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Abstract — Tien D. Kieu, in 10 papers posted to the quant-ph section of the xxx.lanl.gov preprint archive [some
of which were also published in printed journals such as Proc. Royal Soc. A 460 (2004) 1535] had claimed to have
a scheme showing how, in principle, physical “quantum adiabatic systems” could be used to solve the prototypical
computationally undecidable problem, Turing’s“halting problem,” in finite time, with success probability > 2/3 (where
this 2/3 is independent of the input halting problem).

There were several errors in those papers, most which ultimately could be corrected. More seriously, we here exhibit
counterexamples to a crucial step in Kieu’s argument. The counterexamples are small quantum adiabatic systems in
which “decoy” nonground states arise with high probability (> 99.999%). Kieu had wrongly claimed no decoy state
could ever acquire occupation probability greater than 50%. These counterexamples destroy Kieu’s entire plan and
there seems no way to correct the plan to escape them.

Nevertheless, there are some important consequences salvageable from Kieu’s idea: we can prove that the “halflife”

of Kieu’s quantum systems is uncomputably large and no fully general form of the quantum adiabatic theorem can

exist that yields computable upper bounds on adiabatic convergence times (both unless Church’s thesis is false so

that finite time adiabatic quantum system evolution is unsimulable); and we can prove that no algorithm exists to

find the ground state energy of Kieu’s class of quantum Hamiltonians and hence their long-term thermal behavior is

uncomputable.

1 Sketch of Kieu’s plan

Kieu wanted to set up a quantum physical system with two Hamiltonians, called HI and HP . He assumed one could gradually
be homotoped into the other via the time-dependent Hamiltonian

H(t) = (1 − t

T
)HI +

t

T
HP (1)

over the time interval 0 ≤ t ≤ T . Kieu proposed setting this all up in a Cartesian product of a finite number K of countably-
infinite-dimensional Fock spaces. Physically, this space may be regarded as K kinds of bosons, each of which is present in
some natural number (0, 1, 2, 3, . . . ) of copies. The states of Kieu’s system then are precisely described by K natural numbers
specifying, for each boson-type, how many of that kind of boson are present. Then HP describes a weird kind of interaction
between those bosons which the experimenter can “ramp up.” Other physical interpretations also are possible.

Kieu then proposed one particular universalHI , namely the Hamiltonian of a“positionally shifted simple Harmonic oscillator.”
More importantly, he proposed a way to define HP so that, for any particular “Diophantine function”D(x1, x2, . . . , xK) of K
natural number arguments x1, x2, . . . xK , there was a simply-constructed correspondingHP . Kieu’s HP had the property that
its energy levels were precisely the same as the attainable integer values of D. Specifically, HP = D(a†

1
a1, a

†
2
a2, . . . , a

†
KaK)

where a†
1
, a†

2
, . . . , a†K and a1, a2, . . . , aK are K kinds of raising and lowering operators. By making D be a sum of squares,

these attainable values are nonnegative so that Kieu’s HP is nonnegative definite. The diophantine equation D = 0 is then
soluble exactly if HP ’s ground state has energy= 0, and insoluble exactly if HP ’s ground state has energy ≥ 1. Both of Kieu’s
HI and HP are self-adjoint nonnegative definite operators with discrete (indeed, natural number valued) spectra.

Kieu here made an error about Diophantine equations. He seemed to have the idea that we only need to worry about
Diophantine equations D = 0 with unique solutions, leading to HP with unique (“non-degenerate”) ground states. In
fact, it is commonplace for Diophantine equations to have an infinite number of solutions, and indeed the only polynomial
Diophantine equations presently known to achieve Turing-completeness always do have either an infinite number, or no,
solutions (it being Turing-undecidable which) [3]. Thus Kieu was maximally wrong about this. Kieu also had the alternative
idea that by adding certain perturbations to his Hamiltonians, the “degeneracy could be broken” but in situations with
infinite-fold degeneracy this claim was probably impossible to justify without destroying his soon-to-be-described algorithm
by allowing infinitely-close energy levels, or by requiring non-algorithmic steps such as “taking limits”or “guessing” the right
perturbation to use.
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However, this error is repairable. The present author (who was serving as the referee on one of Kieu’s papers) was able to
modify the proof of Jones & Matiyasevic [6] concerning “singlefold 2-exponential Diophantine equations.” By so doing I was
able to construct Turing-complete 2-exponential Diophantine functions D which always have a unique global minimum. The
value of D at this minimum is a nonnegative integer and it is Turing-undecidable whether it is zero. (I call these “singlemin”
Diophantines.)

I was then able to show how to modify Kieu’s construction to be based on these instead of on polynomial Diophantine
equations.1 So this error was not fatal.

Kieu then proposed starting his quantum system in the (known) ground state of HI at t = 0, and time-evolving it under H(t).
By the “quantum adiabatic theorem” [2] this would, if T were made large enough, result in a final state when t = T which,
with high probability (approaching 1 as T → ∞), would be the ground state of HP . By measuring this state (even measuring
it inexactly would suffice, since everything is integer valued) the solution to the singlemin Diophantine problem could be
deduced, then confirmed with an old-fashioned non-quantum computer. Therefore an arbitrary Turing halting problem could
be solved, revolutionizing computer science.

To make this work, though, it is crucial to know how large T must be before a high ground-state probability was assured.
Kieu’s plan to evade that objection was to repeatedly do the physical experiment with larger and larger T . (For example, T
could be doubled between rounds of experiments.) He claimed to have proved2 that no matter what the value of T > 0, no
nonground “decoy” state could ever achieve an occupation probability greater than 1/2. Call this the half-claim.

If the half-claim were true, then Kieu could simply keep increasing T until the ground-state occupation probability p became
greater than, say, 3/4. He could by performing enough physical experiments at each T , gain high confidence in the conclusion
that the most-occupied state at that T was occupied with probability ≤ 1/2 or ≥ 3/4 (if one of these were true). Kieu would
simply keep redoubling T and keep raising his confidence criterion in such a way that eventually, Kieu was guaranteed to
acquire high statistical confidence he really had the ground state of HP .

There was here a second error, or perhaps a better word is “omission,”by Kieu: he did not actually perform this probabilistic
analysis rigorously. However, this error is not fatal, because I was able to do so. To be precise, for any fixed ǫ > 0, and for
any computable value V (D) with 0 < V < 1 replacing“1/2”in the half-claim, I was able to construct a computable increasing
sequence of T ’s, numbers of experiments to be performed at each T , and confidence criteria that were to be applied after
examining the results of those experiments, such that (1) the probability was 1 that the procedure would eventually terminate,
and (2) the probability was > 1− ǫ that, when it terminated, the correct global minimum of the Diophantine, i.e. the correct
ground state of HP , would be whatever was deduced from the final round of experiments. The analysis utilized Hoeffding’s
bound [5].

The ultimate source of the super-Turing computational power of Kieu’s physical systems was the combination of (1) their
infinite dimensionality and (2) the power of the adiabatic homotopy to find the ground state. This somehow seemed to
provide “infinite computational parallelism.” Kieu noted that quantum mechanics is inherently infinite dimensional because
the position and momentum operator relation [x, p] = 1i is not achievable by finite dimensional matrices.3

The fatal error is that the half-claim is false. We shall show this by constructing counterexamples.

This falsity is somewhat surprising because the half-claim is true in various limiting cases:

1. It is true in the “adiabatic limit” T → ∞.
2. It is true in the “sudden limit” T → 0+ provided that each inner product between the ground eigenstate g of HI and

any nonground eigenstate φ of HP obeys |〈g|φ〉|2 ≤ 1/2 (and a stronger claim than this proviso happens to be valid for
the particular HI and HP used in Kieu’s scheme).

3. It appears to be true if HI and HP are n× n Hermitian matrices (physically, “n-state quantum systems”) with n = 2,
such that HI has a unique ground state, and HP has a unique excited state, and the inner product 〈g|φ〉 of those two
states is <

√

1/2. This has been heavily confirmed by computer experiments by me involving over a million pairs of
random 2 × 2 real symmetric matrices HI and HP . Also Kieu (§IV.B of [7]) has given a proof of the n = 2 case.
Although I do not fully follow that proof, it is plausibly correct.

4. The half-claim also appears, in less-extensive computer experiments only involving a few thousand real symmetric 3×3
matrices, to be true for 3-state systems. That is, if HI and HP are n× n Hermitian matrices with n = 3, such that HI

has a unique ground state and HP has two distinct unique excited states, and the two inner products 〈g|φj〉 of the two

HP excited states φ1 and φ2 with the HI ground state g both are <
√

1/2, then, at least in all computer experiments
so far, neither HP excited state ever gets occupation probability exceeding 1/2.

5. For any finite n, the modified version of the half-claim with some computable number 1− ǫ replacing the “1/2” is true.
That is, given a number ǫ with 0 < ǫ < 1, an integer n ≥ 2, and two n×n Hermitian matrices HP and HI with discrete
spectra and unique ground states, and such that each inner product between the ground eigenstate g of HI and any
nonground eigenstate φ of HP obeys |〈g|φ〉|2 ≤ 1/2, there is an algorithm to compute a positive number T0 such that
Schrödinger time-evolution under H, starting from the ground state of HI , from t = 0 to t = T , for any T > T0, followed

1This comes at the cost of making the physical interpretation less attractive and less realistic-sounding.
2E.g, on page 11 of quant-ph/0504101 and also on page 14 of quant-ph/0310052v2.
3Were x and p finite matrices, the trace of [x, p] would vanish since tr(x p) = tr(p x) while the trace of the identity matrix does not vanish.
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by a measurement of HP , will yield a nonground energy with probability < ǫ. This may be proven by computing the
spectra and norms of the matrices and applying [1].

2 A counterexample

However, the half-claim is false for 4, 5, 6, and 7-state systems,4 and very high occupation probabilities for nonground decoy
states can be attained (> 97%). It seems very probable that decoy probabilities quickly approaching 1 can be attained by
making the matrix dimension large enough, in which case Kieu’s plan (involving infinite dimensionality) is dead.

Here is a 4-state counterexample found by random trial. (Among pairs of symmetric matrices filled with random normal
deviates and which meet the eigenvector correlation< 0.6 condition, each 25 attempts provides on average about 1 counterex-
ample.) We employ natural physical units in which ~ = 1.

HI =













−1.0820 −0.3509 1.8919 0.1436

−0.3509 0.2864 −0.5115 −1.3299

1.8919 −0.5115 0.4458 −0.0429

0.1436 −1.3299 −0.0429 −1.4297













, HP =













−3.0262 0.2740 −0.4055 −0.5971

0.2740 −5.4990 0.6990 −1.3352

−0.4055 0.6990 −0.3468 0.3762

−0.5971 −1.3352 0.3762 0.8015













, T = 10.0620 (2)

The eigendecomposition of HP is QPHP = ΛPQP where

ΛP =













−5.8893 0 0 0

0 −3.1501 0 0

0 0 −0.2572 0

0 0 0 1.2261













, QP =













−0.0719 0.9802 0.0863 −0.1632

0.9681 0.0567 −0.1696 −0.1757

−0.1406 0.1066 −0.9655 0.1917

0.1947 0.1571 0.1779 0.9517













(3)

and the columns of QP are the (unit normalized) eigenvectors of HP . The corresponding eigendecomposition of HI is

ΛI =













−2.4202 0 0 0

0 −2.1117 0 0

0 0 0.7050 0

0 0 0 2.0474













, QI =













0.7295 0.4011 0.2481 −0.4953

−0.1979 0.4473 0.7495 0.4462

−0.5228 −0.1942 0.4082 −0.7227

−0.3941 0.7754 −0.4584 −0.1822













(4)

The matrix of inner products between the eigenvectors of HI and HP is

Q†
IQP =













−0.2473 0.5862 0.5311 −0.5596

0.5824 0.5197 0.2843 0.5567

0.5611 0.2572 −0.5813 −0.5302

0.5337 −0.5659 0.5470 −0.3094













(5)

making it plain that every inner product obeys |〈g|φ〉| < 0.59.

Evolution of ~ψ from t = 0 to t = T under the time-dependent Schrödinger equation

i
∂

∂t
~ψ = H(t)~ψ (6)

starting from the unique ground state ~ψ(0) = (0.7295, −0.1979, −0.5228, −0.3941) of HI (with energy −2.4202), yields a

final state ~ψ whose inner products with the columns of QP are respectively

~ψ(T )†QP = (0.2952, 0.9550, 0.0265, 0.0061) (7)

corresponding to an occupation probability of 0.95502 ≈ 0.9120 in the “decoy” first excited state, with energy −3.1501, as
compared to the occupation probability of only 0.29522 ≈ 0.08714 for the ground state, with energy −5.8893. The expected
energy ~ψ†HP

~ψ of this final state is −3.3867.

This final state was deduced numerically via

~ψ(T ) ≈
1023
∏

k=0

exp

[

iT

1024
H

(

k + 1/2

1024
T

)]

~ψ(0) (8)

4And, obviously, for n-state systems for each n ≥ 4, because we can simply add new states to the 4-state counterexample, which are never
occupied.
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where the product is of 1024 exact matrix exponentials. The program that did it was written in matlab. An independently
written evolution code by Kieu that employs mathematica’s NDSolve command to solve the Schrödinger equation, was able
to confirm one of my 4 × 4 counterexample’s final ~ψ to about 1% accuracy, so there seems no doubt of its correctness.

I have similarly found counterexamples with n = 5, 6, and 7 by random trial, and doing so appears to get easier as n increases,
for example with n = 7, fewer random trials found a better counterexample, achieving > 97% probability for a decoy state.

My counterexamples cannot be escaped by demanding that the HI and HP have integer eigenvalues. (Because: multiply my
HI and HP by 106 and then perturb them slightly to make all the eigenvalues be integer.) They also cannot be escaped by
demanding that HI and HP be nonnegative- or positive-definite. (Because: add a large multiple of the identity matrix to
each matrix, then quantum evolution will be the same except for a phase angle factor.) Finally, they also cannot be escaped
by demanding that HI be diagonal, since we can change bases to make it diagonal. Even combining all of these demands
does not allow escape.

3 A stronger counterexample

But conceivably the above counterexample could be escaped by demanding that HI be some particular and especially nice
matrix such as HI = diag(0, 1, 2, 3) – which happens to be exactly equivalent to the HI Kieu was planning to use, expressed
in its own eigenbasis and truncated to 4 dimensions. Also, it might be wondered what is the maximum achieveable decoy
occupation probability. If instead of Kieu’s 1/2 it was bounded by some other absolute constant below 1, such as 16/17,
then his whole plan could still be modified to make it work. But, at least for this particular HI choice, escape is ruled out
by the following counterexample, and it achieves decoy probability very close to 1, namely > 99.999%. (This example was
found by adding a crude numerical optimizer on top of the random trials.) Note that 99.999% effectively is 1 to within the
limited accuracy of the numerical time-evolver, even with 2048 timesteps which is what is now being used. I do not know
whether exactly 1 is achievable5 in any finite dimension n, but this makes it plausible that either (a) it is, or (b) probability
1 is approachable very quickly as n→ ∞.

HI =













0 0 0 0

0 1 0 0

0 0 2 0

0 0 0 3













, HP =













−0.5289 0.2834 −0.7409 −0.6673

0.2834 −0.9560 −1.2876 1.1387

−0.7409 −1.2876 −1.7859 0.6167

−0.6673 1.1387 0.6167 −1.8111













, T = 7.8102 (9)

The eigendecomposition of HP is QPHP = ΛPQP where

ΛP =













−3.5542 0 0 0

0 −1.9058 0 0

0 0 −0.0811 0

0 0 0 0.4591













, QP =













0.0359 0.5894 0.5465 0.5939

−0.5535 −0.0225 −0.5841 0.5932

−0.5919 0.5955 −0.0134 −0.5430

0.5847 0.5454 −0.6000 −0.0245













(10)

and the columns of QP are the (unit normalized) eigenvectors of HP . The corresponding eigendecomposition of HI involves
ΛI = HI and QI being just the 4× 4 identity matrix. The matrix of inner products between the eigenvectors of HI and HP

then is just QP , making it plain that every inner product obeys |〈g|φ〉| ≤ 0.60. Notice also that this matrix seems to contain
visible structure.

Evolution of ~ψ from t = 0 to t = T under the time-dependent Schrödinger equation starting from HI ’s unique ground state
~ψ(0) with energy 0 yields a final state ~ψ whose inner products with the columns of QP are respectively

~ψ(T )†QP = (0.0009, 1.0000, 0.0011, 0.0017) (11)

corresponding to an occupation probability of > 99.9995% in the“decoy”first excited state, with energy −1.8995, as compared
to the occupation probability of only 0.00092 ≈ 0.00000081 for the ground state, with energy −3.5593. The expected energy
~ψ†HP

~ψ of this final state is −1.9056.

4 Still another counterexample

Kieu in email still objected that the above counterexamples might not logically suffice to kill his hypercomputer scheme,
because his HI and HP have special structure which the more random matrices in our counterexamples, do not possess.

Therefore we now devise a 5-state system HI and HP which both exactly agree with those arising from Kieu’s construction
(for a certain 1-variable Diophantine problem) and exactly in his “|n〉 basis.” The only thing different is that we truncate all
the matrices down to 5 dimensions, i.e. only use the 5-state basis {|0〉, |1〉, |2〉, |3〉, |4〉}.

5And it might be very hard to settle that question.
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Here is Kieu’s HI (exactly his own in the case when we set all his αk = 1) and our HP :

HI =



















1 −1 0 0 0

−1 2 −
√

2 0 0

0 −
√

2 3 −
√

3 0

0 0 −
√

3 4 −
√

4

0 0 0 −
√

4 5



















, HP =

















2 0 0 0 0

0 4 0 0 0

0 0 5 0 0

0 0 0 3 0

0 0 0 0 1

















(12)

The eigenvectors of HI are the columns of

QI =

















−0.6198 −0.6541 −0.4122 0.1336 0.0162

−0.6127 0.0855 0.6350 −0.4527 −0.0959

−0.4232 0.5151 0.0487 0.6701 0.3226

−0.2300 0.4861 −0.5055 −0.1675 −0.6536

−0.0922 0.2513 −0.4111 −0.5478 0.6777

















(13)

with corresponding eigenvalues (energy levels)

0.0114, 1.1307, 2.5406, 4.3884, 6.9288 (14)

After time evolution, starting from the ground state of HI at t = 0, to t = T = 13.3444 we get this final state ~ψ (absolute

values of the ~ψ entries are shown, ordered in the same order as the energies 1, 2, 3, 4, 5 of the HP eigenstates)

(0.0139, 0.9997, 0.0062, 0.0210, 0.0015). (15)

which note has probability > 99.9% of being measured as the first excited state of HI , with energy 2, instead of the ground
state with energy 1. The expected final energy is 2.0007.

Incidentally, in this example, throughout the evolution from HI to HP , the Hamiltonian H has 5 distinct energy levels which
never cross. Kieu has confirmed the 0.999 decoy probability in this example with mathematica, and made a plot of the 5
eigenenergy levels versus t for 0 ≤ t ≤ T ≈ 13.34, which confirmed my claim that they never cross throughout the homotopy.
However, Kieu found that at t ≈ 10.37 there is something that looks very much like a crossing of the ground and first excited
levels! When we examine the picture with high magnification (see figures at end) we discover that this is not a crossing!
Kieu believes that it is during this near-crossing that a “massive transfer of occupation probability from the ground state to
the 1st excited state” occurs.

These counterexamples are interesting not only because they refute Kieu’s hypercomputer – they also cast a great deal of
light on the (bad) behavior of quantum adiabatics.

5 Some additional remarks

Another misconception in Kieu’s papers is the notion that Turing’s proof of the nonexistence of an algorithm to solve the
halting problem, still might allow a probabilistic algorithm for that purpose. In fact

Theorem 1 (Halting remains undecidable even for probabilistic decision procedures). Let a “probabilistic decision
procedure” (PDP) be a Turing-machine program that accepts both (1) a finite input, and (2) an unbounded string of random
bits as a second kind of input, and terminates in finite expected time no matter what input1 is with output “yes” or “no” with
that yes/no being correct for whatever input1 it is, with probability> 2/3. Then: there is no probabilistic decision procedure
for the halting problem.

Proof. We shall prove that any PDP may be converted into an ordinary deterministic decision procedure; and Turing proved
the impossibility of that. Simply run the PDP on every possible n-bit “random” string (all 2n of them) as input2 and count
the number of “yes,”“no,” and “not done yet – need more random bits” results that occur. Keep increasing n and redoing
this until either “yes” or “no” happens > 99% of the time (“not done” happens < 1%). This must happen for some n, due
to the finite expected run time of the PDP. Now if > 50% of the answers are yes, then output “yes,” otherwise output “no.”
Due to the > 2/3 correctness probability of the PDP this will yield 100% accuracy. �

The correction of this misconception actually would have made Kieu’s (false) claim that his physical system yields such a
PDP more impressive. Even if Kieu’s claim had been correct – i.e. if he really had a physical system to solve Diophantine
equations – there would be another problem:

Theorem 2 (Infinite manufacturing precision). It is not possible to solve general Diophantine systems, even polynomial
ones, with any Kieu-like approach unless the Hamiltonian is manufactured infinitely precisely.
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Proof.6 Consider the two-equation Diophantine system

x2 − 2y2 = 0, x = a2 + b2 + c2 + d2 + 1. (16)

This system has no solutions because
√

2 is irrational. (We have implicitly used the well known Lagrange theorem that any
natural number is a sum of 4 squares.)

However if the coefficient “2”were replaced by any squared rational number, then the resulting system would have an infinite
number of solutions (a, b, c, d, x, y). There are an infinite number of squared rational numbers arbitrarily near 2. Therefore,
in order to solve this Diophantine system by physical methods, we would need to implement the Hamiltonian (i.e. all the
beam splitters and Kerr nonlinear media, or whatever physical objects are used to produce this Hamiltonian) with infinite
manufacturing precision – presumably impossible. �

For this reason, had Kieu succeeded I would have preferred to call that success an “unsimulable quantum adiabatic system”
rather than a “quantum adiabatic hypercomputer.”

6 What can be salvaged?

First of all, finding the energies of ground states is one of the most fundamental computational tasks in quantum mechanics.

Theorem 3 (Ground energies are uncomputable). No algorithm exists which, given a description of the Hamiltonian H
of a quantum system in a Cartesian product of K Fock spaces (for some finite K; and the “description” could be a finite-length
formula in terms of the K kinds of raising and lowering operators a and a†), finds its ground energy accurate to within ±1/3.
This remains true even if H is known to have a unique ground state (or if H is known to have an infinitely nonunique ground
state – either demand works), and to have only natural numbers as energy levels; and then even just the question of whether
the ground energy is zero or ≥ 1, is undecidable.

Proof sketch. If such an algorithm were available, then via Kieu’s Diophantine↔Hamiltonian correspondence, it could solve
singlemin 2-exponential (respectively polynomial) Diophantine equations – a task which Smith (respectively Matiyasevic)
proved to be undecidable. �

One way to find the ground state of a system is to create the system, let it “cool down” by allowing it to interact weakly
with a very cold heat bath (whose temperature is well below the lowest excited energy level of the system), or let it “decay”
by allowing to interact with a quantum radiation field into which it can “emit photons,” and then measure its energy.

The amount of time this takes is the “halflife” of the system. (For the “heat bath” one could simply use another Fock space.)

It is a common observation that halflives can be very long. For example, the ground state of carbon is believed to be graphite.
Yet tiny diamonds (2nm diameter) are common in meteorites and evidently have lasted billions of years. We have:

Theorem 4 (Halflives are uncomputably large). Either: No algorithm exists which, given a description of the Hamil-
tonian H of a quantum system in a Cartesian product of K Fock spaces (for some finite K; and the “description” could be
a finite-length formula in terms of the K kinds of raising and lowering operators a and a†), and a description of its initial
density matrix, finds an upper bound on its (radiative, or thermal) halflife.

Or: Church’s thesis (that quantum systems with specified Hamiltonians are simulable for finite times to arbitrary specified
accuracy) is false for our systems.

Another way to find ground states is via the “quantum adiabatic theorem” (QAT).

The QAT dates to P.Ehrenfest in 1916 and is of basic importance, especially in experimental physics. According to [2],
all versions of the QAT proved before 1981 involved bounded Hamiltonian operators. If physics is regarded as having an
unbounded Hamiltonian (and, e.g., the usual flat-space quantum field theories, and the usual treatments of the “particle in a
box,” the “simple harmonic oscillator”and the “hydrogen atom” found in undergraduate textbooks all involve unbounded infi-
nite dimensional Hamiltonians) we can conclude that every use of the QAT before 1981 was, technically speaking, unjustified
either mathematically or physically. Avron et al [2] published a proof of a QAT version allowing unbounded Hamiltonians
in 1987. However, neither this, not any previous proof, gave any explicit or rigorous bound on the convergence time. That
complaint was addressed by Ambainis & Regev [1] who in 2004 gave an elementary proof of a QAT version which did give a
rigorous bound relating ǫ to the time T required to force ground state probability > 1 − ǫ. However, this bound is useless
(since in general it merely says “T ≤ ∞”) if the Hamiltonians are unbounded, as in textbook physics.7

So then a fundamental question is: can [2] and [1] somehow be combined to yield an a priori bound on T , applicable even
for arbitrary unbounded Hamiltonians? The answer appears to be no.

6A similar theorem and proof was invented independently and earlier by Andrew Hodges, best known as the author of Turing’s biography [4].
7In email to Ambainis, I suggested that apparently his bound on T could be re-expressed not in terms of the operator norms of the Hamiltonians

H, but instead in terms of the maximum vector norm of Hψ over all states ψ arising during the adiabatic evolution. This would be a simple
improvement that would allow unbounded Hamiltonians to be used, but only in an a posteriori fashion, because it only can be used if the evolution
of ψ(t) is already known.

April 2005 6 6. 0. 0



Smith typeset 21:19 28 May 2005 QA counterexamples

Theorem 5 (There is no computable bound on the adiabatic time). If the Church thesis (that the evolution for
finite times of finite-energy quantum adiabatic systems is algorithmically simulable) is correct, then there DOES NOT EXIST
any algorithm which, given a description of two self-adjoint nonnegative definite operators HI and HP with discrete spectra
(indeed, one may demand natural number valued spectra) and unique ground states (with a known ground state of energy 0
in the case of HI), computes an ǫ with 0 < ǫ < 1 and a time T > 0 such that quantum adiabatic evolution under H(t) from
t = 0 to t ≥ T starting from the known ground state of HI , will yield an occupation probability for the ground state of HP

that exceeds 1 − ǫ.

Proof sketch. If such an algorithm were available, then Kieu’s plan, as corrected by Smith as sketched in the present paper,
with experiments running for that time T , would suffice to yield a PDP for the halting problem. But we have shown in
theorem 1 that no such PDP exists. �

These are the first examples we know of where uncomputably large numbers arise naturally in theoretical physics. This
suggests that there is a good reason why the many provers of the QAT during the period 1916-2004 have never been able
to produce a useful upper bound on the convergence time; the best they’ve been able to to is merely to prove convergence
occurs.

Fundamental open questions.

1. Exactly what class of Hamiltonians is physically realizable?
2. Exactly what class of Hamiltonians is algorithmically simulable? Note that Smith [8] showed that Hamiltonians for n

particles in 3-space with a wide class of interparticle potentials (including Coulombic) were algorithmically simulable,
and that the eigenenergies of such systems were computable real numbers. But the Hamiltonians of Kieu’s type,
constructible as formulas in terms of raising and lowering operators a† and a in Fock spaces (and when these formulae
of polynomials, these Hamltonians arguably are physically realizable) have uncomputable ground energies. The problem
is to draw that borderline more precisely.

3. Why do the counterexamples start working for 4-state systems and not 2 or 3 – what is so special about 4?
4. Can such counterexamples exactly achieve decoy probability=1? (These are both fundamental questions about quantum

adiabatics.)

Finally, let me remark that all of the claims made here that are insufficiently justified here (in the desire to keep this piece
short) are justified with full formal mathematical rigor, in a > 20-page manuscript jointly authored by Kieu and Smith.
(This includes: the construction of uncomputable singlemin Diophantines, the rigorous demonstration that the QAT applies
to Kieu’s systems, and the rigorous probabilistic analysis.) That manuscript is not yet publically available for various reasons
(such as that Kieu objects to its present form) but probably will eventually surface.
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FIGURE CAPTION. Two plots provided by Tien D. Kieu showing the 5 eigenenergies versus t in the example of §4. The
top plot exhibits what appears to be a level-crossing near t ≈ 10.37, but in the bottom plot heavy magnification shows that
to be an illusion.
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