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We fomulate the problem of political districtlng aS amini-max spannlng･forest problem, and present some local
search-based heuristics to solve the problem approximately･ Through numerical experiments, we evaluate the

performance of the developed algorithms･ We also glVe a Case Study of a prefecture in Japan for the election of
the Lower House Members of the National Diet･ We observe that 'hyperopIC･ algorithm usually grves satisfactory

solutions, With the resulting districts all connected and usually balanced in size.
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1. 1mtroduction

Gerrymandering (Morris 2006) is a form of districting

in which electoral district or constituency boundaries

are manlpulated fわr an electoral advantage. To prevent

this and to design more fair and reasonable districting,

mathematical methods have been explored (Balinski

and Young 1982) ･ For example, the split-line algorithm

(Smith and Kok　2008) and the Voronoi method

(Balinski, Brams, and Pukelsheim 2004) are based on

geographical configuration of the region and divided

into constituencies with artificial, pleCeWise linear

boundaries.

Cluster analysis (Romesburg 2004) and statistical

physics have been applied to this problem. These

methods introduce such measures as compactness

quotients (Nguyen and Kreinovich 1999; Bottman,
Essig, and Whittle 2007) or HamiltoniaT energy (Chou

and Li 2006) to evaluate the approprlaten.esp Of the

resulting districts and try to find the distrlCtlng that

maximises (or mini.mies) the sum of such measures
over all constituencleS. Lush, Gamez, and Kreinovich

(2007) observed that naive cluste空g approach can

lead to a disproportional representatlOn･

In the mathematical programmlng approach cost

is associated with each possible district, and the

problem is usually formulated as a sort of the set

packing/coverL'ng problem (Lawler 1976) to miTimise
the sum or these costs over all possible combination Or

districts･ Some heuristic algorithms have been pro-

posed to solve this 0-1 linear programmlng problem

approximately, using tabu search (Bozkaya, Erkut, and

Laporte　2003) or GRASP (Rios-Mercado and

Fernandez　2009) methods. Exact algorithms have

also been explored to solve this problem to optlmality･

These include techniques such as column generation

and branch-and-price (Mehrotra, Johnson, and

Nemhauser 1998), network optimisation (George,

Lamar, and Wallace 1997), and capacitated transpoト

tation problem (Hojati 1996).

In all these works, the objective function was a sum

or some measure or approprlateneSS OVer all constitu-

encies･ Unfわrtunately, the resulting districts can be

unbalanced; we may have some very large districts

together with some small ones･AIso, in the optlmisation

approach, unless district costs are carefully defined,

we may obtain disconnected districts as a part or an

optimal solution.

The purpose or this article is to take connectedness

and balance or constituencies explicitly Into a∝Ount,

and present a mathematical method to solve this

problem to some polnt Of satisfaction･ To this end,

in Section 2 We fわrmulate the problem as a kind or

mini-max spanning forest problem (MMSFP), and

explain the relation or this fわrmulation to the

MMSFPs studied in earlier works (Yamada,

Takahashi, and Kataoka 1996, 1997). Section　3

presents two kind or heuristic algorithms to solve this

problem approximately･ After a numerical example for

a smalトsized example in Section 4, Section 5 gives

a summary or numerical experiments fわr larger

artificial instances･ Finally, Section 6 describes a case

study of Kanagawa Prefecture, Japan for the election

or the Lower House Members or the National Diet.

Through these we observe that the `hyperopic'
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approach gives satisfactory solutions to these large-

scale districtlng prOblems･

2. Political districting and the MMSFP

we model the reglOn under consideration as an

undirected planar graph G-(V,E), where V is the set

of nodes and E⊆ Vx Vis the set of edges･ Here each

node represents an electoral unit such as cities and

counties, and edges represent the adjacency relations

between these units. Each node v E V has an associated

integer weight wV(V) >0. Usually this is the population

of that electoral unit. Each edge e ∈ E may also have an

associated weight wE(e), which represents the distance

or the cost of that edge･ It is often the case that we have

asetofroolnodes U- tut, u2,... ,uJ ⊆ V, whichimplies

the `core, or each constitllenCy･ Thus, the problem is

to divide the graph into connected subgraphs, each

including one and only one root node, and the

populations or constituencies as balanced as possible･

In graph-theoretic terms, a constituency is a

connected subgraph that can be spanned by a tree･

and a set of mutually disjoint trees that cover all nodes

of G constitutes a spanningfores1 0f that graph･ Given

a set of root nodes U, a U-rooted spanning forest Fis a

spannlng forest of G consistlng Of r disjoint trees Tl,

T,,...,T, such that u, is a node of Tl(i-I,2,･･.,r)･

For a tree T, its weight is defined as the sum of the

weights or its constituent nodes and edges･

Furthemore, to obtain a balanced districtlng, We

introduce the objective function of such a forest as

w(F) :- fejfX,tw(TE))･　　(1)

Then, the MMSFP(G, wV, wE, U) is to find a U-rooted

spanning forest that minimises w(F) over all U-rooted

spannlng fわrests or G･

In a previous paper (Yamada et al･ 1996), We

considered MMSFP without node weights, i･e･

MMSFP(G, Q), wE, U). ln political districting we usually

consider only populations･ In this case we have
_　__ ∫,111n/′r V

MMSFP without edge weights, i.e. MMSFP(G,W

の, U). Both of these are special cases ofMMSFP(G, W

V

wE, U), andwecan conv占rt MMSFP(G, wV, wE, U) into

MMSFP(G, 0, wE, U) using the following node splitting

technique. That is, we transform a graph G - (V, E) with

node weights (and possibly with edge weights as well)

into a graph without node weights･ To do this, for each

node v∈ V we prepare its copy v′ and an edge (V,V')

between these nodes. Let -V- VUtv'tv∈ Vl and
-E=EUt(V,V,)lvE V), and derlne the graph G - (V,E)A

Next, we introduce edge weights to否by defining the

weight for (V, V,) as wE((V, V')) :- wV(V)･ Edge weights on

Eare inherited to those on -E.

Thus, MMSFP(G,wV,wE,U) can be solved by

solving MMSFP(G,a,wE, U), which is denoted as

MMSFP fわr simplicity, and hereafter we are prlmarily

concerned with these type of problems･ MMSFP with

more than one root nodes is 〟アthard (Yamada et all

1996). The problem or political districting fわrmulated

as MMSFP(G, wV,a, U) is also NP-hard･ This can be
shown by direct reduction from PARTITION (Garey

and Johnson 1978) to this problem for the case of

complete graph Kn+2 With integer node weights

(0,0,W1,...,Wn), Where the first two are the root

nodes. indeed, the answer to PARTITION is YES

if and only if we have w(Tl) - W(T2) - ∑?=l W,･/2 in

MMSFP.

previously we developed heuristic and exact algo-

rithms to solve MMSFP with 〟-2 (Yamada et al･

1996, 1997). In this article, we discuss MMSFP with

more than two root nodes, as this is usually the case in

political districting. The exact algorithm (Yamada

et a1. 1997) is able to solve only tiny instances, so we

extend our heuristic algorithm to the case or r>2･

The algorithm is based on the local search (Johnson,

papadimitriou, and Yannakakis 1983) strategy,

which is a.sort of the hill climbing method (see, e･g･

papadimitr10u and Steiglitz 1 982). The straightforward

application of this method to MMSFP is referred to as

a myopic strategy･ However, the resulting algorithm is

not satisfactory ln accuracy. To overcome the short-

comlng Of this approach, we propose a hyperopic

strategy, and compare these strategleS On a Series or

computational experiments･ We find that the hypero-

plC algorithm is much superior to the myoplC in

solution quality･

3. Myopic and hyperopic strategies

ln this section, we apply the local search method and

derive two kinds or heuristic algorithms to solve

MMSFP approximately･ In both of the algorithms,

We start from an arbitrary spannlng forest and improve

the forest, step-by-step, by scannlng Its neighbours for

a better forest. If such a forest is found we take this as

a new solution, and repeat the whole process until no

further improvement is possible.

As fわr the starter, a spannlng fわrest consistlng Or

trees or almost balanced weights appears to be

preferable. The following greedy method (Lawler

1976) aims to construct such a spanning fわrest by

successively adopting the feasible edge that induces

the least increase in the objective value of the updated

forest. This algorithm usually yields a spanning forest

of reasonable objective value. To describe this, let F'

be a (not necessarily spanning) forest of G･ For e∈ E,

Flu(e) is the subgraph with e added to F'･
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Let EF,:-te∈Ele is incident to F', and F′∪(e) is

a fわrest)･ Then, the algorithm is:

Algorithm GREEDY.

Step l･ Let the forest F'-(Tl',･･･,T,I) be initially

T.I-(VL.,E,) with Vi:-tu,i and Ei:-

4･(i- 1,…,r). Its value is w(F')-0.

Step 2･ Take e':- argmine∈EF,(W(F′ ∪ ieI)), and put

F'-Flu(e').

Step 3･ Stop if F'is a spanning forest. Otherwise, go

to Step 2.

The computational complexlty Or GREEDY is

0(JVllEl), since in Step 2 it scans all the edges to find

a minimislng e/, and Steps 2 and 3 are repeated at most

LVl times.

We prepare some notations befわre describing

the procedure for improving SPannlng trees. Let

F-(Tl,T2,...,T,) be a spanning forest of G_ For

an arbitrary node u∈ V, there exists a unlque path

along F from this node to a root node.

The corresponding root node is denoted as r(〟).

Any nodes on the path from u to r(u) are ancestors of

u, and u is a descendant of such a node. By u-rooted

subtree of F we mean the subgraph induced by the set

of nodes u and its descendants. This is denoted as Fu.

The parent node 〟+ or 〟 is the ancestor or 〟 which is

adjacent to u･ An edge (u,V)∈E is said to be a bridge

of F if r(u)≠r(V).

Let us derlne i*(i) :-aTg maxl≦L.≦r(W(Ti)), Which

isalso denoted as i* if it lS not COnfusing. We also

introduce the set of bridges between Ti and Tj by

B(Ti, Ti):-(u,V)∈Elu∈ Ti, V∈ T,), where u∈ T. means

'u is a node of Ti.'We further introduce B(i):-

∪,iJB(T,, TJ) and B*(i) :- UJ.≠′*B(Ti♯, TJ)･ These repre-

sent the set of all bridges in F, and the set of those

incident to the tree or maximtlm Weight, respectively･

Given a spanning forest F-(T1,...,T,) and

a bridge e-(u,V)∈B(Ti, Tj), We Can Obtain another

spanning forest F(T" Tj : u, V) by disconnecting Fufrom

T,A and attaching lt tO TJ through e･ This operation,

illustrated in Figure 1, is referred to as the swapping of

:. ･7･..::I:.･..

Figure l･ Swapping of trees: (a) before and (b) after

SWapplng･
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T, and TjWith respect to (u, V). FtT,A, T,: u, V) consists of

trees T: :- TL＼Fu＼((u,u')), TJ'‥-TJUFuU(e) and Tl

(l≠i,j)･ Correspondingly, the value of the forest

changes from w(i)-max(W(Tl),... , W(T,)) to w(FtT,･,

WTJ( :Tもvi'W=( TT,a-x Siri'とww('{Ti,'乙. } ,m::Ldft-Jw7'TTPi wTfJ?,r.e

w(Fu) + W(e)I Let　∂E(T,, TJ:u, V):-max(W(Ti), W(T,)

TmaXtw(T:),W(T,I))･ This represents the degree of
Improvement Of T,･ and TJ by this swapping.

The myoplC algorithm starts with the spannlng

forest obtained by GREEDY･ Next, it tries to improve

the objective value by performing a swapping With

respect to some bridge･ Such a bridge is taken from

B*(i), since otherwise the objective value will not be

improved･ This process is repeated over and over

agaln･ When no Further improvement is possible by

such a procedure, let the spannlng fわrest at this stage

be F-(T1,...,T,), and define V, as the set of nodes

of T.(i-1,･･･,r). Let G,･ denote the subgraph of G

induced by Vi･ Note that Gi (i- I, " ,r) are mutually

disjolnt･ Let T, be the minimum spannlng tree Within

G,. By definition w(-Tl)≦W(Ti), and thus we obtain

w(-i) ≦ W(i) for -F- (-Tl, ･ I.･,-Tr)･ Obtaining -F from

F is referred to as rel0Ptlmisation of the spannlng

forest F. The whole algorithm is as follows:

Algorithm MYOPIC.

Step l･ Using GREEDY, find an initial spannlng

forest FO, and let F(FO.

Step 2･ If there exists a bridge (u, V) ∈ B*(F) between

T.* and some other tree TJ Such that ∂F(Ti♯,

Tj:u,V)>0, go to Step 3; else go to Step 4.

Step 3･ Update the spanning fわrest by swapplng

Ti･ and Tj With respect to (u,V), namely,

F(F(T,･･, TJ:u,V)･ Go to Step 2･

Step 4･ Re-optimise F to obtain -F. If F≠-F, let

F- -Fand go to Step 2; else stop･

This algorithm is termed myopic since at each step lt

moves to a strictly lmprOVlng SOlution. As we shall

observe later in numerical experiments, the myoplC

strategy frequently ends up ln a poor local optlmum･

This is because requlrlng a Strictly improved solution at

each iteration is too restrictive, and the algorithm tends

to terminate at relatively early stages by failing to find

a bridge as required in Step 2. Taking this into account

we modify the myopic algorithm to obtain the

followlng.

Algorithm HYPEROPIC.

SteI) 1･ Using GREEDY, find an initial spannlng

forest FO, and let F(FO.

Step 2･ Ifthere exists a bridge (u,V)∈B(i) between

two distinct trees TI and T, such that ∂F(Ti,

TJ:lL,V)>0, go to Step 3; else go to Step 4.
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step 3･ Update the spannlng forest by swapplng T.･

and Tj With respect to (u,V), namely, F+

FtTi, Tj:u,V)･ Go to Step 2･

step 4. Re-optimise F to obtain -FI If F≠-F, let

Fj -Fand go to Step 2; else stop･

Except for Step 2, the algorithm is identical to

MYOPIC. However, since in Step 2 we take a bridge

from B(i) (⊇B'(i)), the objective value may not be

improved by such a swapplng･ Even ir this is the case

we perfbm swapplng, hoping to obtain a better

solution in later stages･ Note that fわr 〟-2 the

distinction between myoplC and hyperoplC algorithms

vanishes since B(i) = B'(i) in this case.

The computational complexity or one iteration

(steps　2　and　3) is 0(IEl) both in MYOPIC

and HYPEROPIC, since it needs to evaluate

∂E(Ti, Tj:u, V) for all (u,V)∈E･ Step 4 requires addi-

tional computation, but this is rarely encountered

in practice.

4. An example of electoral districting

we consider electoral districtlng fわr a reglOn

represented as the graph P20,46 0f Figure 2･ Here we

have 20 nodes and 46 edges, and five root nodes are

depicted in black. The population (in thousands) at

each node is glVen in Table 1, and all edges are orzero

weight.

Solving MMSFP fわr this graph we naturally obtain

an electoral districting･ Figure 3 depicts the results of

MYOPIC and HYPEROPIC, where constituencies

A to E are shown as trees. Populations or the

constituencies produced by these methods are shown

in Table 2, where the column or `Unbalance'glVeS the

ratio or the maximum population or the constituencies

over the minimum.

Figure 2･ Planar graph P20,46･

5. Numerical experiments

To evaluate the heuristic algorithms developed in the

previous sections, especially for the districtlng pro-

blems or larger sizes with many root nodes, numerical

experiments are carried out for planar graph Pn,m with

n nodes and m edges･ We consider the case of n

between 200 and 1000, and the number or root nodes

is between 10 and 30･ The population at each node is

distributed unifわrmly random over the integer interval

[2,201, and root nodes are randomly taken on the

graph･ We implemented the heuristic algorithms or
section 3 in ANSI C language and computation was

done on a DELL DIMENSION　8400　computer

(CPU Intel Pentium 4(R), 3･4 GHz)I
Table 3 summarises the results or experiments･

For each method, graph and the number or root nodes

Table l･ P20,46 population data･

city Population City Population Clty Population City PopulatlOn

oノ　0ノ　つJ　5　7
/LU　7　9U Oノ　0

1　1　1　1　20　2　5　00　2
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l　つん　tJ　4　57　∠U oO 0 OO
∠0　7　00　0ノ　0つJ GC　5　tJ 0
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SLep

Figure 3. Electoral districting for P20.46: (a) MYOPIC and

(b) HYPEROPIC.
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Table 2. Electoral districtlng results.

Constituency

Method A B C D E Unbalance

MYOPIC　　　　42　　39　　45　　51　51　　1.31

HYPEROPIC　　48　　47　　47　　42　　44　　　1. 14

Table 3･ Numerical experiments.

MYOPIC HYPEROPIC

Graph　　#Roots Iter. Unbalance Iter. Unbalance

P200, 5 60

0

0　　　　　　　　hU　　　　　　　　(U8　　　　　　　　　4　　　　　　　　　cc

/b　　　　　　　　　つ】　　　　　　　　　フ】

2　　　　　0

伽　　㈹　　00

nr P p..

4　っJ　′hU　3　つJ O　2　7　2　　-　5　4　2　5　′hUO44　036　032　00｣　0｣｣0　/んU　2　0ノ　2　/hU　1　3　/LU　′hU l　1　4　1　5
0ノ　5　′0　5　′hU　8　7　0　′hU qノ　0ノ　00　1　2　5人U 1 n7　0ノ　0ノ　qノ　つ｣　8　つJ O　7　4　7　2　0

1　1　2　2　2　2　2　3　2　4　4

2　4　7　0　4　4　3　4　3　7　/んU 1 l　/hU 0O70　67｣　930　083　384518　3　002　00ノ　qノ　4　1　7　0ノ5　33　つJ l　1　8　′hU　つJ OO　4　1　7　7　00　5　2

1

618　386　56｣　542　632
つJ　1　4　8　1　7　7　1　3　7　0ノ　0　00　1　5

2　3　4　5　4　4　7　史U OO　7　00　0　0ノ　0　2

111

0　0　0　0　0　0　0　0　0　0　0　0　0　0　01　2　つJ　1　2　3　1　2　3　1　2　tJ l　つ｣　3
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(#Roots), it shows the number of iterations (Step 2-A)

and the degree of unbalanFe (the ratio of the maximum

population or constituencleS Over the minimum) in the

columns labelled `Iter･'and `Unbalance', respectively･

Eacll row is the average over 30 independent random

runs･ tn all cases, CPU time was <ls, and thus

negligible.

For these problems, MYOPIC usually gave unsa-

tisfactory results with unbalanced ratiofrequently

larger than loo° In HYPEROPIC this ratio is always

<2, and often it is near to 1.0. Thus, We conclude that

HYPEROPIC overperfbrms MYOPIC fわr districtlng

problems with hundreds or electoral units and 10 or

more root nodes.

6. A case study

Figure 4 is a graphical representation or Kanagawa

Prefecture, Japan, where nodes and edges represent

cities (including counties and wards) and their adja-

cency relations･ Table 4 gives the population or these

cities (Shimbun 1994).

Under the revised law for the election of Members

or the Lower House (The Japan Times 1994), these

cities are divided into 17 single-seat constituencies as

shown in Figure 5(a). In this districting, the maximum

and minimum populations or constituency are 585,000

and 377,000, respectively, and the ratio or these two

Figure 4･ Graph representation of Kanagawa Prefecture.
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Table 4. Population (in thousands) of the cities in Kanagawa Prefecture.

No･　　City Population No･　　City Population No･　　City Population

辛 1 Tsurumi

2　　Kanagawa

3　　Nishi

4　　Naka

5　　Minami

6　　Hod ogaya

7　Isogo

* 8　　Kanazawa

*9　　　Kohoku

* 10　　Totsuka

*l 1 Konan

辛 12　　Asahi

1 3　　Midori

1 4　　Seya

1 5　　Sakae

1 6　　Izumi

* I 7　　　Kawasaki

244.2　　　　1 8

200.8　　　　19

76.2　　　　20

112.1　　　*21

195.8　　　　　22

191.7　　　　　23

166.0　　　　*24

191.0　　　　*25

293.3　　　　*26

237.0　　　　*27

225.0　　　　*28

244.0　　　　　29

150.0　　　　　30

117.3　　　　*31

122.7　　　　　32

122.2　　　　　33

193.9　　　　*34

Saiwai　　　　　　141.7　　　　*35

Nakahara　　　　18 1.0　　　　36

Takatsu　　　　　1 57.8　　　　37

Tama　　　　　　　163.7　　　　　38

Miyamae　　　　1 70,2　　　　39

As° 1 19,6　　　　40

Yokosuka　　　　　433. 1　　　　41

Hiratsuka　　　　　238.7　　　　42

Kamakura　　　　1 76.7　　　　43

Fujisawa　　　　34 1.3　　　44

0dawara　　　　　1 90.2　　　　45

Chigasaki　　　1 97.3　　　　46

Zushi　　　　　　　　57. 1　　　　47

Sagamihara　　　508.6　　　*48

Miura　　　　　　　　52. 1　　　　49

Hadano　　　　　　146.5

Atsuki　　　　　　185.9

Yamato

lsehara

Ebina

Zama

M-Ashigara
Ayase

Miura-C

K ouza

Naka-G

Ashigara-K

A shigara- S

Tsukui

Aiko

Aoba

Tsuzuki

2　4　1　0　50ノ0ノ　7　7　5　′hU　5　1　3　′073172592199434LRU 00 0 O4　7　2　4　つJ2　　　1　1　1　1
日‖　　　　　　　=　　　‖リ

Figure 5, Districting results: (a) current and (b) HYPEROPIC,

T Current r Proposed

Population (thousand)

弧40｡∽糾Ⅷ｡

ll]lm �� ��]lrlIll.IIFrlI 

Co nstitu ency

Figure 6. Population per constituency･

numbers, 155･2%, represents a measure of unbalance

in the current system.

We took 17 root nodes as the biggest cities in the

current constituencies, as shown with * in Table 4

and depicted in bold circles in Figure 4, and applied

HYPEROPIC to this problem. The districting

obtained is shown in Figure 5(b). The maximum and

minimum populations of constituency ln this district-

1ng is 517,000 and 388,000. In this case the unbalance

ratio is 133.2%, which is 20.0% smaller than in the

current system. Figure 6 illustrates the population or

each constituency with the current and proposed

districtlng.

7. Conclusions

ln this article we presented two heuristics to solve the

problem or electoral districtlng approximately. We
found that HYPEROPIC gives a satisfactory solution,

With the resulting districts all connected and usually

better balanced in size.

However, in this work we only took population at

each node into account. Edge weights, such as

｢
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distance, time and cost to travel between nodes, are not

explicitly considered･ To obtain a more geographically

acceptable districtlng, We need to combine these edge

weights with node weights･ This is an important and

interesting Issue for future research.
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