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Abstract — Let S be a “reasonable” single-winner vot-
ing system. (The precise definition of “reasonable” will
vary from theorem to theorem and is not stated in this
abstract.) Then

(a) For each C ≥ 3: if S is based on rank-order ballots
(with equalities either permitted or forbidden) then there
exist C-candidate election situations with“complete infor-
mation” (i.e, the voter knows everybody else’s votes) in
which voting honestly is not best voting strategy.

(b) If S is range voting, then in every C-candidate election
situation (C ≥ 1) with complete information, and also in
every C-candidate election situation with incomplete in-
formation (1 ≤ C ≤ 3), there is a “semi-honest” vote (i.e,
in which the <, >, and = relations among the candidate-
scores are valid for a limit of scores obeying the honest
relations) which is strategically best.

(c) If S is based on either rank-order ballots (with equal-
ities either permitted or forbidden) or candidate-scoring
“range vote” type ballots where each candidate is rated
with a real number, then for each C ≥ 4 there exist C-
candidate election situations with incomplete information
in which no semi-honest vote is best voting strategy.

Part (a) is Gibbard & Satterthwaite’s impossibility the-

orem. These results show a sense in which range voting

is a best possible deterministic single-winner voting sys-

tem. These theorems also hold for certain classes of prob-

abilistic voting systems (in which chance plays a role in

determining the winner) but not all. We conclude by in-

troducing and beginning the study of the “Nash model”

of voter honesty.

Keywords — Voter honesty, semi-honesty, strategy, strong Nash equi-

libria, Nash model.

1 Introduction

The Gibbard-Sattherthwaite theorem [1][2][9][10][14][17][19]
said, essentially, that, in reasonable single-winner voting sys-
tems with rank-order ballots (with equalities allowed [14] or
forbidden [9]), “honest voting”and“strategic voting”sadly are
not the same thing.

More precisely: the only deterministic voting system based
on strict-rank-order ballots in which

(a) voting honestly is always best (or co-equal best) strategy,
(b) unanimously top-ranked contenders get elected,
(c) there are at least 3 candidates and at least 3 voters

is a “dictatorship” in which some particular voter (the “dic-
tator”) gets whatever he wants regardless of the other votes.
(A review is [17]; the present report now solves the top open
problem posed there.)

We observe that condition (c) is best possible because:

• with only 2 candidates, voting honestly is best strategy
in the usual majority-vote system;

• and with ≤ 2 voters, voting honestly is best strategy in
the plurality with random (or deterministically biased in
favor of the first voter) tie-breaking system. (However,
in what would seem to be the most sensible 3-candidate
2-voter voting system based on rank-order ballots, illus-
trated in figure 4.1, best strategy can involve dishonest
voting.)

Define “range voting” to be the following voting system:

1. Each voter gives to each candidate a real-number score
in the interval [0, 1].

2. The candidate with the highest average score wins.
(Ties broken randomly or according to some predeter-
mined preference order.)

“Approval voting” is the same except the allowed scores are
either 1 or 0 with intermediate real numbers now forbidden.

Define a “semi-honest vote” to be one in which the scores for
the candidates obey a set of <, >, and = relations which
arise as a limit of the true relations.1 For example, if you
truly feel A > B, then a range vote which says A > B would
be both honest and semi-honest, one which says A = B would
be dishonest but semi-honest, and A < B would be neither
honest nor semi-honest. For a second example, if you truly
feel A = B, then every semi-honest vote says A = B.

Range voting evades the Gibbard-Sattherthwaite“impossibil-
ity” theorem in the following two senses which concern semi-
honest voting:

I. In any 3-candidate range-voting election situation (includ-
ing ones in which you have incomplete information about the

∗21 Shore Oaks Drive, Stony Brook NY 11790.
1Brams & Fishburn [4] called this “sincere” voting in the context of “approval voting.”
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other votes), there exists a strategically-best range vote which
happens to be semi-honest.

Proof: If in your view all candidates are equal, then you
do not care what your vote is, so cast a semi-honest vote.
Otherwise: It can never hurt you (i.e. never decrease the ex-
pected election utility) to give your true-favorite(s) the max-
imum score 1. Symmetrically, it also can never hurt you to
give your truly-most-hated candidate(s) the minimum score 0.
Then any vote with these properties is semi-honest. Q.E.D.

II. In any N -candidate range-voting election in which you
have complete information about every other vote, there al-
ways exists a semi-honest strategically-best range vote.

Proof: Let X be the greatest expected utility (in your view)
of the winner that (by choosing your vote correctly) you can
achieve. Then deliver the vote in which all candidates bet-
ter than or equal to X are 1, and all candidates worse than
X are 0. (It never is useful to give the latter class of candi-
dates a positive score, since that might help one tie for the
win, which would decrease the utility of the tied-winner set.
Symmetrically it never is useful to give the former class a
below-maximum score.) Q.E.D.

Remark 1: The above proof may have left you with the im-
pression that it always is strategically optimal to range-vote
in “approval voting” [4] style in which every score is either
“maxed-out” or “minned-out” to 1 or 0, with no intermedi-
ate scores. But that impression is false in incomplete infor-
mation scenarios. For example, consider a three-voter three-
candidate situation where the other two voters (in sum) either
cast the summed-vote A = 1, B = 1.1, C = 1.2 or A = 0,
B = 1.1, C = 1.2 but you do not know which. Suppose your
candidate-election utilities are UA = 10, UB = 5, UC = 0.
Then it is strategically best for you to cast the honest range
vote A = 1, B = 0.5, C = 0, (or a slightly-distorted vote
such as A = 1, B = 0.6, C = 0 would be equally strategically
good); this is strictly superior to every possible approval-style
vote such as (1, 0, 0), (1, 1, 0), or (1, 1, 1).

Remark 2: Van Hees and Dowding [11] in a manuscript
titled “in praise of manipulation,” defined two types of voter-
dishonesty (in ranked-ballot single-winner voting systems) –
namely “sincere”and“insincere”manipulation! They consider
the former less damaging. According to them, a subset S of
voters “manipulates sincerely” if:

1. assuming everybody else continues to rank their current
top-ranked candidate top,

2. all members of S changing their vote to a single rank-
ordering which dishonestly top-ranks some candidate A,
leads to A winning the election,

3. which is an outcome all S-members prefer to whatever
otherwise would have happened;

4. Furthermore, there is no other outcome that S can
achieve by a unilateral switch that they all prefer.

Van Hees and Dowding then defined a voting system to be
“immune to insinsere manipulation” if whenever insincere ma-
nipulation works, then sincere manipulation does also. Then
then proved (their theorem 1) that voting systems based on
rank-order ballots are immune to insinsere manipulation if
and only if they are “monotonic.” Finally, we note that the
Borda count and many Condorcet voting systems (including

Schulze beatpaths [15]) are monotonic, but “instant runoff”
(IRV) is not monotonic [3]. (Range voting is also monotonic,
but it is not based on rank-order ballots.)

I have not checked that van Hees & Dowding’s proof is valid,
but assuming it is, their arguments“in praise of manipulation”
still leave me unimpressed, because it is quite clear to me that
Borda Count is not a good voting system precisely because
of its enormous vulnerability to manipulation, including the
“DH3 pathology” pictured in figure 1.1.

#voters their vote
x1 A > D > B > C
x2 A > D > C > B
y1 B > D > C > A
y2 B > D > A > C
z1 C > D > A > B
z2 C > D > B > A

Figure 1.1. DH3 pathology.
Assume A, B, C are three excellent candidates and D is a
mediocrity (“dark horse”). All voters honestly regard all three
of {A, B, C} to be far superior to D, but their opinions are
split concerning the ordering within {A, B, C}. Therefore,
each voter strategically ranks his favorite top, and his two
top rivals artificially “last” (exaggerating to get more “dis-
criminating power”). The result is the scenario here with
x1 + x2 ≈ y1 + y2 ≈ z1 + z2. Then the uniquely-worst can-
didate D becomes the Condorcet-Winner and wins the elec-
tion under any voting system that elects Condorcet-Winners
or Smith-Set members! D also becomes the Borda winner.
(However, Plurality, IRV, Approval, and Range would elect
one of {A, B, C}.) This scenario is both common in practice
and maximally bad. It illustrates the devastating vulnerabil-
ity of Borda and systems obeying Condorcet’s principle to
strategic manipulation. Observe that any one of the three
voter groups, if it decided to vote honestly, would lose to one
of the less-honest competitor groups, so the members of any
group feel they “must fight fire with fire.” N

Effects of that nature indeed were immediately observed [13]
in the only government (Kiribati) which adopted Borda vot-
ing (which soon caused them to abandon Borda in favor of
the plurality system). Indeed, I think almost everyone would
agree (subjectively and see [6][7]) that Borda is much more
horribly vulnerable to manipulation than IRV, despite Van
Hees & Dowding’s theorem arguing in the opposite direction
because Borda is “immune to insincere manipulation” while
IRV isn’t. (Also, objectively, note that IRV is immune to
the DH3 pathology.) In short, just because a voting system
is “immune to insinsere manipulation” in Van Hees & Dowd-
ing’s sense, is in my view a very insufficient condition for the
acceptability of that voting system.

So I believe that the notion of “semi-honesty” advanced here
is a better way to develop things – but with roughly the same
goal in mind as van Hees & Dowding.

Remark 3: It is possible to conduct“range voting with rank-
order ballot votes” by first converting all the rank-order bal-
lots (which are allowed to contain equalities) to range-style
ballots, then conducting a range-voting election. The con-
version procedure is to score the top candidate 1, the bottom
candidate 0 and the remaining equality-classes equally spaced
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between. In that case we get a voting system based on rank-
order ballots (with equalities permitted) in which semi-honest
voting is strategic, etc (to be more precise, it has the same
honesty-properties as range voting).

However, all the above facts left the following question open:
Does there exist a reasonable voting system in which a semi-
honest vote is always strategically best, even in election sit-
uations in which you have incomplete information about the
other votes?

We shall prove in §2 that the answer is YES if there are 3 or
fewer candidates (range and approval voting both work), but
NO if there are 4 or more candidates. This result depends
on a certain defintion of the word “reasonable” and it will
even be valid if some kinds of probabilistic voting systems are
permitted, although the theorem statement and proof both
will simplify (and be more attractive) if the voting system is
deterministic.

Thus, this investigation has provided a sense in which range
voting is a best possible voting system, and better than (or
at least as good as) any system based on rank-order ballots.
Approval voting also is best possible in the same sense but
is rather peculiar in that it actually forbids honest voting in
generic scenarios with ≥ 3 candidates, although permitting
semi-honesty (range voting, in contrast, enables honesty, but
it can be strategically unwise).

Another interesting way to look at the question of how much
voters are motivated to be honest is in what we call the Nash
model. There are two ways to view this model:

1. There is public knowledge of every voter’s honest prefer-
ences and utility values but their actual votes are secret
(at least until after the election is over).

2. There is no public knowledge of anything about the
other voters at all – there is simply a black box that in-
puts votes and outputs elections results. An enormous
number of experiments are conducted with the black
box by the voters to find voting strategies that cause
the black box to output results which they consider to
be best for them in the sense that each voter, by al-
tering his voting strategy while the other voters remain
with fixed strategies (which may however be random-
ized), cannot increase the expected utility (to him) of
the black-box output.

In either picture, if there are 2 voters, then best voting-
strategy in the resulting 2-player Von Neumann “matrix
game” is (in general) randomized, and if there are ≥ 3 vot-
ers, then there will be one or more “Nash equilibria” in which
no player can improve his randomized strategy if the other
players hold theirs fixed.

Despite its fundamental logical importance, the Nash model
has been examined little or not at all in preceding voting sys-
tems literature, and we shall barely begin its investigation
here.

The top open question about voter honesty in the Nash
model is: “Does there exist a reasonable voting system in
which an honest, or semi-honest, voting strategy is always
strategically best (in the sense that the vote averaged over
that voter’s randomness is honest or semi-honest)?”

Observe that in the Nash model, some approval voter could,
in principle, provide an “honest-mean” probabilistic combina-
tion of approval votes no matter how many candidates there
were, so that the peculiarity of approval voting (i.e. that it
forbids voter honesty) vanishes. And indeed when we ana-
lyze the apparently most-sensible 3-candidate 2-voter voting
system based on rank-order ballots (illustrated in figure 4.1),
we shall exhibit an election situation in which each strategic
voter casts semi-honest-mean votes even though some com-
ponent votes inside that average are dishonest.

However, it is easy to see that in 3-candidate scenarios where,
e.g. your favorite candidate has no hope of winning, your best
strategy is only semi-honest and not full-honest, even in the
Nash model. Thus the Nash model apparently does not enable
escaping from the iron grip of the Gibbard-Satterthwaite im-
possibility theorem (although semi-honesty does enable such
an escape).

What if the Nash model and semi-honesty both are put in?
Then we shall show that approval voting fails the Nash-
semi-honesty test in 6-candidate scenarios but passes it in
3-candidate scenarios – the cases of 4 and 5 candidates re-
main open. More importantly, the question of whether some
unknown reasonable voting system exists that is superior to
approval voting in the sense it passes the Nash-semi-honesty
test in 4 or 5-candidate scenarios – or even in every scenario
– remains open.

2 Statements and proofs of main re-

sults about semi-honesty

Definition. A “voting system” inputs votes (which we here
demand be either [0, 1]-range-style ballots, or rank-order bal-
lots with equalities permitted) and outputs the identity of a
winner.

Consider the following (2N + 2M)-voter 4-candidate situa-
tion (we have written this for [0, 1]-range-style ballots, but
if you prefer voting systems based on rank-order ballots with
equalities permitted, then please translate the votes below
into the equivalent votes in that format):

#voters their vote
N A = 1, B = C = D = 0
N B = 1, A = C = D = 0
M B = 1, A = C = 1/2, D = 0
M A = C = 1, B = D = 0

Figure 2.1. A (2N +2M)-voter 4-candidate situation, where
1 ≤ M ≪ N . Normally we shall only consider the case M = 1,
but at the end of §2 is a remark about the uses of larger M .
N

Definition: “Reasonable” voting systems are:
(i) invariant under permutations of the candidate names (or,

more weakly, we may merely demand that the truths of
the following properties be invariant), and

(ii) in the situation above (if N ≫ M ≥ 1) but with the last
2M votes altered arbitrarily, it elects either A or B, but
never C or D – or more weakly we may merely demand
that in the N/M → ∞ limit, the probability of electing
C or D tends to 0. [This is a “nearly-unanimous top-2”
property.]
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(iii) in the situation above (if N ≫ M ≥ 1) it elects A with
probability greater than the probability of electing B.

(iv) in the situation above (if N ≫ M ≥ 1) but with
the last M votes altered arbitrarily to a form obeying
1 ≥ B ≥ A ≥ 0 and 0 ≤ C ≤ 1, 0 ≤ D ≤ 1, it elects B
with probability greater than or equal to the probability
of electing A. [This is a“unanimous top-2 with majority
for one” property.]

(v) in the situation above (if N ≫ M ≥ 1) but with
the last M votes altered arbitrarily to a form obey-
ing 1 ≥ A ≥ B ≥ 1/2 ≥ C ≥ D ≥ 0 or obeying
1 ≥ C ≥ D ≥ 1/2 ≥ A ≥ B ≥ 0 (or if we are
considering rank-order ballots instead of range-voting-
type ballots with the last vote altered to say either
A > B > C > D or C > D > A > B or any of these
with any >s replaced by =s), it elects B with probabil-
ity greater than or equal to the probability of electing A.
[This is a“near-unanimous top-2 with equal-or-majority
for one” property.]

(vi) in the situation above but with the last M votes replaced
by ones of form 1 ≥ A > B > C > D ≥ 0 (or a limit
form), altering that vote to 1 ≥ A > C > B > D ≥ 0
(or a limit form) by increasing the value of C and/or
decreasing the value of B, holding all else fixed, cannot
increase the probability-ratio for B winning versus A.

(vii) in the situation above but with the last M votes re-
placed by one of form 1 ≥ C > D > A > B ≥ 0 (or
a limit form), altering that vote to 1 ≥ C > A > D >
B ≥ 0 (or a limit form) by decreasing the value of D
and/or increasing the value of A, holding all else fixed,
cannot increase the probability-ratio for B winning ver-
sus A. [Vi and vii are weakened monotonicity properties
and as we shall see in remark 3 below, they may largely
be dropped.]

(viii) the gap between the probability ratio for A versus B
winning in iii, and that probability-ratio in iv, v, is at
least some positive constant k. Indeed, we may weaken
the statements “greater than 1/2 and “greater than or
equal to 1/2” in the preceding properties; it suffices
merely for a gap> k to exist between the A/B prob-
ability ratios in these cases that contains a number near
1 inside the gap. [Note that in the deterministic case
all probabilities are 1 or 0 and so these gap statements
reduce to trivialities.]

Remark 3: In our main theorem below, it should actually
be possible to drop or weaken some of these reasonability as-
sumptions, i.e. prove them instead of assuming them. For
example if vi or vii were disobeyed sufficiently strongly that
the “increase”were bounded below by some positive constant,
then it clearly would pay to vote dishonestly so that the the-
orem would be proven immediately; so we only need to prove
the theorem in the case where vi and vii are obeyed (or only
disobeyed weakly)

Remark 4: It is rather embarrassing that Gibbard & Sat-
terthwaite had a very simple definition of “reasonable”voting
system, whereas we needed a long and complicated one. It is
unclear how much our definition can be simplified. However,
let us point out that in spite of its length, our definition is
analogous to Gibbard & Satterthwaite’s in the sense that all
of our criteria (and all of theirs) can be expressed in the form:
“in this election scenario XXX, in the limit when the number
of certain kinds of voters are taken to be infinite, the following
winner or winners must happen YYY.”

Remark 5: An inequivalent different possible definition of
“reasonable” could be to demand that the voting system al-
ways elect a “Condorcet winner” when one exists. But it
is known already (some proofs, most originally arising from
Kevin Venzke, are on the CRV website [18]) that dishonest
and not-semi-honest voting (which indeed “betrays your fa-
vorite”) always is uniquely strategically optimal in at least
some 3-candidate complete information election scenario if
the voting system is (1) based on rank-order ballots (with or
without equalities permitted) and (2) always elects Condorcet
winners.

Theorem 1 (Main result). In any reasonable voting system
based on either [0, 1]-range-style ballots, or rank-order ballots
with equalities permitted, there exists a 4-candidate election
scenario in which you have partial information about the other
votes, in which your only strategically-optimal votes are not
semi-honest.

Proof: 2 Let your true candidate election utilities be

UA = X + Y + Z, UB = Y + Z, UC = Z, UD = 0 (1)

where X , Y , and Z are positive constants. Let the other votes
be either of the form in situation 1 or situation 2 (see tables
2.2 and 2.3) but you do not know which.

#voters their vote
N A = 1, B = C = D = 0
N B = 1, A = C = D = 0
M B = 1, A = C = 1/2, D = 0

Figure 2.2. Situation 1. N

#voters their vote
N C = 1, A = B = D = 0
N D = 1, A = B = C = 0
M D = 1, B = C = 1/2, A = 0

Figure 2.3. Situation 2. N

In that case, if you vote (non-semi-honestly)

A = C = 1, B = D = 0 (2)

2Brams & Fishburn [4] state as “theorem 2.3” on pge 30 “every voting system is sincere for dichotomous voters. But only approval voting is
sincere for trichotomous voters, and no voting system is sincere for multichotomous voters.” An “Nchotomous” voter is one whose candidate-utility
values lie in an (≤ N)-element set. This theorem seems at first to be the same result as ours! However, actually, it is a much weaker result (whose
proof, indeed is so trivial that B&F omit it) because the definition B&F here use for “voting system” is very restrictive: The only “voting systems”
allowed are those in which each voter delivers 1 or 0 to each candidate, with the total number of 1s he delivers being from a fixed set of allowed
cardinalities (e.g. for plurality, the cardinality-set is {1}, for approval it is {0, 1, 2, 3...,C} in a C-candidate election), and with the candidate with
the highest sum winning. Thus, for the purposes of B&F’s theorem, neither Borda, instant runoff, nor range voting would be considered “voting
systems.” Still, though, this is a natural predecessor of our result.
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then in situation 1, you will cause A to win with probability>
k +1/2, and B and D to win with probability 0 (in the large-
N limit); while in situation 2, you will cause C to win with
probability> k + 1/2 (for some constant k > 0) and A and
B to win with probability 0. (By reasonability i, ii, iii, viii.)
However, if you cast any semi-honest vote – the possibilities
are

A > B > C > D, A = B > C > D, (3)

A > B = C > D, A > B > C = D, (4)

A = B = C > D, A > B = C = D, (5)

A = B > C = D, A = B = C = D (6)

then by reasonability iv, v, either in situation 1 you will cause
B to be elected with probability≥ 1/2 while C and D lose
(costing you expected utility> kX), or in situation 2 cause
D to be elected with probability≥ 1/2 while A and B lose
(costing expected utility> kZ) but there will be no compen-
sating benefits in the other situation, due to reasonability vi
and vii, so these costs cannot be recompensed. (Note, we have
oversimplified slightly in the above by saying “k + 1/2” and
“1/2,” but the truth by reasonability viii is these are just two
quantities near 1/2 that are separated by a gap of at least k,
and that is good enough for our purposes.) Q.E.D.

Theorem 1 and its proof still leave open the possibility of
having certain kinds of probabilistic voting system in which
semi-honest voting is always strategic. Here is an interesting
new one:

Random-triplet range voting:

1. Each voter gives to each candidate a positive real-
number score.

2. A triple of candidates (call them A, B, C) is selected
randomly.

3. All voter-scores for all candidates other than A, B, C are
ignored.

4. All range votes are rescaled by a linear transformation
so the highest scorer among A, B, C now gets score 1
and the lowest 0. (Except “null” votes A = B = C are
discarded.)

5. Using these rescaled range votes, the election winner
is the member of {A, B, C} with the greatest average
score (break ties randomly or according to some prede-
termined preference order).

Theorem 2. In random-triplet range voting, voting semi-
honestly is always best strategy.

Proof sketch. It suffices to prove (for any candidate pair
A, B) you will never want to vote B > A if you truly feel
A > B or A = B. Suppose for a contradiction such misor-
dering was strategically helpful. Then it must help in some
3-candidate range-voting (with rescaling) election. However,
as a lemma, we can prove that in a 3-candidate range-voting
(with rescaling) election, if you cast a vote that is not semi-
honest, then

1. if the mis-ordered pair is adjacent in your vote (such
as B > A > C when honestly A > B > C or
A = B > C, or B > A = C when honestly A = B = C
of A > B = C) then you can always replace the vote by
one with that pair equal (A = B > C or A = B = C)
without hurt;

2. and if it is non-adjacent (B > C > A when honestly
A > C > B or A > C = B or A = C > B) then swap-
ping the pair values (swapping A, B) never hurts your
expected utility [we state but actually shall not use this
middle fact], and

3. Also setting A = B in the non-adjacent situation while
preserving whichever inequality about C was true (note:
both cannot be) to get A = B > C or C > A = B
cannot hurt you, or finally if truly A > C > B (so
all inequalities were fully-dishonest) then the null vote
A = B = C cannot hurt you.

(Throughout by “hurt” we mean more precisely, “decrease ex-
pected utility of election result” where each candidate has
some election-utility for each voter.)

So any non-semi-honest N -candidate vote can always be al-
tered to make it nearer to semi-honesty by replacing all dis-
honest inequalities by equalities, without hurt. And after a
finite number of such alterations, your vote must reach a semi-
honest state. Q.E.D.

3 Conclusions about semi-honesty in
voting

This all has shown senses in which

1. range voting is superior to every rank-order ballot sys-
tem, and

2. no reasonable deterministic (or we can even permit
certain kinds of probabilistic) voting system can do
better than range voting in terms of inspiring voter
(semi)honesty.

However, there are certain probabilistic voting systems (i.e.
in which chance plays a role in selecting the winner) which
are superior both to range voting and to every deterministic
system, in the sense that honest (or semi-honest) voting is
always strategically optimal in those systems.

Random-triplet range voting is one such probabilistic voting
system. The other two I know of (found by Gibbard [9]) are
“do whatever a random voter wants” and “use rank-order bal-
lots to conduct a majority vote on a random candidate pair.”
I conjecture there are no others besides these three (and prob-
abilistic mixtures of them).

A different kind of vote is “rank-order with threshold” votes,
e.g. A > B > threshold > C ≥ D where “threshold” is
an artificial extra candidate who can never win the election.
It is also possible to prove a version of theorem 1 with this
sort of vote permitted; you need to make a more complicated
definition of “reasonability” and our proof-examples can be
converted to threshold-style votes by converting each vote to
a set of votes with the threshold located in every possible
position. We intentionally do not give a detailed exposition
(which would more than double the length of this paper).

Also, although theorem 1 (and our “reasonableness” defini-
tion) focused on 4-candidate elections, they may easily be re-
done for C-candidate elections for any C ≥ 4. Simply adjoin
C−4 additional“no hope”candidates whom every other voter
scores 0. These extra candidates will not affect the logic.
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Compared to Gibbard & Satterthwaite’s original theorems,
our theorems are considerably stronger since they completely
settle the question of what happens when we extend“honesty”
to permit“semi-honesty,”and also extends everything to allow
incomplete-information scenarios. But unfortunately, our the-
orems may be criticized as being weaker in the sense that they
need to make considerably more “reasonability” assumptions
about the voting system. In particular, what most people re-
gard as the or least-reasonable reasonability assumption, are
the demands in iii, iv, v, vi that the election result be swung
by one vote in situations of perfect balance aside from the
swinging-votes.

This criticism may be blunted as follows. Consider allowing
M in the tabulated election situations with now 1 ≤ M ≪ N ,
including large M . (Previously we had only considered the

case M = 1.) In that case it is M (or 2M) votes that are
doing the swinging, and we can refrain from this demand ex-
cept for large M . In that case, the theorems and proof still
work except that the “strategic voting” is to be performed by
a bloc of M voters rather than just one. But then we observe
that if the members of this bloc switch voting policies one by
one, then the election first is swung by just one bloc-member,
and then we get a situation in which just that one voter is
strategically impelled to vote dishonestly. So we can get a
similar theorem out despite considerably weaker assumptions
in.

4 Voting as a Von Neumann matrix

game (if there are 2 voters)

V1\V2 A > B > C A > C > B B > A > C B > C > A C > A > B C > B > A
A > B > C A wins A wins AB tie B wins A wins ABC tie
A > C > B A wins A wins A wins ABC tie AC tie C wins
B > A > C AB tie A wins B wins B wins ABC tie B wins
B > C > A B wins ABC tie B wins B wins C wins BC tie
C > A > B A wins AC tie ABC tie C wins C wins C wins
C > B > A ABC tie C wins B wins BC tie C wins C wins

Figure 4.1. A 2-voter 3-candidate Condorcet voting system – which would seem to be the most sensible 2-voter 3-candidate
voting system based on rank-order ballots – as a 2-player 6 × 6 matrix game in the style of Von Neumann and Morgenstern
[8][20]. The candidates are A, B, and C. Each event such as “A wins” has a numerical expected utility (“payoff”) for each of
the two voters (players); in general these payoffs differ for each player. N

In the matrix game of figure 4.1, assume “A wins” has utility
UA to player 1 (and WA to player 2), and all ties are broken
randomly so that, e.g. “AB tie” has utility (WA + WB)/2 to
player 2.

Suppose player 1 has utilities UA = 9, UB = 3, UC = 0. An
incomplete account of best play with this player 1 is

1. If player 2’s favorite is A then both honestly vote
“A > . . . ” and A is elected.

2. If player 2’s favorite is C by a large enough margin, then
V1 is A > B > C and V2 is C > B > A (but C > A > B
would be unstrategic even if honest) and we get a 3-way
ABC tie (which is optimal play for both players in the
sense tht either player would get a worse result by ret-
rospectively changing their vote with the other player
holding fixed). Note that in this scenario player 2 can
be uniquely strategically forced to vote dishonestly.

3. If player 2’s honest assessment is WB = 9, WC = 3,
WA = 0 then a cyclic chain of best moves and counter-
moves is

1 : A > B > C =⇒ 2 : B > C > A =⇒ 1 : A > C > B

=⇒ 2 : B > C > A =⇒ 1 : A > C > B =⇒ . . . (7)

where each move-countermove pair respectively leads to
these results (where“ABC tie”repeats forever): B wins,
ABC tie, ABC tie, ABC tie...

4. If player 2’s honest assessment is WB = 9, WC = 6,
WA = 0 then a cyclic chain of best moves and counter-
moves is

1 : A > B > C =⇒ 2 : B > C > A =⇒ 1 : A > C > B

=⇒ 2 : C > B > A =⇒ 1 : A > B > C =⇒ . . . (8)

where each move-countermove pair respectively leads to
these 4 results in cyclic order: B wins, ABC tie, C wins,
ABC tie.

As the last of these makes clear, it is strategically foolish for
either player to reveal his vote to the other, since that knowl-
edge allows the certain selection of the best countermove. As
is well known, best strategy instead is randomized. In the last
situation, player 1’s best strategy is to flip a coin and vote
A > B > C with probability 1/2 and A > C > B with proba-
bility 1/2 (which in some “averaged” sense is the semi-honest
vote A > B = C), while player 2’s best strategy is to vote
B > C > A and C > B > A with probability 1/2 each (which
in some averaged sense is the semi-honest vote B = C > A).
With these strategies, the election result probabilities in table
4.2 arise, and neither player can improve his or her expected
utility by altering their probability-vectors.

result probability payoff1 payoff2 summed payoff
B wins 1/4 4 9 13
C wins 1/4 0 6 6

ABC tie 1/2 4 5 9

Figure 4.2. Election results with best randomized voting
strategy for player 1 (who has utilities UA = 9, UB = 3,
UC = 0) and player 2 (who has utilities WA = 0, WB = 9,
WC = 6). N
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The best result for the 2-player society as a whole is obtained
if both vote honestly and B wins (summed-payoff=13) but
each player’s use of partially-dishonest voting strategy leads
to a worse result for society as a whole (but a better result
for each player alone given that the other player is voting
strategically).

Thus for these two particular players, this voting system is
equivalent to the 2 × 2 game in figure 4.3 (in which each
player either votes “honestly” or “dishonestly”)

honest dishonest
player 1\ player 2 (B > C > A) (C > B > A)

honest(A > B > C) 3, 9 4, 5
dishonest(A > C > B) 4, 5 0, 6

Figure 4.3. Each player in the preceding scenario can chose
to vote either “honestly” or “dishonestly,” and these are the
payoffs (for player 1 and player 2 respectively) that result.
Best strategy for both players is to flip a coin. N

To conclude: This example has made it clear that in 2-voter,
3-candidate scenarios using the “most sensible” such voting
system based on rank-order ballots with equalities forbid-
den (i.e. the system in figure 4.1), dishonest voting can be
uniquely strategically best in both complete-information sce-
narios and in the Nash model. However, it has also shown
that averaging votes over randomness in the Nash model can
sometimes make strategic voters be “more honest.”

5 Nash equilibria if there are more

than 2 voters

If there are more than 2 players, the Von Neumann theory
of games breaks down and there is no longer, in general, any
clear meaning of the term “best strategy.” However, there
is, according to a famous theorem of John Nash [12], one or
more “Nash equilibria” in which each voter individually can-
not improve his strategy, given that all the others keep their
strategies fixed. And again, in general, these voter strategies
each will be randomized, i.e. described as probability distri-
butions over all the possible votes that player could cast.

Perhaps the first thing we should say about Nash equilibria
is that some of them can be exceedingly stupid. For example,
consider a 2-candidate V -voter (V ≥ 3) simple-majority-vote
election where every voter prefers A > B. If every voter
stupidly votes “B > A” then B wins. This situation is a
(stupid) Nash equilibrium because no voter, acting alone, can
change the election result. And it of course involves dishonest
votes. However, dishonest voting obviously is not strategi-
cally forced in the sense that any voter can change his vote
to become honest without suffering a worsened result, and
indeed if most of them do so, they get a better election re-
sult.3 Nash examples are more interesting when dishonesty
is strategically forced. An idea which gets rid of a great deal
of stupidity in one stroke is to define a “strong” Nash equi-
librium to be one in which each player (voter), by changing
his strategy actually suffers a worse (in expectation) result –

as opposed to “weak” equilibria where the result merely “does
not get better.”

Now let us examine 3-candidate approval-voting elections in
the context of Nash equilibria. In 3-candidate AV elections,
it plainly is strategically best to vote 1 (approved) for your
favorite, 0 (disapproved) for your most-hated, and then voter
k (1 ≤ k ≤ V in a V -voter election) will approve of the re-
maining candidate with some probability pk.

honest preference p
A ≫ B > C p
C ≫ A > B q
B > C ≫ A r

result probability
A wins p q r
B wins p q r
C wins p q r

ABC tie p q r + p q r
AB tie p q r
AC tie p q r
BC tie p q r

Figure 5.1. 3-vote 3-candidate cyclic approval voting elec-
tion scenario. If the A > B > C voter approves B with
probability p while the other voters approve their middle can-
didates with probabilities q and r, then the election outcome
probabilities are as shown in the second table. (We abbreviate
p = 1 − p, q = 1 − q, etc.) N

If the “≫” are as shown, then this is again a “cyclic 2-player
game” (since in all cases the middle voter then always desires
to make q = 0) and the best strategy for the first and last
voters again is coin-flipping: p = r = 1/2. This causes

B to win, C to win, ABC tie, and BC tie,

each with probability 1/4. There again is a cyclic chain of
best moves and countermoves is

r = 1 =⇒ p = 1 =⇒ r = 0 =⇒ p = 0 =⇒ r = 1 =⇒ . . . .
(9)

Note that if we average over each player’s coin-flip, their op-
timal votes for (A, B, C) are then (1, 1/2, 0), (0, 0, 1), and
(0, 1, 1/2) respectively, and so B and C each get the equally-
greatest average vote-totals. These equalities between B and
C with strategic voting contradict the obvious assessment that
“morally” (or as would have happened with honest approval-
voting) C should win.

On the other hand, if the second preference relation is ≫ and
the first is > in each vote (as was only shown in the table for
the last vote, but now we consider doing that to all three) then
the unique Nash equilibrium involves fully deterministic votes:
all three players choose p = q = r = 1 and a 3-way ABC tie
results. Note that the coefficient of p in the expression for
the first voter’s expected election utility, is proportional to
(1 − 1/3)q r + qr/3 + qr/2 + qr/2 = (4 − r − q)/6 which is
positive throughout the square 0 ≤ q, r ≤ 1 so that the first
voter will always desire to maximize p = 1 (and similarly for
the other voters and q and r by symmetry).

From these two examples we see that, when we consider 3-
candidate generic election situations with unique Nash equi-
libria with approval voting, the strategically best votes for

3A similar “stupid” Nash equilibrium (but the stupidity there is less obvious due to additional complexity) is given page 140 of [4] and, although
Brams & Fishburn seem to think it implies something profound, I deny that.

July 2006 7 5. 0. 0



Smith typeset 13:45 23 Oct 2006 voting honesty

(A, B, C) for voters with honest preferences A > B > C are
(averaging over randomness) sometimes of form (1, 1/2, 0) and
other times of the form (1, 0, 0) or (1, 1, 0). This demonstrates
that inspiring semihonesty is the best we can hope for from
a voting system in 3-candidate situations, even when consid-
ering strong Nash equilibria for randomized voting strategies
and averaging votes over the randomness.

With our last breath of oxygen, we can demonstrate that
(even when considering strong Nash equilibria for randomized
voting strategies and averaging votes over the randomness),
some strategic approval-voters will generate dishonest and not
even semi-honest votes in 6-candidate election scenarios.

To do so, we “clone” the candidates A, B, and C in the ex-
ample of figure 5.1 to get candidates A1, A2, B1, B2, C1,
C2, where each of the voters regards the two clones as equal.
However, we now add an additional fourth voter whose utility
values for the candidates are

U(A1) = 1608, U(B1) = 1600, U(B2) = 808, (10)

U(C1) = 800, U(C2) = 8, U(A2) = 0.

We claim this new voter will not affect the best strategy for
the old three voters, and that his best strategy is the deter-
ministic and fully-dishonest approval-vote

A1 = 1, B1 = 1, B2 = 0, C1 = 1, C2 = 0, A2 = 0 (11)

which dishonestly gives B2 a smaller vote than C1.

Because this vote gives one 1 and one 0 to each of the three
(A, B, and C) camps, it in no way alters the situation from
the point of view of the three original voters. Indeed note
the new voter’s preferences are “orthogonal” to the old three
voters’ preferences (i.e. he cares about distinctions irrelevant
to them, and vice versa).

The new voter realizes that (in his absence) with probability
1/4 there is a B1B2 tie for winner (and then his approval of B1

but not B2 breaks the tie for expected utility gain 198), with
probability 1/4 there is a C1C2 tie for winner (and then his
approval of C1 but not C2 breaks the tie for expected utility
gain 198), with probability 1/4 there is a 4-way B1B2C1C2 tie
for winner (and then his approvals reduce that to a B1C1 tie,
gaining expected utility 99), and finally with probability 1/4
there is a 6-way tie for winner (and then his approvals reduce
that to a A1B1C1 tie, gaining expected utility 133). The net
utility gain by casting this dishonest vote is thus 628.

On the other hand, by casting any semi-honest approval vote,
the new voter would gain less. For example, if only A1 was
approved, the gain would be 133. If A1B1 then the gain would
be 198 + 199 + 132 = 529. If A1B1B2 then the gain would
be 331. So the new voter is best off (in the absence of any
strategy-change from the original three voters) with this dis-
honest vote. However, if this is the new vote, then the original
three voters reason that they are best off staying with their
votes. Hence:

Theorem 3 (Nash model dishonesty in approval vot-
ing). We have constructed a 4-voter 6-candidate approval-
voting election in which there is a strong Nash equilibrium
involving a deterministic fully-dishonest (i.e. not even semi-
honest) fourth vote.

It remains an open question whether approval (or range)
voting always inspires semi-honesty in the mean in the “Nash
model” for 4- and 5-candidate approval-voting elections.

Finally, we note that although we have used Nash equilibria
and Von Neumann game theory [20], all of our main exam-
ples have been constructed so that they still work in Brams’
alternative “theory of moves” picture [5] instead.

6 Conclusion

The Gibbard-Satterthwaite theorem famously settled the
question of which voting systems (and when) had the property
that strategically-best voting was the same as honest voting.
The answer was very negative.

However, the GS theorem did not address either“semi-honest”
voting or“incomplete information”scenarios. Those questions
are now almost completely settled. It also did not address the
third “Nash model” (introduced here) of strategic voters. It
remains an open question whether reasonable voting systems
exist that inspire semi-honesty in their voters in the Nash
model – but I conjecture the answer is NO if there are at
least 6 candidates.

All these investigations are compatible, as far as they go, with
the vague claim that “range voting is the best single winner
voting system.” It is an open question whether range voting
is uniquely best in this paper’s senses.

7 Summary Table

With complete information: strategic range votes are wlog approval-style

candidates rank-order (= permitted or forbidden) range & approval

1-2 honest=strategic honest=strategic

3 or more honesty can be nonstrategic some semi-honest vote is strategic

With incomplete information: strategic range votes are not necessarily approval-style

candidates rank-order (= permitted or forbidden) range & approval

1-2 honest=strategic honest=strategic

3 honesty can be nonstrategic some semi-honest vote is strategic

4 or more honesty can be nonstrategic semi-honesty can be nonstrategic

Nash model (strong Nash equilibrium):
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candidates rank-order (= permitted or forbidden) range & approval

1-2 honest=strategic honest=strategic

3-5 ? ?

6 or more ? having semi-honest-mean can be strategically bad
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