform
an extensive evaluation of the “pure” algorithms and

∗Institute for Theoretical Computer Science, Tsinghua Uni-
versity, Beijing, China. frans@mail.tsinghua.edu.cn. Research
performed in part while the author was at Nature Source Genet-
ics, Ithaca, NY.

†Institute for Theoretical Computer Science, Tsinghua Uni-
versity, Beijing, China. anke@mail.tsinghua.edu.cn. Research
partly supported by NSF grant CCF-0514628 and performed in

part while the author was at the School of Operations Research
and Information Engineering at Cornell University, Ithaca, NY.

combinations of different approaches. We give three rec-
ommendations for which (combination of) methods to
use based on whether a user wants to have a very fast,
fast or reasonably fast algorithm.

1 Introduction

We consider the problem of finding a ranking of a set
of elements that best represents a given set of input
rankings of the elements. This is a classical problem
from social choice and voting theory, in which each
voter gives a preference on a set of alternatives, and
the system outputs a single preference order on the set
of alternatives based on the voters’ preferences.

There has been a lot of interest in this problem in
the computer science community in recent years. The
rank aggregation problem arises when building meta-
search engines for Web search, where we want to com-
bine the rankings obtained by different algorithms into
a representative ranking. For example, Dwork, Kumar,
Naor and Sivakumar [9] propose combining the rankings
of individual search engines to get more robust rankings
that are not sensitive to the various shortcomings and
biases of individual search engines. Other applications
arise in ranking movies, hotels, etc. based on the rat-
ings given by users, or giving recommendations to a user
based on several different criteria, where we can think of
having one ranking of the alternatives for each criterion.

In the social choice literature, a widely accepted
objective for aggregating voters’ preferences, if each
voter gives a complete ranking of the candidates, is
Kemeny rank aggregation (see for example [21, 22]):
Given two permutations π,σ of {1, . . . , n}, the Kendall-
tau distance is defined as
(1.1)

K(σ,π) =
n

∑
i=1

n

∑
j=i

1{(π(i) < π(j)) & (σ(i) > σ(j))},

where 1{⋅} is the indicator function. Given a set
of permutations π1, . . . , πk of {1, . . . , n}, the Kemeny
rank aggregation problem seeks a permutation σ that
minimizes the number of pairwise disagreements with
the input permutations, i.e. 1

k ∑
k
`=1K(π`, σ).

We also consider the partial rank aggregation prob-
lem. A partial ranking of V is a function π ∶ V →
{1, . . . , ∣V ∣}, where the function π does not have to be

38 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

one-to-one; in other words, a partial ranking is a ranking
with ties. Fagin et al [10, 11, 12] proposed a set of dif-
ferent distance measures between two partial rankings
and a permutation and a partial ranking. We will follow
Ailon [1] and define the distance K(π,σ) between two
partial rankings π,σ as in Equation (1.1), and follow-
ing Ailon we let the partial rank aggregation problem
be the problem of finding a permutation that minimizes
the sum of the distances to given input partial rank-
ings. We note that, if we require the output ranking
to be a permutation, then the other extensions of the
Kendall-tau distance that were proposed by Fagin et al.
[11, 10] just add a constant (that depends on the in-
put rankings but not on the output permutation) to the
distance 1

k ∑
k
`=1K(π`, σ).

In this paper we will use the term full rank aggrega-
tion if the input rankings are known to be permutations,
and partial rank aggregation if the input rankings are
partial rankings.

A problem related to rank aggregation is the feed-
back arc set problem in tournaments. A tournament is
a complete directed graph G = (V,A). The feedback
arc set problem in tournaments asks for the smallest
set of arcs A′ such that (V,A/A′) is acyclic. Equiv-
alently, we want to find a permutation of the vertices
π that minimizes the number of “back-arcs”; the arcs
that go from right to left if we order the vertices ac-
cording to π. A generalization of this is the weighted
feedback arc set problem, where given a set of vertices
V and a nonnegative weight w(i,j) for every ordered pair
(i, j), we want to find a permutation π that minimizes
∑i,j∶π(i)<π(j)w(j,i). We say the weights satisfy probabil-
ity constraints if w(i,j) + w(j,i) = 1 for all i, j ∈ V , and
the triangle inequality if w(i,j) +w(j,k) ≥ w(i,k) for every
i, j, k ∈ V .

Rank aggregation is a special case of the weighted
feedback arc set problem, since we can let w(i,j) =
1
k ∑

k
`=1 1{π`(i) < π`(j)}, and then the weighted feed-

back arc set problem then seeks σ that minimizes
∑i,j∶σ(i)<σ(j)

1
k ∑

k
`=1 1{π`(i) < π`(j)} = 1

k ∑
k
`=1K(π`, σ).

It is easily checked that the weights satisfy the trian-
gle inequality. In the case of full rank aggregation, the
weights also satisfy the probability constraints.

Finding the Kemeny optimal ranking is NP-hard,
even when the number of input permutations is only
4 ([9]). However, in recent years, many algorithms
have been proposed in the theoretical computer science
community that give provably good solutions. An α-
approximation algorithm is an algorithm that runs in
polynomial time and produces a solution for which the
objective value is within a factor α of the optimal value.
The performance guarantee α of an approximation al-
gorithm is thus (an upper bound on) the worst case

ratio of the objective value of the solution returned by
the algorithm, and the objective value of the optimal
solution. Several algorithms are known for rank aggre-
gation with performance guarantees of 2 or less, see for
example [2], [1], [7], [20], [19]. For full rank aggrega-
tion, there is even a Polynomial-Time Approximation
Scheme (PTAS) [16]: A PTAS is an algorithm that for
any fixed ε > 0 finds a solution with performance guar-
antee (1+ ε) in time polynomial in the size of the input,
but not necessarily polynomial in 1

ε
. In particular, the

running time of the PTAS in [16] is doubly exponential
in 1

ε
.
Roughly speaking, many of the algorithms fall into

one of four categories: positional methods, compari-
son sort methods, local search algorithms and “hybrid”
methods, that combine ideas from the previous three
categories. A positional method for full rank aggrega-
tion seeks a permutation in which the position of each
element is “close to the average position” of the ele-
ment in the input permutations. Examples of positional
methods are Borda’s method [3, 7], Footrule aggrega-
tion [8] and Pick-a-Perm [2]. Borda’s method finds a
permutation that minimizes the distances between the
elements’ positions and their mean positions in the in-
put permutations, Footrule aggregation finds a permu-
tation σ that minimizes ∑i∈V

1
k ∑

k
`=1 ∣π`(i) − σ(i)∣, and

Pick-a-Perm chooses one of the input permutations at
random, thus returning a permutation in which the ex-
pected position of each element is its mean position.
Comparison sort algorithms use a comparison relation
to sort the elements, where the comparison relation is
not necessarily transitive in this context. The result of
a comparison sort algorithm hence depends on the com-
parison relation and the sorting algorithm. Examples of
comparison sort methods are QuickSort, MergeSort and
InsertionSort. The local moves in the local search algo-
rithms we consider are “single vertex moves”, where we
may move one element at a time to a different position
in the ranking. An example of a “hybrid” method is
Copeland’s method, which sorts the elements based on
the number of elements they would beat in a pairwise
majority contest.

Both theoretically and practically there is evidence
that combinations of positional, comparison sort and
local search methods outperform the “pure” methods.
For example, Ailon, Charikar and Newman [2] show
that taking the best of the best input permutation,
and the permutation obtained by running QuickSort, is
a 11

7
-approximation algorithm. In the implementation

study done by Dwork et al. [9], the best performing
method was inspired by Copeland’s method [6] followed
by InsertionSort, where Copeland’s method can itself be
seen as a hybrid method.

39 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

In this paper we compare these different types of al-
gorithms and combinations of the different approaches.
We give lower bounds on the performance guarantees of
most of the existing methods. However, a bad example
for one type of algorithm is typically not a bad example
for the other types of algorithm. We therefore propose
and evaluate new and existing combinations of the dif-
ferent types of algorithms. In our experiments, we find
that these give an excellent trade-off in running time
and performance.

The remainder of our paper is organized as follows.
In Section 2 we discuss some related papers that eval-
uate different algorithms for rank aggregation and re-
lated problems. In Section 3 we will discuss the posi-
tional, comparison sort, local search and hybrid algo-
rithms that have been proposed in the literature, and
we propose ways of combining the different approaches.
In Section 4 we show bad examples for the “pure” al-
gorithms, and we show that algorithms that combine
different approaches perform much better on these ex-
amples. In Section 5 we evaluate the different algo-
rithms on real data sets. We find that by combining
different methods we get an excellent trade-off in run-
ning time and performance. In particular, we give three
recommendations of which combination of methods to
use based on whether a user wants to have a very fast,
fast or reasonably fast algorithm.

2 Related work

There has been a lot of work in the algorithms commu-
nity on the rank aggregation problem and the feedback
arc set problem in tournaments. Since we are compar-
ing many of these algorithms, we defer the discussion of
these works to the discussion of the algorithms we are
considering. Here we mention some other studies that
compare different algorithms for the rank aggregation
problem or related problems.

Dwork et al. [9] propose aggregating the results
from different search engines as a way to combat spam
and get more robust search results. They investigate
some traditional rank aggregation methods such as
Footrule aggregation and Borda’s method, and they
propose algorithms similar to PageRank, where they
define a Markov chain on the search results and order
the results based on their respective probabilities in the
stationary distribution.

Gionis, Mannila, Puolamäki and Ukkonen [13] con-
sider algorithms for a problem closely related to partial
rank aggregation. They refer to a partial ranking as a
bucket order, and the problem they consider is slightly
different: they define the distance between two par-
tial rankings π,σ as the number of pairs i, j such that
π(i) < π(j) and σ(i) > σ(j) plus one half times the

number of pairs that are tied in one of π,σ and not in
the other. The goal is to find a partial ranking that
minimizes the distance to given input partial rankings.

Coleman and Wirth [5] recently investigated the
performance of different algorithms for the feedback arc
set problem in tournaments. Although they consider
rank aggregation as a special case, the algorithms
they consider do not exploit the additional structure
that rank aggregation problems have, and they do not
consider any positional methods. They also show that
some of the algorithms have very poor performance
guarantees, but their work is different from ours in two
aspects. First of all, the bad examples they give are
not instances that could arise from a rank aggregation
problem. Secondly, for the randomized algorithms
they consider the bad examples given are only bad
conditional on certain random choices of the algorithm,
and not in expectation over the choices made by the
algorithm. One of the data sets on which we test
our algorithms was also used by Coleman and Wirth.
Some of the algorithms we consider were considered by
Coleman and Wirth as well: local search and Chanas,
MergeSort, InsertionSort and QuickSort. However,
since their other data sets are not rank aggregation
instances, their conclusions are quite different from ours
(for instance, QuickSort performed poorly on the data
sets which are not rank aggregation instances).

Finally, the problem of aggregating different clus-
ters is closely related. In the consensus clustering prob-
lem, the input consists of k clusterings of a set of ele-
ments V , and the goal is to find a clustering of V that
minimizes the number of pairwise disagreements with
the input clusterings, i.e. the number of pairs that are
in the same cluster in an input clustering but in dif-
ferent clusters in the output clustering or vice versa.
A variation of the QuickSort algorithm also gives an
approximation algorithm for consensus clustering [2].
Some papers that investigate the theoretical and prac-
tical performance of algorithms for consensus clustering
are [14, 15].

3 Rank aggregation algorithms

We assume without loss of generality that the ele-
ments are numbered 1, . . . , n. We think of a rank-
ing π ∶ {1, . . . , n} → {1, . . . , n} as a list of the ele-
ments {1, . . . , n} in order of preference (possibly with
ties). We will thus say that a ranking π prefers i to
j, or ranks i higher than j, if π(i) < π(j). If π is a
permutation, we will sometimes write it as list(π) =

(π−1(1), π−1(2), . . . , π−1(n)).
We assume that the input is provided in the form of

k different permutations or partial rankings π1, . . . , πk,
and multiplicities µ1, . . . , µk (so that π` occurs µ`

40 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

times). We letM = ∑
k
`=1 µ`. Given such an input, we de-

fine an n-by-nmatrix w, where w(i,j) = ∑
k
`=1

µ`

M
1{π`(i) <

π`(j)}.

3.1 Positional algorithms We call an algorithm for
full rank aggregation positional if it seeks a permutation
in which the position of each element is “close to the
average position” of the element in the input permuta-
tions.

3.1.1 Borda The Borda count of an element is its
mean position in the input permutations, ie. Borda(i) =
∑
k
`=1

µ`

M
π(i). The Borda algorithm ranks the elements in

order of increasing Borda counts. Coppersmith, Fleis-
cher and Rudra [7] show that the Borda algorithm finds
a permutation σ that minimizes ∑i∈V ∣∑

k
`=1

µ`

M
π`(i) −

σ(i)∣, i.e. the sum of the distances from the elements’
position to their mean positions.

Note that in the corresponding instance to the
weighted feedback arc set problem in tournaments, or-
dering by Borda count is equivalent to ranking the ver-
tices by increasing (weighted) indegree. For partial rank
aggregation, we therefore define the Borda count of an
element to be its weighted indegree in the correspond-
ing tournament. It was shown in [7] that this is a 5-
approximation algorithm for the weighted feedback arc
set problem in tournaments if the weights satisfy the
probability constraints; hence this holds for full rank
aggregation.

3.1.2 Footrule The Spearman’s Footrule distance
between two permutations π,σ is defined as

F(π,σ) =
n

∑
i=1

∣π(i) − σ(i)∣.

It was shown by Diaconis and Graham [8] that

K(π,σ) ≤ F(π,σ) ≤ 2K(π,σ).

Hence a permutation σ that minimizes the average
Footrule distance 1

k ∑
k
`=1F(σ,π`) to a given set of

permutations π1, π2, . . . , πk is a 2-approximation for
the Kemeny rank aggregation problem. Finding a
permutation σ that minimizes 1

k ∑
k
`=1F(σ,π`) can be

done in polynomial time by solving a bipartite matching
problem (see Dwork et al. [9]). Dwork et al. also
showed that if the median positions of the elements
form a permutation, then this permutation is an optimal
Footrule aggregation.

To extend Footrule aggregation to partial rank
aggregation, we need to define the Footrule distance
between a partial ranking and a full ranking. Given a
partial ranking π, and an element i, let πmin(i) = #{j ∶

π(j) < π(i)} and let πmax(i) = n−#{j ∶ π(j) > π(i)}, in
other words, πmin(i) and πmax(i) are the minimum and
maximum position that i could take in a full ranking
σ such that K(π,σ) = 0. We then define the Footrule
distance between permutation σ and partial ranking π
as

F(π,σ) =
n

∑
i=1

min
p∈[πmin(i),πmax(i)]

∣p − σ(i)∣

We note that our definition of Footrule distance
between a permutation and a partial ranking is different
from the one proposed in Dwork et al. [9], since they use
a different definition of a partial ranking. As in the case
of full rank aggregation, we can find an optimal Footrule
aggregation for partial rank aggregation by solving a
bipartite matching problem.

Lemma 3.1. Footrule aggregation is a 2-approximation
algorithm for partial rank aggregation.

Proof. We will show that for a permutation σ and a
partial ranking π, F(π,σ) ≤ 2K(π,σ).

Since we know that for a permutation π′, F(π′, σ) ≤
2K(π′, σ), it suffices to show that there exists a permu-
tation π′ such that K(π′, σ) = K(π,σ) and F(π′, σ) ≥

F(π,σ).
We let π′ be the unique permutation that has

π′(i) < π′(j) if π(i) < π(j) or if π(i) = π(j) and
σ(i) < σ(j). Clearly, K(π′, σ) = K(π,σ). On the other
hand, π′(i) ∈ [πmin(i), πmax(i)] for any i, and hence
F(π′, σ) ≥ F(π,σ). ◻

3.1.3 Pick-a-Perm The Pick-a-Perm algorithm for
full rank aggregation returns an input permutation
at random. It is easily shown that this is a 2-
approximation algorithm, see for example Ailon et al.
[2]. This algorithm has a deterministic variant, where
the input permutation that gives the smallest objective
value is chosen. We call this the Best-of-k algorithm.

Ailon [1] showed how to generalize the Pick-a-Perm
algorithm to an algorithm for partial rank aggregation:
We think of a partial ranking as a bucket order, where
elements with the same rank are in one bucket. To
construct output ranking σ, we start with σ having all
elements in the same bucket. We repeatedly choose a
partial ranking at random from the input rankings, and
order the elements within each bucket of σ according
to this partial ranking, until each bucket of σ is of
size 1. Ailon shows that this algorithm is also a 2-
approximation algorithm and can be derandomized to
give a deterministic 2-approximation algorithm.

3.2 Comparison sort algorithms We now describe
three comparison sort algorithms. We have a relation
⪯ on the elements, where i ⪯ j if the majority of the

41 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

input rankings has ranked i before j (in other words, if
w(i,j) ≥ w(j,i)). We will say that i ≺ j if i ⪯ j and j /⪯ i.
We assume that the numbering of the elements is used
to break ties, so that if both i ⪯ j and j ⪯ i, and i < j
then we say that i ≺ j.

Note that the relation ≺ is not transitive, which is
exactly Condorcet’s paradox. The fact that the relation
is not transitive implies that different comparison sort
algorithms can produce different rankings.

3.2.1 QuickSort The QuickSort algorithm recur-
sively sorts the elements by choosing a vertex i as pivot,
and ordering vertex j to the left of (higher than) i if
j ≺ i, or to the right of i if i ≺ j (breaking ties arbi-
trarily). The algorithm then recurses on the instance
induced by the vertices to the left of i and those to the
right of i.

Ailon et al. [2] showed that if we define ⪯ as
above, and choose a pivot uniformly at random, then
the permutation returned by the QuickSort algorithm
is an expected 2-approximation algorithm.

Van Zuylen and Williamson [20] give a deterministic
QuickSort algorithm, in which the “best” pivot is chosen
instead of a random pivot, and show that this is also a
2-approximation algorithm. In particular, in a recursive
call on V ′ ⊆ V , let L(i) be the set of elements that would
be ordered to the left of i ∈ V ′ if i is the pivot in this
iteration, i.e. L(i) = {j ∈ V ′ ∶ j ⪯ i}, and let R(i) be the
elements that would be ordered to the right. Then the
pairs (`, r) such that r ⪯ ` and ` ∈ L(i), r ∈ R(i) are out
of order with respect to the relation ⪯. For each element
i they compute the ratio

(3.2)
∑`∈L(i),r∈R(i)w(r,`)
∑`∈L(i),r∈R(i)w(`,r)

and the element for which the ratio is smallest is chosen
as pivot.

Compared to Ailon et al.’s QuickSort algorithm, the
running time is approximately a factor of n slower, be-
cause in each iteration every potential pivot is evalu-
ated. We therefore also considered an “intermediate”
algorithm, in which in a recursive call on V ′ we com-
pute the ratio in (3.2) for log(∣V ′∣), or a constant num-
ber of randomly chosen elements in V ′, and choose the
element that has the smallest ratio among these. To
keep the number of results we display manageable, we
will only show the result of the algorithm that evaluates
log(∣V ′∣) possible pivots. The results when evaluating 3
to 5 pivots, are comparable in performance and running
time.

In Section 5 we denote by QuickSort the original
randomized algorithm, DetQuickSort the fully deran-
domized algorithm, LogQuickSort the algorithm which

takes the best among log(∣V ′∣) pivots.

3.2.2 MergeSort MergeSort recursively sorts the el-
ements by dividing them into two (approximately) equal
parts, recursing on each part to obtain two sorted lists,
and merging the two lists as follows. We refer to the
two sorted lists as List 1 and List 2, and we construct
a merged list, List 3. While List 1 and List 2 are not
empty, let i be the top element of List 1 and j the top
element of List 2. If i ≺ j, then we remove i from List 2
and add it to the bottom of List 3. Otherwise we move
j to the bottom of List 3. Once one of List 1 and List 2
is empty, we add the remainder of the other list to the
bottom of List 3.

3.2.3 InsertionSort In the InsertionSort algorithm,
we start with an empty list and add the elements one
by one to the list. When an element i is added to the
list, it is placed in the highest position so that i ≺ j for
all elements j that are in lower positions than i. We can
find i’s position by adding i to the bottom of the list, and
allowing i to “bubble up”: while i ≺ j for the element
j directly above i in the list, we swap i and j. We
note that the Local Kemenization procedure proposed
in Dwork et al. [9] is the same as InsertionSort.

3.3 Local search We consider local search algo-
rithms that execute “single vertex moves”: Given a per-
mutation π, a single vertex move takes an element i and
inserts it into another position if this improves the ob-
jective value.

To the authors’ knowledge there is no known per-
formance guarantee for a permutation that is locally op-
timal with respect to single vertex moves. The example
given in Coleman and Wirth [5] in which the local op-
timum is a factor Ω(n) more expensive than the global
optimum applies only to the feedback arc set problem
in tournaments, and not to rank aggregation.

There is evidence that single vertex moves are very
powerful: they are part of the PTAS for weighted feed-
back arc set in tournaments with probability constraints
by Kenyon-Mathieu and Schudy [16], and have been
shown to be successful in other implementation stud-
ies [5].

We implemented the local search algorithm as fol-
lows: we go through the element positions in random
order, and when considering position i, we move the el-
ement currently in position i to the position which gives
the largest improvement to the objective value. We stop
if we have considered all positions, and no element has
been moved. Otherwise we continue in the same fashion.

We also investigate the algorithm called Chanas in
Coleman and Wirth [5], which was proposed by Chanas

42 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

and Kobylański [4]. This algorithm is a composition
of sort and reverse steps. We start with a random
permutation, and repeatedly go through the elements
from left to right; if we can improve the objective by
moving an element to the left, we do so. Once we cannot
make any improvements, we reverse the permutation,
and repeat. Chanas and Kobylański show that for any
permutation π, and the permutation π′ we obtain by
reversing π and one sorting pass through the elements,
the objective of π′ is not more than that of π.

3.4 Hybrid algorithms We now discuss algorithms
that we call “hybrid” algorithms: they combine the
ideas from positional and comparison based algorithms.

3.4.1 Copeland’s method We define the Copeland
score of an element i to be the number of elements j such
that i ≺ j. Copeland [6] suggested sorting the elements
by their Copeland score.

Note that if we define the majority tournament
G = (V,A) to be the directed graph that has a node
for every element, and an arc from i to j if i ≺ j, then
Copeland’s method sorts the elements by non-increasing
indegree. Hence Copeland’s method can be seen as
Borda’s method on the majority tournament.

3.4.2 MC4 Dwork et al. [9] propose Markov chain
algorithms for rank aggregation that are similar to
PageRank. We consider here the best of these type of
algorithms that were considered by Dwork et al.: the
MC4 algorithm. One way to think of this algorithm
is to think of a random process on the set of elements.
The process starts at some element i, and chooses one of
the elements, say j, uniformly at random. If a majority
of the input rankings prefers j to i, then we move to j,
otherwise we stay at i. We then again choose an element
at random and move if this element is preferred to the
current element by a majority of the input rankings, etc.

This is known as a Markov process, where the
transition matrix P has P (i, j) = 1

n
if a majority of the

input rankings prefer j to i, and P (i, i) = 1−∑j≠i P (i, j).
Under certain conditions, this process has a unique (up
to scalar multiples) limiting distribution x that satisfies
x = xP , where x(i) gives the fraction of time the process
spends at element i. Dwork et al. propose sorting the
elements by non-increasing x(i) values.

To ensure that the process has a unique limiting
distribution x, we use a “random jump”: with proba-
bility δ > 0, we will choose a random element and move
to this element (regardless of whether this element is
preferred to the current element). In our experiments
we have used δ = 1

7
, which is the value of δ that is often

chosen in the literature for PageRank implementations.

In addition to calculating x exactly, we also consider
the method MC4Approx, in which we start with a
random vector y, and sort the elements according to
x̂ = yPn.

As Dwork et al. point out, the MC4 algorithm is
similar in flavor to Copeland’s method: the diagonal
entries of the transition matrix are exactly 1

n
times the

Copeland scores of the elements.

3.5 Combining different methods We want to
further exploit the fact that the rank aggregation prob-
lem has these different approaches by combining them
into new algorithms. Obviously, we can combine the
local search algorithm with any given algorithm, by
running the local search procedure on the outcome of
the other algorithm. We now outline how we can com-
bine the comparison sort algorithms with the other ap-
proaches.

We note that, except for the deterministic Quick-
Sort algorithm of [20], the comparison sort algorithms
make random choices, either by choosing an element to
pivot on, by choosing how to divide the elements into
two groups, or by choosing the order in which to insert
the elements. One way to make these choices determin-
istic is to give a permutation as additional input to the
comparison sort algorithms, and let the previously ran-
dom choice be determined by the permutation instead.
Hence we can use the permutation that is output by one
algorithm as additional input to a comparison sort al-
gorithm, thus obtaining a deterministic algorithm that
hopefully combines the desirable qualities of the indi-
vidual algorithms.

In the case of InsertionSort, it is clear how a
permutation dictates the random choices made by the
algorithm, since we can think of the permutation as
giving the order in which to insert the elements. We
also tested InsertionSort when the elements are inserted
in the reverse order of the permutation. We note that
the first approach was also suggested by Dwork et al.
[9]. The results of the latter are omitted from this
extended abstract, because the first approach tended
to give better results.

In MergeSort, the algorithm repeatedly divides
the elements into two approximately equal parts and
recurses on each part. We use a permutation to guide
how the algorithm divides the elements. We tried two
different approaches here: in MS we divide the elements
according to whether they are in odd positions or in
even positions. In MS2 we divide the elements according
to whether their position is before or after the median
position of the elements in the recursive call. Because
MS performed better on most instances, we omitted the
results of MS2 from this extended abstract.

43 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Finally, we can use an input permutation to deter-
mine which element to pivot on in QuickSort. In the
algorithm QS we take as pivot the element that is in
the median position among the elements in the recur-
sive call.

We will use the outputs of each of the positional
methods as well as the output of the Copeland and MC4
algorithm as input into the different comparison sort
methods.

3.6 Optimal solution We compare the solutions
generated by the heuristics against the optimal value
of the following integer program (IP) and its linear
programming (LP) relaxation. The optimal value of the
IP is equal to the optimal value of the rank aggregation
instance.

min ∑
i,j∈V

w(i,j)x(j,i) +w(j,i)x(i,j)

s.t. x(i,j) + x(j,k) + x(k,i) ≥ 1 ∀i, j, k ∈ V

x(i,j) + x(j,i) = 1 ∀i, j ∈ V

x(i,j) ∈ {0,1}

The integrality gap of this linear program is at most 3
2

if the weights w arise from a partial rank aggregation
instance [1], and at most 4

3
if the weights arise from a

full rank aggregation instance [2]. To the best of our
knowledge, no lower bounds are known. Remarkably,
all but three of the instances we used had an integer
optimal solution to the LP relaxation. Otherwise, the
gap between the optimal integer and optimal fractional
solution was less than 0.002%.

Because our instances became too large for the
CPLEX solver, we partitioned the instances into subin-
stances: It is not hard to show that if we can partition
V into A,B such that w(i,j) ≥ w(j,i) for all i ∈ A, j ∈ B,
then there exists an optimal solution to the integer pro-
gram that has x(i,j) = 1 for all i ∈ A, j ∈ B. We used this
fact to break up the IP for an instance into several IPs
that could be solved separately.

We note that we did not attempt to speed up the
solution time by using well-known techniques such as
warm start or constraint generation techniques. Our
main goal in this paper is to compare fast and easily
implementable heuristics, that do not require special
purpose software.

4 Lower Bounds on Guarantees

In the discussion of the algorithms, we noted that some
of them have known upper bounds on their performance
guarantees. We now show examples in which the
algorithms do not perform that well, thus giving lower
bounds on their performance guarantees.

4.1 Positional methods We describe an example
that can be turned into a bad example for both the
Borda and Footrule algorithms. We have n elements,
and our input permutations consist of n different per-
mutations of the elements, π1, . . . , πn, where π` occurs
µ` times. The permutations are defined as list(π1) =

(1,2, . . . , n), list(π2) = (n,1, . . . , n − 1),list(π3) =

(n−1, n,1, . . . , n−2), etc. up to list(πn) = (2, . . . , n,1),
or equivalently, π`(i) = (i + ` − 1) mod n.

Note that if µ` = 1 for every `, then the average
and median position of each element is the same. This
means that the elements are indistinguishable for Borda
and Footrule. It is not hard to show that in this
case, both Borda and the Footrule method can return
any permutation. We will use this example with a
small twist to give lower bounds on the performance
guarantees for the Borda and Footrule method.

Lemma 4.1. The performance guarantee of Borda’s
method is at least 2.

Proof. Let m be an arbitrary nonnegative constant. We
let µ1 =m,µn =m+n and µ` =m+n−1 for ` = 2, . . . , n−1.

Consider Borda(i) = ∑
n
`=1

µ`

M
π`(i), the Borda count

of element i. In ranking `, the element is in position
(i+`−1) mod n, hence ranking ` contributes ((i+`−1)
mod n) × µ`

M
to the indegree of element i.

We therefore get that MBorda(i) equals im +

∑
n−i+1
`=2 (i+ `− 1)(m+n− 1)+∑n−1

`=n−i+2(i+ `− 1−n)(m+

n − 1) + (i − 1)(m + n). It is easy to verify that
M (Borda(i) − Borda(i + 1)) = n − 2 > 0 for all i =

1, . . . , n − 1, hence Borda’s method will order the ele-
ments in reverse order.

We takem = n2 so that µ`

M
= 1
n
+O(1

n2). We compare
the cost of Borda’s ranking to the cost of the identity.
In the Borda ranking every pair is reversed, hence the
cost of the identity plus the cost of the Borda ranking
should be equal to:

n

∑
`=1

µ`
M

n(n − 1)
2

=
n−1

∑
`=1

(
1
n
+O(

1
n2

))
n(n − 1)

2

=
n2

2
+O(n).(4.3)

We now find the cost of the identity. Note that in π1,
no pairs are out of order with respect to the identity. In
π2, all pairs involving element n are out of order. In π3,
all pairs {i, j} such that i ∈ {1, . . . , n − 2}, j ∈ {n − 1, n},
are out of order. So in general, in the `-th ranking, we
have (n− `+1)(`−1) pairs that are out of order. Hence
the cost of the identity is
n

∑
`=1

µ`
M

(n − ` + 1)(` − 1) =
n

∑
`=0

(
1
n
+O(

1
n2

)) (n − `)`

=
n2

6
+O(n).

44 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

We subtract this from (4.3) to find that the objective
value of the Borda ranking is n2

3
+O(n), and hence the

ratio of the cost for the Borda ranking compared to the
identity tends to 2 if we let m = n and n→∞. ◻

Lemma 4.2. The performance guarantee of the
Footrule method is at least 2.

Proof. We again use the permutations π1, . . . , πn from
the proof of Lemma 4.1, where π`(i) = (i+`−1) mod n.
It is easy to verify that ∑n`=1F(σ,π`) is a constant that
does not depend on the permutation σ. We therefore
have one additional input permutation πn+1 which is the
reverse of the identity, i.e. πn+1(i) = n−i+1. Then if we
set µ` to the same value for ` = 1, . . . , n and µn+1 > 0,
it is easy to see that the Footrule distance to the input
permutations is minimized by outputting πn+1.

We now let µ` = n for ` = 1, . . . , n and µn+1 = 1, so
that µ`

M
= 1
n
+O(1

n2) for ` = 1, . . . n and µn+1
M

= 0+O(1
n2).

Then we know from the proof of Lemma 4.1 that the
ratio of the objective value of σ compared to that of the
identity tends to 2 if we let n→∞. ◻

The Pick-a-Perm algorithm does do well on the ex-
ample given above; however, it is not hard to construct
a bad example for Pick-a-Perm and Best-of-k.

Lemma 4.3. The performance guarantee of Pick-a-
Perm and Best-of-k is at least 2.

Proof. Let π1, . . . , πn−1 be the input permutations,
where πi(j) = j if j ≠ i, i+1 and πi(i) = i+1, πi(i+1) = i.
Then the objective value of any of the input permuta-
tions is 2(n−2)

n−1
, but the objective value of the identity is

1. ◻

4.2 Comparison sort methods With the exception
of the deterministic QuickSort algorithm of Van Zuylen
and Williamson [20], the comparison sort methods
all need to make random choices: in (randomized)
QuickSort the pivot is chosen uniformly at random from
the elements, in MergeSort the elements are randomly
divided into two equal sized groups, and in InsertionSort
the elements are inserted in random order.

It is not difficult to divise examples together with
a particular random choice for which these algorithms
perform very badly, so that the algorithm’s solution’s
objective value could be a factor Ω(n) higher than the
optimal value. However, if with high probability the
algorithm performs very well, one could just run the
algorithm a few times, and take the best solution found.

In the case of InsertionSort, we show a much
stronger result: there exists an example where, if
inserting the elements in random order, the expected

performance guarantee of the InsertionSort algorithm
is Ω(n).

Lemma 4.4. The expected performance guarantee of
InsertionSort is Ω(n).

Proof. We consider an example with 2n + 1 elements,
numbered 0 to 2n. There are three input rankings,
given by π1, π2, π3, where list(π1) is the identity,
list(π2) = (1,2, . . . ,2n,0) and list(π3) = (n + 1, n +
2, . . . ,2n,0,1, . . . , n), and µ1 = m,µ2 = m,µ3 = 1 for
some large constant m. We call elements 1, . . . , n red
elements, and n+1, . . . ,2n blue elements. InsertionSort
starts with an empty list, considers the element in
random order and inserts the element in the highest
position so that i ≺ j for all elements j that are in lower
positions than i.

Note that at the moment when 0 is considered,
the current list has the elements considered thus far
in lexicographical order. If some blue element has been
considered before 0, then a blue element is at the bottom
of the list, and 0 is inserted at the bottom. If a blue
element is inserted next, it will be inserted in its correct
position among the blue elements, but if a red element
is inserted next, then it is inserted below 0. After the
first red element that follows 0, all subsequent red and
blue elements are inserted below 0.

We will let B be blue elements that are considered
before element 0, and we let R be the red elements con-
sidered after element 0, and let B,R be the size of B
and R respectively. From the previous discussion, In-
sertionSort ranks the elements in B above the elements
in R, and the cost of the permutation returned by In-
sertionSort is thus at least 2m

2m+1
R ×B.

We note that if the elements are considered in
random order then B and R are independent random
variables, and B and n−B, R and n−R are identically
distributed, so the probability that both B and R are at
least n

2
is at least 1

4
. Hence 2m

2m+1
R×B is at least 2m

2m+1
n2

4

with probability 1
4
, and the expectation of 2m

2m+1
R×B is

thus at least 2m
2m+1

n2

16
. On the other hand, the objective

value for the permutations π1, π2 is m+1
2m+1

2n + 1
2m+1

n2.
◻

Note that the example in the proof of Lemma 4.4
gives a bad example for QuickSort if we choose 0 as
the first pivot, in which case the algorithm returns the
solution (n+1, . . . ,2n,0,1, . . . , n), which is a factor Ω(n)
from optimal. However, one can show that the expected
ratio of the objective value of the QuickSort solution and
the optimal value for this particular example is not more
than 4

3
. Similarly, if we use MergeSort on this example,

and in the first recursive call, we split the elements into
{0,1, . . . , n} and {n+1, . . . ,2n}, then MergeSort returns

45 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

(n + 1, . . . ,2n,0,1, . . . , n) but the expected ratio of the
MergeSort solution’s objective value for this instance
and the optimal value is constant.

4.3 Local search Coleman and Wirth [5] give a
nice example which shows that for feedback arc set
in tournaments, there exist local optima with respect
to single vertex moves that are a factor Ω(n) more
expensive than the optimum. For rank aggregation, a
similar example is not nearly as bad: because we need
to ensure that the weights on the arcs obey the triangle
inequality, a large constant is added to the objective
value of any feasible solution for their example. The
lower bound on the approximation ratio therefore drops
from Ω(n) to only 5

4
.

We are not aware of examples on which the perfor-
mance of the local search algorithm is worse than 5

4
.

4.4 Hybrid algorithms In the bad example for
Borda’s method in the previous section, both Copeland
and the MC4 algorithm are not able to distinguish be-
tween the elements and these algorithms could thus re-
turn any permutation depending on how the algorithms
break ties. We can adapt the example slightly, to make
an example for which the MC4 algorithm returns a solu-
tion that costs a factor 3

2
more than the optimal value.

Lemma 4.5. The performance guarantee of the MC4
algorithm is at least 3

2
.

Proof. We take n even, and we consider the same
input rankings as in the bad example for the Borda
and Footrule algorithms: We have n elements, and n
permutations π1, . . . , πn, where list(π`) = (n−`+2, n−
`+ 3, . . . , n,1,2, . . . , n− `+ 1). The weights are given by
µ1 =m − 1, µ` =m for 2 ≤ ` ≤ n.

Consider two elements i, j, where j > i. Then i
is ranked before j in rankings 1 up to n − j + 1, and
in rankings n − i + 2 up to n. The number of voters
that ranked i before j is thus ∑n−j+1

`=1 µ` +∑
n
`=n−i+2 µ` =

(n− (j − i))m− 1 and the number of voters that ranked
j before i is (j − i)m. We get that for i < j a majority
of voters prefers j to i if (j − i)m ≥ nm − (j − i)m − 1,
i.e. if j ≥ i + n

2
− 1

2m
and a majority prefers i to j if

j ≤ i+ n
2
− 1

2m
. If we take m ≥ 1, then for any i, j there is

a strict majority that prefers one of the two elements.
Hence the transition matrix corresponding to our

instance is given by

P (i, j) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
n

if j ≥ i + n
2

or i − n
2
< j < i

1
2

if i = j ≤ n
2

1
2
+ 1
n

if i = j > n
2

0 otherwise.

We show that the solution x to x = xP has
xn

2 +1 > xn
2 +2 > . . . > xn > xn

2
> xn

2 −1 > . . . > x1,
and that the MC4 algorithm thus outputs the ranking
n
2
+ 1, n

2
+ 2, . . . , n, n

2
, n

2
− 1, . . . ,1: Setting x = xP gives

xi =
1
2
xi +

1
n
xi+1 + . . . +

1
n
xn/2−1+i,

xn/2+i =
1
n
x1 + . . . +

1
n
xi + (

1
2
+

1
n
)xn/2+i

+
1
n
xn/2+i+1 + . . . +

1
n
xn,

for i = 1,2, . . . , n/2.
Taking differences, we get:

1
2
(xi − xi+1) =

1
n
(xi+1 − xn/2+i),(4.4)

1
2
(xn/2 − xn/2+1) =

1
n
(− x1 − xn),(4.5)

(4.6)

(
1
2
−

1
n
)(xn/2+i − xn/2+i+1) =

1
n
(− xi+1 + xn/2+i+1),

for i = 1,2, . . . , n/2 − 1.
Adding (4.4) and (4.6) gives

1
2
(xi − xi+1) =

1
n
(xn/2+i+1 − xn/2+i)

− (
1
2
−

1
n
)(xn/2+i − xn/2+i+1)

=
1
2
(xn/2+i+1 − xn/2+i).(4.7)

Claim 1. xi < xi+1 implies xi+1 < xi+2 and xn/2+i >
xn/2+i+1 for i = 1,2, . . . , n/2 − 2.

Proof. By contradiction. Assume xi < xi+1 and xi+1 ≥

xi+2. The latter inequality together with (4.4) implies
xi+2 ≥ xn/2+i+1. We thus have xi+1 ≥ xi+2 ≥ xn/2+i+1,
which together with (4.6) now implies xn/2+i ≤ xn/2+i+1

and hence xn/2+i ≤ xn/2+i+1 ≤ xi+2 ≤ xi+1. However, the
former inequality together with (4.4) implies xn/2+i >
xi+1. The other part of the claim follows from (4.7). ◇

Claim 2. The equilibrium distribution x has x1 < x2 <

. . . < xn/2 < xn < xn−1 < . . . < xn/2+1.

Proof. (case 1) We will start by assuming that x1 < x2.
We get x1 < x2 < . . . < xn/2 and xn < xn−1 < . . . < xn/2+1.
Equation (4.6) with i = n/2 − 1 gives us the remaining
inequality xn/2 < xn. Note that (4.5) indeed holds.
(case 2) Assume x1 > x2. Then we get in a similar way
x1 > x2 > . . . > xn/2 and xn > xn−1 > . . . > xn/2+1. (4.4)
with i = n/2−1 gives the remaining inequality xn/2 > xn.
But now (4.5) is violated.

46 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

(case 3) Assume x1 = x2. Then we get in a similar way
x1 = x2 = . . . = xn/2 and xn = xn−1 = . . . = xn/2+1. (4.4)
with i = n/2−1 gives xn/2 = xn. (4.5) now tells us xi = 0
for all i, so this is not a distribution. ◇

We now compare the objective values of the MC4
solution and the identity. We take m = n so that
µ`

M
= 1
n
+O(1

n2) for ` = 1, . . . , n.
The only pairs that are in the same order in

the MC4 solution as in the identity are pairs {i, j}
where i, j > n

2
. We consider the cost for these pairs

in the identity. In π1, all these pairs are ordered
lexicographically, in π2 the pairs with j = n are out
of order, so there are n

2
−1 out of order. In π3, the pairs

with n
2
< i < n−1 and j ≥ n−1 are out of order, and there

are 2(n
2
− 2) of these. In general, in π`, for ` ≤ n

2
, there

are (`− 1)(n
2
− (`− 1)) pairs {i, j} with i, j > n

2
that are

out of order with respect to the identity. For ` > n
2

, all
pairs {i, j} with i, j > n

2
are in lexicographical order in

π`. Hence the cost incurred by the identity (and hence
also by the MC4 solution) for pairs {i, j} with i, j > n

2

is ∑n/2`=1
µ`

M
(` − 1) (n

2
− (` − 1)) =

n/2−1

∑
`=0

µ`
M
`(
n

2
− `) =

n/2−1

∑
`=0

(
1
n
+O(

1
n2

)) `(
n

2
− `)

=
1
n

1
6
(
n

2
)
3

+O(n) =
n2

48
+O(n).

From the proof of Lemma 4.1 we know that the total
cost of the identity is 1

6
n2 + O(n). Hence the cost

incurred by the identity for all other pairs (i.e. pairs
were at least one of i, j is at most n

2
) is 7

48
n2 + O(n).

Now, note that there are (
n
2
) − (

n/2
2
) = 3

8
n2 − 1

4
n pairs

{i, j} such that at least one of i, j is at most n
2

. Since
these pairs are in opposite order in the identity and the
MC4 solution, the sum of the cost incurred by the two
solutions for these pairs is (3

8
n2− 1

4
n). Therefore the cost

for these pairs must be (3
8
n2 − 1

4
n) − (7

48
n2 +O(n)) =

11
48
n2 + O(n) in the MC4 solution, and the total cost

of the MC4 solution is thus 1
48
n2 + 11

48
n2 + O(n) =

1
4
n2 + O(n). Since the objective value of the identity

is 1
6
n2 +O(n), we get the result by letting n→∞. ◻

We conclude this section by noting that none of
the bad examples we considered is simultaneously a
bad example for a positional method and a comparison
sort method. One can verify that any of the three
comparison sort algorithms performed on the output
of Borda’s method or Footrule aggregation for their
respective bad examples will return one of the input
permutations, which all have objective value very close
to optimal. In the case of the bad example for Pick-a-
Perm, the comparison function ≺ is transitive, hence the

identity is returned by any comparison sort algorithm.
On the other hand, our bad example for InsertionSort
is not a bad example for the positional methods. We
do note however, that the hybrid method BordaQS
performs very badly on this example: the result of
Borda’s method has element 0 in the median position,
and hence QS will pivot on this element first, thus
returning the solution (n + 1, n + 2, . . . ,2n,0,1, . . . , n)
which is a factor Ω(n) more expensive than the optimal
solution.

5 Evaluation

5.1 Description of data sets

5.1.1 Web search data We extracted search results
from Ask, Google, MSN Live Search and Yahoo! using
the default settings of each of these search engines. The
queries we used for our experiment are the same 37
queries that were used by Dwork et al. [9]:

affirmative action, alcoholism, amusement
parks, architecture, bicycling, blues, cheese,
citrus groves, classical guitar, computer vision,
cruises, Death Valley, field hockey, gardening,
graphic design, Gulf war, HIV, java, Lipari,
lyme disease, mutual funds, National parks,
parallel architecture, Penelope Fitzgerald, re-
cycling cans, rock climbing, San Francisco,
Shakespeare, stamp collecting, sushi, table
tennis, telecommuting, Thailand tourism, vin-
tage cars, volcano, zen buddhism, and Zener.

As in the experiments of Dwork et al. we say that
two pages are identical if their URLs are identical (up
to some canonical form); we do not use the content
of page to determine if two results are identical. We
extracted the top-100 results from each search engine.
On average, a single query resulted in 283 different
pages. We assumed that all pages for a query that
are returned by some search engine, but that are not
in the top-100 of a particular search engine, are ranked
at position 101 by that particular engine. The average
number of results per query was 283, with a standard
deviation of 23.4.

5.1.2 Web Communities data set We used the
Web Communities data set that was used by Coleman
and Wirth [5] in their implementation study. We were
not able to obtain the input rankings, but only the
matrix w where w(i,j) is the fraction of the input
rankings that prefer i to j. For this reason, the only
positional method we could evaluate on this data set is
Borda’s method.

The Web Communities data set was obtained from

47 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

9 full rankings of 25 million documents [18]. From this
data, 50 different inputs to the full rank aggregation
problem were generated by choosing 50 samples of 100
documents each, and letting the input rankings be the
induced 9 rankings on the 100 documents.

5.2 Results We implemented each of the algorithms
in MATLAB. For the Footrule method, we implemented
the Hungarian algorithm for finding a minimum cost
bipartite matching, as described in Lawler [17]. The
implementation in MATLAB means that matrix multi-
plications and eigenvector computations are very fast.
This may skew our results somewhat in favor of the MC4
and MC4Approx algorithms.

We found the optimal solution to the integer pro-
gram and its linear programming relaxation using
CPLEX. The average solution time to find the LP op-
timum was 10.6 seconds for the Web Search data set,
and 2.8 seconds for the Web Communities data set. Al-
though the LP relaxation is known to have a small in-
tegrality gap, a first remarkable outcome of our exper-
iments is the fact that the LP relaxation had an in-
teger optimum for all instances in the Web Communi-
ties data set, and for all but 3 instances (corresponding
to the queries “amusement parks”, “mutual funds” and
“Shakespeare”) in the Web Search data set. In addition,
the largest gap between the optimal objective values of
the integer and linear program was only 0.002%, i.e. an
integrality gap of 1.00002.

For the three instances for which the LP relaxation
did not have an integer optimum, two of them solved in
approximately 30 seconds. The instance corresponding
to the query “Shakespeare” proved the most difficult:
it took CPLEX 78 minutes to find the optimal integer
solution. The LP relaxation of this instance was slow
to solve as well and took approximately 90 seconds.

However, as we will see, the best heuristics we study
here find solutions that cost less than 0.03% more than
optimal in just a fraction of the time needed to solve
the linear or integer program.

For the randomized algorithms, we took the average
objective value over 500 runs. For each algorithm,
and for each instance, we computed the “gap”: the
percentage by which the algorithm’s solution value was
higher than the optimum. In Table 1 in the Appendix,
we give the average CPU time and average gap for the
Web Search data set and the Web Communities data
set. For comparison, we also included these values for a
randomly generated permutation.

In Figures 1 and 2 we display the CPU time versus
the percentage by which the solution value found was
higher than the optimum for all the algorithms we con-
sidered (including the combinations of each algorithm

0 0.05 0.1 0.15 0.2 0.25
0

0.5

1

1.5

2

2.5

3

CPU time (in seconds)

P
er

ce
nt

ag
e

fr
om

 o
pt

im
um

 Borda

 BordaQS
 BordaIS

 CopelandIS
 MC4Approx

 MC4ApproxIS
 BordaIS + LocalSearch

Positional
Comparison Sort
(Existing) Hybrid
Local Search
Alg with Comparison Sort
Alg with Local Search

Figure 1: CPU time versus performance of the algorithms on
the Web Search data.

with a local search clean-up). We use different symbols
to show the different classes of algorithms: A ▲ denotes
a positional algorithm (Borda, Footrule, Pick-a-Perm
and Best-of-k), a ∎ denotes a comparison sort algo-
rithm (QuickSort, LogQuickSort, DetQuickSort, Merge-
Sort and InsertionSort), a ◆ denotes a hybrid method
(Copeland, MC4, MC4Approx), a ★ denotes a local
search algorithm (either only single-vertex moves, or
the Chanas algorithm, started from a random permu-
tation), a ● denotes a combination of a positional or
hybrid method with a comparison sort method, and a
◁ denotes one of the previously mentioned algorithms
followed by local search with single-vertex moves.

The name of an algorithm appears in the graph
if no algorithm with smaller running time performs
better. Hence these graphs allow one to read off the
best algorithm for a given computational budget.

We start by considering the different classes of
algorithms separately.

▲ Positional methods: Because we did not have
the input rankings for the Web Communities data
set, we were not able to run the Pick-a-Perm, Best-
of-k and Footrule algorithms on the Web Com-
munities data set. On the Web Search data set,
Borda’s algorithm is a clear winner among the 4 po-
sitional methods: it finds a solution within 3.03%
from the lower bound in approximately 0.01 sec-
onds. Except for Pick-a-Perm, which has approx-
imately the same running time as Borda’s algo-
rithm, the other methods are both slower and give
worse results. We note that our implementation of
the Hungarian algorithm to find the Footrule solu-
tion was very slow. Based on the fact that the re-

48 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

CPU time (in seconds)

P
er

ce
nt

ag
e

fr
om

 o
pt

im
um

 Copeland

 CopelandIS

 CopelandIS + LocalSearch

Positional
Comparison Sort
(Existing) Hybrid
Local Search
Alg with Comparison Sort
Alg with Local Search

Figure 2: CPU time versus performance of the algorithms on
the Web Communities data.

sulting solution is not very good, it does not seem
worthwhile to investigate improvements to this al-
gorithm.

∎ Comparison sort methods: The QuickSort al-
gorithm gives good results (with a gap of less than
1%) for both data sets. The deterministic Quick-
Sort algorithm performs even better than this, but
has the drawback of being quite slow. LogQuick-
Sort is approximately 5 times slower than Quick-
Sort, but improves the outcome considerably, es-
pecially on the Web Communities data set. The
other two comparison sort algorithms are surpris-
ingly unrobust: MergeSort performs well on the
WebCommunities data set, but poorly on the Web
Search data set, and InsertionSort performs rea-
sonably well on the Web Search data set, but very
poorly on the Web Communities data set. Hence
the only reasonable comparison sort algorithms (if
not used in combination with another algorithm) in
our experimental study are those based on Quick-
Sort.

◆ Hybrid algorithms: Since the MC4Approx algo-
rithm outputs the same result as the MC4 algo-
rithm, and is much faster than MC4, it suffices to
consider only MC4Approx and Copeland. These
two algorithms had similar (and very good) per-
formance: The running times were approximately
the same for MC4Approx and Copeland, and both
algorithms returned solutions that were close to
optimal. The performance of the Copeland algo-
rithm was somewhat better on the Web Commu-
nities data set (0.36% vs. 0.90% for MC4Approx)

but worse on the Web Search data set (1.93% vs.
0.35% for MC4Approx).

● Combinations with comparison sort algo-
rithms: Whereas InsertionSort did not perform
well on its own, it gave the best improvement when
comparing different combinations of a (positional
or hybrid) algorithm with a comparison sort algo-
rithm. The results given by a combination of a
positional or hybrid algorithm with QuickSort are
very good as well, but do not improve on the results
of running QuickSort alone. Running MergeSort on
the result of another algorithm does not seem to be
advisable, as it often gives a worse result.

★,◁ Local search methods: The single-vertex moves
are extremely powerful on our instances. Regard-
less of the permutation that we started with, us-
ing local search we found a permutation that is
within 0.03% for the Web Search data set and
within 0.005% for the Web Communities data set.
However, the running time did depend on the start-
ing permutation. Local search when starting with
a random permutation took considerably longer
than when starting with a “good” permutation (e.g.
the result of one of the other algorithms). The
Chanas algorithm, which combines single-vertex
moves and reversals of the permutation, came out
as the strongest algorithm in the implementation
by Coleman and Wirth [5]. In our experiments,
the Chanas algorithm is also a very good algorithm,
but it does not significantly improve on using only
single-vertex moves. Much faster algorithms that
are as good as the Chanas algorithm are obtained
by starting with a fast heuristic such as Borda,
QuickSort, Copeland, or MC4Approx and running
a local search procedure on the permutation output
by the heuristic.

The fastest algorithms overall in our experiments
are the positional methods Pick-a-Perm and Borda. Es-
pecially Borda’s algorithm, which has the additional ad-
vantage of being extremely simple, gives quite reason-
able results. However we can do much better by using
Copeland’s method, which is only slightly more compli-
cated and almost as fast as Borda’s algorithm. Other
good algorithms that are very fast are QuickSort and
MC4Approx. In our experiments, Copeland, QuickSort
and MC4Approx all gave results within 2% of optimal
in less than 33 milliseconds on the Web Search data set,
and less than 3 milliseconds on the Web Communities
data set.

Based on our experiments, the best comparison sort
method to use as a “second step” on top of another al-
gorithm is InsertionSort. Combining InsertionSort with

49 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

WebSearch Web Communities
Algorithm No Local Search With Local Search No Local Search With Local Search

% gap time % gap time % gap time % gap time

▲ Pick-a-Perm 11.42 0.009 0.03 0.130

▲ Best-of-k 5.88 0.110 0.03 0.230
▲ Borda 3.03 0.009 0.02 0.104 15.27 0.000 0.004 0.0212

▲ Footrule 10.97 8.129 0.02 8.257

∎ MergeSort 16.30 0.027 0.03 0.152 1.19 0.004 0.005 0.0131
∎ InsertionSort 2.77 0.019 0.03 0.112 68.34 0.003 0.005 0.0239

∎ QuickSort 0.72 0.018 0.03 0.108 0.67 0.003 0.004 0.0115

∎ DetQuickSort 0.16 2.912 0.02 2.971 0.00 0.087 0.001 0.0907
∎ LogQuickSort 0.31 0.060 0.03 0.129 0.01 0.014 0.002 0.0186

★ randomPerm 67.51 0.009 0.02 0.143 188.37 0.000 0.005 0.0284
★ Chanas 0.03 0.145 0.03 0.160 0.01 0.020 0.005 0.0241

◆ Copeland 1.93 0.021 0.03 0.118 0.36 0.001 0.003 0.0118

◆ MC4 0.35 0.471 0.02 0.548 0.90 0.029 0.004 0.0405
◆ MC4Approx 0.35 0.033 0.02 0.110 0.90 0.002 0.004 0.0133

● Pick-a-PermIS 0.96 0.019 0.03 0.105

● Pick-a-PermMS 10.41 0.028 0.03 0.152
● Pick-a-PermQS 0.70 0.018 0.03 0.110

● Best-of-kIS 0.55 0.122 0.03 0.200
● Best-of-kMS 9.35 0.131 0.03 0.251
● Best-of-kQS 0.64 0.121 0.03 0.212

● BordaIS 0.53 0.019 0.03 0.099 0.63 0.003 0.004 0.0138
● BordaMS 15.27 0.028 0.03 0.151 1.24 0.004 0.004 0.0125
● BordaQS 0.70 0.018 0.03 0.106 0.99 0.003 0.003 0.0112

● FootruleIS 0.48 8.139 0.02 8.214
● FootruleMS 16.58 8.147 0.03 8.276
● FootruleQS 0.68 8.138 0.03 8.229

● CopelandIS 0.42 0.031 0.03 0.108 0.07 0.004 0.002 0.0110
● CopelandMS 12.28 0.041 0.03 0.167 0.75 0.005 0.005 0.0138
● CopelandQS 0.72 0.030 0.03 0.122 0.43 0.003 0.004 0.0124

● MC4IS 0.18 0.480 0.03 0.548 0.23 0.032 0.005 0.0399
● MC4MS 15.28 0.489 0.02 0.613 0.94 0.032 0.005 0.0417
● MC4QS 0.74 0.479 0.03 0.572 0.41 0.031 0.003 0.0396

● MC4ApproxIS 0.18 0.043 0.03 0.110 0.23 0.004 0.005 0.0127
● MC4ApproxMS 15.28 0.051 0.02 0.175 0.95 0.005 0.005 0.0145
● MC4ApproxQS 0.74 0.041 0.03 0.134 0.41 0.004 0.003 0.0124

Table 1: The results of the algorithms on the data sets. “% gap” gives the objective value of the algorithm’s
solution minus the optimum divided by the optimum. Time gives the CPU time in seconds. The algorithms
printed in boldface are recommended for a combination of ease of implementation, speed and quality.

Borda, Copeland, or MC4Approx increased the running
time by not more than 10 milliseconds, and always im-
proved the result significantly: at worst basically halv-
ing the gap between the solution found and the opti-
mum, and often decreasing the gap by a factor 5.

Finally, in our experiments local search was a
sure-fire way of finding a solution extremely close to
optimal. Running local search on the output of another
algorithm takes much longer than InsertionSort, but in
our experiments the resulting permutation was never
more than 0.03% from optimal.

The practitioner thus has a choice of algorithms for
finding good solutions to the rank aggregation problem.
Based on ease of implementation, we recommend using
Borda for a very fast algorithm, Copeland, or a combi-
nation of Borda or Copeland with InsertionSort, for a

fast algorithm that gives better results, and finally any
of the four previous possibilities followed by local search
for an algorithm that is still pretty fast and gives results
very close to optimal.

6 Conclusion and future work

We considered positional, comparison sort and local
search algorithm and algorithms that combine these dif-
ferent approaches. There is some theoretical indication
that this would yield improved algorithms, and we find
in our evaluation that hybrid methods indeed give an ex-
cellent trade-off of CPU time and performance. Based
on our experimental research, we gave three recommen-
dations for which (combination of) algorithms to use,
depending on how fast you want to get the result.

50 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Our experimental results raise some theoretical
questions. First of all, no approximation guarantees are
known for some of the best methods in our experiments,
such as local search and MC4. But more importantly,
even though the rank aggregation problem seems to be
easier than the feedback arc set problem in tournaments,
there is a PTAS for the latter and not for the former.
Another interesting finding is the fact that the LP
relaxations almost always had optimal integer solutions,
and that the integrality gap was extremely small in the
remaining cases. It is known that the integrality gap
is not more than 3

2
for any partial rank aggregation

instance and not more than 4
3

in the case of full rank
aggregation, but it would be very interesting to have
lower bounds on the integrality gap.

7 Acknowledgements

We would like to thank Emmanuel Sharef for help in ex-
tracting the search results from the four search engines,
Tom Coleman, Laurence Park and Tony Wirth for shar-
ing their data sets with us, and David Williamson for
helpful discussions. We would also like to thank the
anonymous referees for their comments.

References

[1] N. Ailon. Aggregation of partial rankings, p-ratings
and top-m lists. In SODA ’07: Proceedings of the
18th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, pages 415–424. SIAM, 2007.

[2] N. Ailon, M. Charikar, and A. Newman. Aggregating
inconsistent information: ranking and clustering. In
STOC ’05: Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, pages 684–693.
ACM, 2005.

[3] J. Borda. Memoire sur les elections au scrutin. His-
toire de l’Academie Royal des Sciences, 1781.

[4] S. Chanas and P. Kobylanski. A new heuristic algo-
rithm solving the linear ordering problem. Comput.
Optim. Appl., 6(2):191–205, 1996.

[5] T. Coleman and A. Wirth. Ranking tournaments:
Local search and a new algorithm. In ALENEX ’08:
Proceedings of the Workshop on Algorithm Engineering
and Experiments. SIAM, 2008.

[6] A. Copeland. A ’reasonable’ social welfare function.
Seminar on Applications of Mathematics to Social
Sciences, University of Michigan, USA, 1951.

[7] D. Coppersmith, L. Fleischer, and A. Rudra. Ordering
by weighted number of wins gives a good ranking for
weighted tournaments. In SODA ’06: Proceedings of
the 17th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 776–782. ACM, 2006.

[8] P. Diaconis and R. L. Graham. Spearman’s footrule
as a measure of disarray. J. Roy. Statist. Soc. Ser. B,
39(2):262–268, 1977.

[9] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar.
Rank aggregation methods for the web. In WWW
’01: Proceedings of the 10th International Conference
on World Wide Web, pages 613–622. ACM, 2001.

[10] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and
E. Vee. Comparing partial rankings. SIAM J. Discrete
Math., 20(3):628–648, 2006.

[11] R. Fagin, R. Kumar, and D. Sivakumar. Comparing
top k lists. SIAM J. Discrete Math., 17(1):134–160,
2003.

[12] R. Fagin, R. Kumar, and D. Sivakumar. Efficient
similarity search and classification via rank aggrega-
tion. In SIGMOD ’03: Proceedings of the 2003 ACM
SIGMOD International Conference on Management of
Data, pages 301–312. ACM, 2003.

[13] A. Gionis, H. Mannila, K. Puolamäki, and A. Ukkonen.
Algorithms for discovering bucket orders from data.
In KDD ’06:Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining. ACM, 2006.

[14] A. Gionis, H. Mannila, and P. Tsaparas. Clustering
aggregation. ACM Trans. Knowl. Discov. Data, 1(1):4,
2007.

[15] A. Goder and V. Filkov. Consensus clustering algo-
rithms: Comparison and refinement. In ALENEX ’08:
Proceedings of the Workshop on Algorithm Engineering
and Experiments. SIAM, 2008.

[16] C. Kenyon-Mathieu and W. Schudy. How to rank with
few errors. In STOC ’07: Proceedings of the 39th
Annual ACM Symposium on Theory of Computing,
pages 95–103. ACM, 2007.

[17] E. L. Lawler. Combinatorial optimization: networks
and matroids. Holt, Rinehart and Winston, New York,
1976.

[18] L. A. F. Park and K. Ramamohanarao. Mining
web multi-resolution community-based popularity for
information retrieval. In CIKM ’07: Proceedings of the
2007 ACM Conference on Information and Knowledge
Management, pages 545–552, November 2007.

[19] A. van Zuylen, R. Hegde, K. Jain, and D. P.
Williamson. Deterministic pivoting algorithms for con-
strained ranking and clustering problems. In SODA
’07: Proceedings of the 18th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 405–414. SIAM,
2007.

[20] A. van Zuylen and D. P. Williamson. Deterministic
algorithms for rank aggregation and other ranking
and clustering problems. In WAOA ’07: Proceedings
of the 5th Workshop on Approximation and Online
Algorithms (WAOA ’07), Lecture Notes in Computer
Science. Springer, 2007.

[21] H. P. Young. Condorcet’s theory of voting. Math.
Inform. Sci. Humaines, (111):45–59, 1990.

[22] H. P. Young and A. Levenglick. A consistent extension
of Condorcet’s election principle. SIAM J. Appl.
Math., 35(2):285–300, 1978.

51 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

