Smith typeset

16:04 18 Jun 2006 1Q

Mathematical definition of “intelligence” (abbreviated version)

Warren D. Smith*
warren.wds@gmail.com

June 18, 2006

Abstract — This is an abbreviated version of a 6-times
longer work. (1) We propose a mathematical definition of
intelligence, i.e. know what intelligence is and can prove
theorems about it. (2) The most important theorem is our
construction of a UACI (uniformly asymptotically com-
petitive intelligence) which is at least as intelligent in the
long run as any competing entity (on the same hardware)
as measured by any intelligence test. (3) Psychological
experiments and facts provide evidence that human in-
telligence actually is constructed in essentially the same
manner as the UACI construction. No one piece of that
evidence is very convincing but the combination is fairly
imposing. (4) It is now possible and desirable to set up an
annual fully mechanized “intelligence contest” with stan-
dardized, reproducible intelligence measurements made
for each contestant. That would virtually assure increased
measured intelligence every year. It took about 50 years
for computers to become superior to humans in chess and
that probably would not have happened without the an-
nual computer chess contests and “chess ratings” keeping
it sane and measurable. We suggest that the same will be
true of Al

There is some similarity between our definition of “intelli-
gence” and our “UACI” construction, versus Turing’s def-
inition of “algorithm” and his construction of a “universal
Turing machine.”

Unusually, a box at the end gives a short proposed “con-
sensus statement” about intelligence and we seek people
willing to sign that statement.

The longer work on which this is based, is [41].

1 Motivation

Here are four reasons to study “what is intelligence?”:

1. A numerical comparison of the crudest possible up-
per bounds on the raw information processing speed of hu-
man brains and 2005-era computers (based on comparing the
CMOS transistor-pair counts in recent Intel processors with
the synapse counts in the human brain, and multiplying by
their frequencies of operation) shows the latter are superior:
286 x 106 transistors times 3.6GHz= 5.1 x 1017 bit-ops/second
for an Intel Xeon, versus under 10 synapses [29][5] times
400Hz< 4 x 10'7 bit-ops/second for a human brain.

2. People want to build Als.

*Non-electronic mail to: 21 Shore Oaks Drive, Stony Brook NY 11790.

March 2006

)

3. The undefined notion of a “conscious intelligent observer’
appears important to interpreting quantum mechanics.

4. Previous Al workers have either admitted failure at pro-
viding a definition of intelligence [52] or have provided clearly
wrong or inadequate [31] attempts; and the psychometricians
have been even worse, e.g. A.R.Jensen ([16] p.48) commenting
that “My study of these two symposia [in 1921 and 1986 aim-
ing to define intelligence]... has convinced me that psycholo-
gists are incapable of reaching a consensus... It has proved to
be a hopeless quest.”

The “Turing test” for intelligence [50] is inadequate because
it is not useful for attempted software development of an Al: It
is extremely inefficient and cannot be automated; it does not
produce a numerical measure of intelligence or even a <, =,
or > comparison between two intelligences; it is not a mathe-
matical definition; it has no intrinsic meaning in the absence
of humans; has little or no predictive power about the nature
of intelligent entities; and provides no understanding of what
“intelligence” really is.

2 Preparatory thoughts

Our basic ideas are that

1. a usefully intelligent entity is one that can supply good “an-
swers” to “questions” (both are general bitstrings), and what
matters is not initial competence but rather asymptotic final
competence at answering questions of that type.

2. we recognize that only NP questions and P-verifiable an-
swers are needed (up to some technical issues concerning ran-
domness) and then permit entirely general such questions,

3. we argue that any entity that cannot score well on cer-
tain such tests is not intelligent, while any entity that can
score optimally well on all such tests is extremely intelligent
even if it can do nothing besides scoring well on the test (thus
“proving” that our definition is “correct”)

4. somewhat sneakily implicit in that reasoning is a “looka-
head” to §4 where we shall construct a “UACI,” i.e. an entity
which does score optimally well (asymptotically in a compet-
itive sense) on every such intelligence test, and to §7 where
it is conjectured that the working mechanism behind human
intelligence is such a UACI.

Final but not initial competence is plainly what people have
in mind when they claim “humans are intelligent but animals

Smith typeset

16:04 18 Jun 2006 1Q

not” since human infants are clearly less competent than most
other newborn animals in essentially every way, and also even
adult humans are initially far less competent at various tasks
than birds (flying, memorizing hiding places for seeds), even
though with effort and time humans eventually can become
superior to birds.

P-verifiable answers are necessary because otherwise it is not
possible to justify the validity of the scoring of intelligence
test answers to some skeptic, nor it is necessarily feasible to
produce those scores at all. Once that is insisted upon, NP
[12] questions are an automatic consequence. Entities which
cannot ever learn to answer such questions as “find a factor of
9797 or “find an escape route from this maze” are clearly not
intelligent. Entities which can answer arbitrary NP questions
— or merely answer them as well as any polytime randomized
algorithm possibly can — are clearly intelligent. Why? Be-
cause even if they can do nothing other than this, that still
suffices to have superior ability to any human mathematician
(“find a proof of the Riemann hypothesis less than 200 pages
long?”) theoretical physicist (“find a theory, with proof of va-
lidity all less than 200 pages long, that explains the following
experimental data XXXX?”), computer programmer (“find an
algorithm, with formal correctness and polynomial runtime
proofs, all less than 200 pages long, and the smallest possible
polynomial bound, for the following formally specified task
XXXX?")! ete.

3 Formal definition of Intelligence

(Alternative “deluxe versions” of our definition, aiming for im-
proved performance, also are possible and are discussed in the
nonabbreviated version.)

We employ the usual (since the days of Church and Turing)
underlying computational model — a machine polynomially
equivalent to a Turing machine. As is well known, an “algo-
rithm” is a computer program that terminates no matter what
the input, and it is a “polynomial time” algorithm if it does
so in time bounded by a polynomial function of the input’s
bit-length. Let us now define something less familiar.

A reent-algorithm means a computer program that never
terminates, and which keeps soliciting and accepting input
bitstrings from one or several parties, outputting bitstrings in
between. A reent-algorithm is “polynomial time” if the time
it consumes to produce each output is bounded by a polyno-
mial function of the total bit-length of all the inputs it has
received so far. (“Reent” stands for “reentrant”; the concept
is of a program that carries on an interactive dialogue [or sev-
eral dialogues], as opposed to the old concept of “algorithm”
which is a batch concept.) We shall also sometimes permit
reent-algorithms to access a source of random bits.

Cast of characters:
PG: Problem generator
SC: Solution checker
ET: Entity under test

An intelligence test consists of one polynomial-time reent-
algorithm PG and one polynomial time ordinary algorithm

SC. The first reent-algorithm, called the “problem generator”
(PG), uses random bits, and outputs an infinite sequence P,
Ps,..., of output bitstrings called “problems;” the kth time the
entity under test tells the problem generator “ready” it (be-
ginning the next “cycle”) outputs the next problem Py, and it
also outputs a second bitstring Dy, called the “secret associ-
ated data” — but the entity under test (ET) is only allowed to
see Py, and is never allowed to see any of the Dy. The second
algorithm is called the “solution checker” (SC). As its input, it
reads the problem Py spit out by PG, and it also gets to read
the secret associated data Djy. Finally, it reads as its third
input, a communication from the entity under test called the
“answer” Ay. It then outputs a “score” integer Sy > 0 which is
a function of Py, Dg, and Ag. It is essential that ET is never
told what the underlying algorithm inside PG is, although
it is probably permissible to make the algorithm inside SC
public.

ET, after receiving Py, is allowed to submit any number of
trial answers Ax to SC for scoring, i.e. is allowed to invoke
SC at any time to score any proposed trial answer for the
current Pg. Only the final answer ET submits for Py before
requesting the next problem Pj; from PG, corresponds to
the final score Sy it }g{ets on problem k. ET’s cumulative score
after time T, is > ;" | Sk where K is the number of cycles
completed before T'.

There could be many possible (PG,SC) pairs, each one gen-
erating a different intelligence test.

Entities that get higher cumulative test scores as a function
of time T are “more intelligent” at least as far as that test
is concerned. If some entity 1 is at least as intelligent with
respect to every test (or at least every test from some set un-
der consideration) than entity 2 (and more intelligent on some
tests) in the limit 7' — oo, then it is simply “more intelligent.”

We have allowed ET to be literally any entity. However, for
the purpose of studying Artificial Intelligence it is convenient
to consider “entities” which in fact are reent-algorithms — prob-
ably random-bit-using ones — and preferably polynomial-time
random-bit-using reent-algorithms.

4 The UACI Theorem

Having a formal mathematical definition of intelligence en-
ables proving theorems about intelligence. The most impor-
tant one is our construction of a UACI — uniformly asymp-
totically competitive intelligence — which, we show, is asymp-
totically as intelligent (up to a constant factor, which in fact
in suitable models of computation is just 1) as any other en-
tity, and this is true on every intelligence test simultaneously.
Unfortunately this UACI consumes time exponential (2¢) in
the codelength ¢ of the competitor entity, but another theo-
rem shows (under widely believed computational complexity
conjectures) that is unavoidable, i.e. best possible.

1. As a warm-up, let us first consider a slightly altered (and
not recommended!) version of our “definition of intelligence”

LOur point in these three examples is that (1) all are NP-questions, (2) an optimally competitive algorithm for answering them would by
definition be superior to any human; and (3) any entity that could accomplish these feats would clearly be a superior mathematician, physicist etc
versus any human, because all human mathematicians, physicists, etc are presently incapable of these feats.

March 2006

Smith typeset

16:04 18 Jun 2006

1Q

in which PG and SC are the same entity and both are fully
deterministic.

Let an “asymptotically godlike superintelligence” be a poly-
nomial time reent-algorithm which asymptotically on a long
sequence of intelligence test cycles generated by the same de-
terministic polynomial time test-problem-and-answer genera-
tor reent-algorithm, always achieves asymptotically the max-
imum achieveable cumulative score (provided that answers
that would yield unboundedly large cumulative score totals
exist).

Theorem: Asymptotically godlike superintelligence is possi-
ble.

Proof: The idea is to guess the test-problem generation al-
gorithm? by successively systematically trying all possible al-
gorithms. Each cycle a new guess is tried until one is found
that agrees with all problem-solution pairs so far, then we just
stay with it until a disagreement occurs, then resume guess-
ing. Eventually (i.e. after some very large but finite number
of cycles) the right guess will be found and stayed with for-
ever after, causing optimally godlike superintelligence from
then on.

There are a few tricks we need to explain in order to justify
this:

1. We need to know that every polynomial time algorithm
may be written in a “self proving” fashion which is a
priori known to be a polynomial time algorithm with
a known polynomial as its runtime bound. My favorite
way to do that is to make the algorithm have a stan-
dardized straight-line-code preface that (1) reads its in-
put and (2) computes a polynomial P of its bitlength
N; (and does so in a clear, straightforward, standard-
ized manner so that it is obvious that is what it is doing)
and then the remainder of the algorithm decrements P
as a side-effect of every step it takes, self-terminating
as soon as P hits zero. [Note: similar remarks instead
may be made about exponential-time algorithms, but
not about all algorithms.]

In that way we can generate all polynomial time algo-
rithms in, say, lexicographic order, but without gener-
ating any super-polynomial-time programs.

It also is possible in numerous ways, in our intelligence
test problem-answer-cycle framework, to systematically
do “time sharing” among all possible such algorithms
in such a way as still to keep the combined creature a
polynomial-time reent-algorithm. For example, if an al-
gorithm has worst-case time bound KNP, then we can
run it for N steps each cycle (and if not yet done, con-
tinue running it N steps the next cycle but still using
the old data, and so on, until it gets done). If each cycle
we add a new trial algorithm to our collection, the next
effect is that N cycles get completed in O(N?) time so
that we plainly have a polynomial-time reent algorithm,
but with the property that every trial algorithm eventu-
ally is run on an unboundedly large number of Py, thus
assuring that one with 100% success rate eventually will
be found.

Q.E.D.

Extension: Indeed, by continuing to explore all algorithms
permanently with 50% of one’s computer time, but using
the other 50% to run the currently-best algorithm, we not
only can obtain asymptotically godlike superintelligence in
the above scenario, but in fact we can do so while staying
within an asymptotic factor of two of optimizing a measure
of computational efficiency. Even better one can run it a frac-
tion max{1/2,1—10%°//n} of the time on the nth test-cycle,
thus getting 100% efficiency asymptotically in an appropriate
computational model.

Warning: the preceding theorem and extension depended
heavily on the wrong assumptions that the test-problem gen-
erator is deterministic and also generates the answer. In re-
ality PG is randomized and a separate scoring routine SC
evaluates answers (which need not be unique and which quite
possibly cannot be deduced from the problems in polynomia
time). In the preceding theorem, using a cryptographically
strong pseudorandom number generator would have been fine,
but the proof breaks if the test-problem generator is allowed
access to a true random-bit generator. Indeed,

2. Theorem: An asymptotically godlike superintelligence is
not possible if the polynomial time test-problem-generation-
and-test reent-algorithm instead has access to a true random
bit generator.

The proof is trivial: on the Nth cycle, demand an N-bit an-
swer and award score 1 if the answer matches a sequence of
N freshly-generated coin tosses, otherwise award score 0.

Then the total expected score for any intelligence whatever,
even cumulated over an infinitely long intelligence test, is < 1,
but the maximum possible score is infinite. Q.E.D.

We now state our most important theorem:

3. A ‘“uniformly asymptotically competitive intelligence’
(UACI) is a randomized reent-algorithm C' which, when re-
peatedly given any intelligence test, achieves an exrpected cu-
mulative score at least asymptotically equal to that achieved
by any particular other randomized polytime reent-algorithm
X on the same test sequence, while consuming compute time
at most a constant factor larger than those consumed by X,
and memory resources growing at most linearly with time.

The UACI Theorem: A UACI is possible.

Proof: The idea is to guess the competitor’s algorithm by
successively systematically considering all possible polynomial
time reent-algorithms. Each cycle a new guess is considered.
If one is found that would have yielded a larger expected cu-
mulative score throughout past test problem-solution-pair his-
tory, then we switch to using it to generate our test answers.

)

Notes: we estimate cumulative expected scores as follows:
each cycle, we, for all candidate-algorithms in our current
collection, try another set of random input bits on all of their
past history, and update that candidate algorithm’s expected-
score-estimate appropriately. By the law of large numbers,
ultimately the expected-score estimates will (with probabil-
ity 1) approach their true values for any particular candidate
algorithm up to any particular time. By switching, at some
point, to exhaustive enumeration of all 2" bitstrings with n
bits rather than Monte Carlo sampling, we can in fact de-
termine the eract expected-score up to the earliest point of

2For brevity, we shall often use the word “algorithm” when we mean “reent-algorithm.”

March 2006

3

0.

Smith typeset

16:04 18 Jun 2006 1Q

consumption of the nth random bit, not merely an estimate
(while still consuming only polynomial space). So eventually
the right guess for X will be found (or something as good
or better) and stayed with forever after, resulting in at least
competitive performance from then on.

Note 2: to make this all work with at most polynomial slow-
down, we need to use the same tricks as in the preceding proof,
plus a few more. Since the candidate algorithms are eating
data at different rates, we of course need to keep track of all
their “cumulative scores” as well as their consumed “times” in
order that we may compare apples with apples. Ultimately
asymptotically all algorithms consume the same amount of
“time” so the comparisons will be asymptotically fair.

Note 3: The reader might worry that, on some task, there
might be some sequence of polynomial-time algorithms, say
with runtime N* for the kth algorithm, which achieve greater
and greater scores, e.g. cumulative score proportional to k2
after k cycles if we switch to algorithm k at cycle k. There-
fore, our UACI might find these algorithms successively, with
the net effect of finding an algorithm that really has super-
polynomial runtime.

Avoiding that issue is in fact precisely why in §3 we defined
the cumulative score to be a function of time T and not of
the number of test cycles so far. If the score-producing beast
SC pre-transforms its scores by some appropriate monotonic
pre-transformation function it can encourage the intelligence
to prefer just one of the algorithms in that sequence in order
to get good scores without taking too much runtime to do it —
while if a super-polynomial-time reent algorithm then yields
superior asymptotic performance per unit time to any poly-
nomial algorithm, it indeed will be preferred, but that is then
a feature, not a bug.

Note 4: We have discussed “provable polytime algorithms”
and their generation in a previous proof; we of course also
reuse that trick here.

Note 5: We will never be sure that duplication of the best pos-
sible competitor has occurred, hence will need to continue ex-
perimenting forever, causing a slowdown by a possibly-large,
even though polynomially bounded, asymptotic factor. But
by devoting 50% of runtime to the best currently-known can-
didate algoritm and 50% of runtime to the ongoing search for
improved ones, the asymptotic slowdown factor can be made
to be 2, and indeed (as we explained last proof) even 1 + .
Q.E.D.

Despite whatever theoretical claims of grandeur this existence
theorem has, from a practical point of view it is not terribly
useful because the proof technique — even though construc-
tive — takes a very long time (exponential in the code-length
of the competitor algorithm) before the competitor algorithm

is duplicated allowing asymptopia to set in.

It is possible to address this criticism to some extent as we
shall see in §9 and 6. Before doing so we also point out

4. The proofs of the preceding theorems also show that the
code for an UACI can without loss of generality and without
loss of performance (except for polynomially bounded factors)
be required to be short. l.e. the “Kolmogorov complexity”
(code length) of a universally asymptotically competitive in-
telligence is remarkably small?

Indeed, it is not difficult to write down in full and complete
detail, a program for an UACI, in some standard computer
language such as C or Scheme.

5. Although the strategy of “searching over all possible al-
gorithms” employed in theorem 3’s construction of a UACI
may seem (and is) very crude and inefficient, there are good
reasons to believe that it is not possible to do better.
More precisely: We can prove under standard computational
complexity conjectures that it is not possible to find the best
algorithm (or even one merely comparable to the best one),
even if among quadatic-time algorithms describable in N bits,
in worst case time below exponential (2V) in the description
length N of that algorithm. Indeed, it is a standard conjec-
ture that “breaking the AES secret key cryptosystem” (i.e.
given plaintext-ciphertext pairs for an N-bit long secret-key
cryptosystem of the same ilk as AES [7], find the N-bit-long
secret key that encodes the encryption algorithm) cannot be
done in subexponential (below 2V) time?

Therefore, the only hope for improving theorem 3’s crude
UACI construction is to ignore the UACI’s worst case perfor-
mance (which already is optimal) and try instead to improve
its performance on good cases while still not diminishing per-
formance too greatly in bad cases. But a limit on the ability
to do that is set by the

Two-way UACI simulation theorem: Any two UACIs A,
B are equivalent in the sense that A can (and will) simulate B
and B will simulate A with at most a constant additive slow-
down (note: this constant may depend on A and B and may
be very large) plus < (1 4 €) multiplicative-factor slowdown
(this is valid for any € > 0).

(This theorem is an immediate consequence of the UACT the-
orem.)

Our UACI is a natural outgrowth of previous “universality”
ideas [20][14] in computer science dating back to Turing [51]
in 1936.

3And indeed a companion paper [40] analyses the description-length of the biological “blueprint” for human intelligence and concludes that
either 6 or 81 Kbytes suffice, up to a factor of 3 worth of imprecision in the estimate, in two different models (specifically: it depends whether you
believe “exons and introns” are important for regulation or not). This is not very large. Solo humans have written considerably larger computer

programs.

4 “AES-like cryptosystems” work as follows: each “stage,” the plaintext is transformed by one of two reversible transformations Tp or T} each
with highly-bit-scrambling effects. At the kth stage one performs T} where b is the kth bit of the secret key. The net result of composing all N of
these transformations (arising from an N-bit key) is the “ciphertext.” Note that the “key” here really is an N-bit-long description of an encryption
(and the corresponding decryption) “algorithm” and anything capable of guessing that algorithm is capable of “breaking the cryptosystem,” i.e. of
rapidly producing plaintexts corresponding to given ciphertexts. So far, we have described “Feistel cryptosystems.” However, as a description of
the AES, it has been oversimplified; it is an important protective modification that the transformations 7T} actually incorporate the whole key not
just one bit, because otherwise AES would be attackable by “fast Gray code update” and “meet in the middle” attacks. It is a very widely believed
conjecture that it is not possible to break such cryptosystems in less than 2N steps on average.

March 2006

Smith typeset

16:04 18 Jun 2006 1Q

5 Correct treatment of complexity
classes

We have adopted the oversimplification of only talking about
the deterministic computational complexity classes P and NP,
even though really, we should have been permitting random-
ization. We now give the appropriate replacement classes and
some additional discussion.

randomized deterministic

1 BPP P
2 N(BPP) NP

3 ME(FP) NP

4 PSPACE PSPACE
5 EXPTIME

Figure 5.1. Important intelligence-related computational
complexity classes (explained in the text). ME(FP) appears
not to have been studied before and is defined here for the
first time. Notation: “N” is an operator which converts a
class T of tasks into the class NT whose answers are verifiable
by a computation in the class T. “#” is an operator such that
#T is the class of problems of counting the number of solu-
tions of some problem in the class T. “ME” is defined below.
A

ME(FP): Our notation regards “ME” as an operator which
converts a class T of functions (here T=FP, which is the class
of polynomial-time functions f that convert bitstrings to bi-
nary integers) into the class of problems of the form “maximize
the expected value of f(x) by appropriately choosing its input
bits 2”7 where some known subset of those input bits are choos-
able whereas the complement subset are chosen randomly by
coin tosses and are not controllable by us.

The problem faced by an intelligence whose answers are scored
with a binary integer by a polynomial time scoring device that
employs random bits, is: maximize your expected score! That
is a ME(FP) problem; but if no random bits are used it is just
NP. Of course that was assuming that SC and PG are known
— but if they are not known, then the problem of guessing
them given the known data (with the aim, e.g. of maximiz-
ing the correctness probability of the guess) is also an NP or
ME(FP) problem.

Our main theorems about these complexity classes (which are
proved in the full paper, here we only state them) are:

1. ME(FP) completeness Theorem. The follow-
ing problem “probability-mazimization SAT” is complete over
ME(FP), i.e. any ME(FP) problem can be solved in polyno-
mial time if we have access to an oracle for solving probability-
mazximization SAT instances.

INSTANCE: There is a known N-bit-input, 1-bit-output poly-
time forward-only boolean logic circuit, which also accepts

N more inputs from random coin-toss bits, for 2N inputs in
total.

PROBLEM: to find the N-bit input which maximizes the prob-
ability the output bit is “on.”

2. Complexity class inclusion Theorem.

5This convention is convenient but slightly nonstandard.

March 2006

PCNPCPHC#PCME(FP)CN(P#P)CPSPACE

where “A C B” here is taken to mean® that problems in class A
can be solved easily (in polynomial time) if we have an oracle
that will solve problems in class B on demand. Also (Sipser
[38]) PCBPPC PH and (Savitch) N(PSPACE)=PSPACE.

Notation: P is polynomial time. “SAT” is standard
computer science lingo for the “boolean satisfiability prob-
lem,” which is Cook’s standard NP-complete problem [12];
“probability-maximization SAT” is the name of our new class
of problems which however is highly related to Cook’s origi-
nal SAT class. PH is the “polynomial hierarchy” of problems
soluble in polynomial time by a machine that has access to an
NP oracle (this is PNY?), in polytime by a higher-level machine
with access to an oracle for that, in polytime by a still-higher-
level machine with access to an oracle for that, etc. (These are
the successive levels of the hierarchy.) Two problems known
to be #P-complete are “counting SAT” and “permanent of an
integer matrix.” Supserscripting A? denotes the class of prob-
lems A but allowing the solver access to an oracle for solving
problems in class B on demand.

6 Exhaustive search that is faster
than brute force

The naive method for trying out A algorithms, each one run-
ning for time T, takes at least AT steps. We shall now
give theorems showing that, at least if we restrict ourselves
to exhaustive searches over certain important subsets of al-
gorithms, this search-over-algorithms can instead be accom-
plished in O(A) time, i.e. O(1) steps per algorithm.

Faster-than-brute-force Theorem. Tree-structured loop-
less algorithms with N tree nodes each selected from a finite
palette of possible functions of their children (and with each
node having a bounded number of children), may be exhaus-
tiwely generated and run on fixved input, in O(1) average time
per algorithm.

Proof sketch. The idea is to generate all the trees in a man-
ner such that each tree differs from the previous by O(1), i.e.
a bounded number of alterations. Here the “O(1)” includes
counting every node which has an altered descendent, as it-
self “altered.” Then we re-evaluate the new tree (i.e. run
the new algorithm) by only updating the stored intermediate
quantities corresponding to the updated tree nodes.

Lucas’s “Gray code for binary trees” [23] makes it possible to
visit all N-node binary trees exactly once by performing a
single tree “edge rotation” each time to move from one tree to
the next. (There is a well known “planar duality” bijection
between N-node binary trees and triangulations of a con-
vex (N + 2)-gon, in which each “edge rotation” in the tree
corresponds to a “quadrilateral diagonal flip” in the triangu-
lated polygon.) We propose to use a modification resembling
[24] of Lucas’s original scheme. Our modified generator actu-
ally sometimes performs more than one edge-rotation between
generated trees, but still only performs a constant number of
them on average. (For non-binary trees see [18]; everything

Smith typeset

16:04 18 Jun 2006 1Q

we say about binary trees can be generalized to them$) This
modification is simple to program, and involves only O(1)
computational work per tree generated. Furthermore” there
is a modified version of the [24] tree-generation algorithm fea-
tures average depth (i.e. distance to the tree root) < 3 to each
rotated edge. Q.E.D.

The full paper discusses more results of this ilk, and see also
[34][26].

7 Human intelligence vis-a-vis our
definition

Let the Human UACI Hypothesis (HUH) denote the (in-
tentionally vaguely phrased) assertion that human intelligence
is built in essentially the same way as our UACI construction
in §4.

There are four main lines of evidence for HUH, each line
containing numerous® items of experimental evidence. While
none of these evidence-items by itself is very convincing, the
combination is. (It is rather like seeing 1 square inch of the
skin of an elephant and trying to prove you have an elephant.
Not very convincing — but if you do this for 50 different inde-
pendent square inches, then it becomes so.) We now discuss
the four lines extremely briefly; the full paper goes into much
greater detail.

1. Spearman g and the 1-dimensional nature of hu-
man 1Q. Spearman in 1904 found [48], and other experimen-
tal research confirmed [16][49][25][8] (to a large degree) two
principles about human intelligence: (a) the “positive corre-
lation principle” that human performance on any two mental
tests is positively correlated (i.e. if you are better than av-
erage at French, then you tend to be better than average at
Algebra), (b) the “one dimensionality principle” that human
intelligence scatterplotted in high-dimensional space as per-
formances on a large number of mental tests, is distributed like
a multidimensional ellipsoidal-shaped Gaussian, where the el-
lipsoid is “needlelike,” i.e. “one dimensional” in the sense that
one of its axes (dubbed “Spearman’s ¢”) is much longer than
the others.

In the actual psychometric literature this all is far less well and

less concisely described — and the psychometricians are un-
aware of many fundamental theorems from linear algebra [13]
that their subject rests on — and the experimental evidence
for the Spearman principles is less convincing than usually
claimed. (All that is reviewed in the full paper.) Nevertheless,
to the (considerable) extent that they are true, both Spear-
man principles, and the observed highly general, adaptible,
and universal nature of human intelligence, seem compatible

with the HUH.

2. DPiaget’s notions of mental development of chil-
dren. Piaget and successors found [37] that many aspects of
intelligence in children develop in a fairly predictable sequence
of stages. The sequence happens in the same order regard-
less of culture and consists of successive transformations of
less-adequate into more-adequate notions. This seems com-
patible with the HUH assuming the UACI employs “Piage-
tian search” over algorithms in which successive refinements of
good-performing algorithms are systematically explored with
replacement in an attempt to get better performance.

3. Forgetfulness. The fact that humans forget things
[2][22][47][53] is astounding considering the incredible ease
with which computer programmers can prevent forgetting.
How can human intelligence be so far ahead of computer pro-
grammers but so incredibly bad when it comes to memory?
(And animals remember things forever, such as salmon re-
membering their birthplace stream, so there clearly is noth-
ing biological to inherently prevent permanent memory.) As-
sume the HUH with a UACI based on a randomized Piagetian
search. Then the UACT if trained to solve (say) SAT prob-
lems will eventually become good at that. If then suddenly the
goal changes to proving theorems from axioms, it will perform
badly but would eventually become good at that too. But if
PG then switches back to posing SAT problems, the UACI
will not immediately regain its old competence, although it
will be expected to relearn faster than it originally learned.
It is hard to prevent the UACI from thus “forgetting” how
to solve SAT problems. Yes, one could clone it as soon as
the SAT-to-theorem-proving transition occurred, but there is
no obvious transition (the new problems might be just a new
form of the old problems, all the UACT sees is bitstrings) and
the UACI might for all it knows be about to see some more

6Indeed we remark that the general rooted ordered trees with N nodes can be represented as, i.e. are in 1-to-1 correspondence with, the binary
rooted ordered trees with N — 1 parent-to-left-child arcs by making the rightward paths in the binary tree correspond to the nodes in the general
tree. This remark actually is not quite sufficient for our purposes, but it goes a long way.

"This remarkable fact was not stated in [24] but was realized by its author Frank Ruskey and myself in private emails. The proof is: The [24] tree

generation algorithm is based on the fact that the N-node binary trees can be got from the (N — 1)-node trees by adding an Nth node somewhere
on the path of successive right-children of the root, and then the rest of that path (below the now-inserted Nth node) needs to be made a left-child
of the new node. This allows us to generate all N-node (rooted ordered) binary trees by recursively generating all (N — 1)-node trees — with the
new Nth node being irrelevant to that since it just passively hangs off the end of the right-child-path as the trees fluctuate. And then, in between
fluctuations, for each (N — 1)-node tree, we “walk” the Nth node up and then back down the right-child path by means of rotations. The crucial
lemma, an early form of which was pointed out to me by Ruskey, then is that the average length of this right-child-path is < 3. That is because
the average number of nodes in the path from the root to the rightmost leaf node in a random N-node (rooted ordered) binary tree is precisely
3N/(N + 2). This follows from the fact that the number T(N, k) of binary trees with a k-node right-child path, 0 < k < N, is k(zNNiklsl)/N and

then N 2N—k—1
S0 k3 (N—k)/N_ 3N

= <3
o kNN N2

This and the easier fact that the number of N-node binary (rooted ordered) trees is T(N) = (QIy)/(N + 1) both may be proven by consider-

ation of recurrences such as T'(n) = 32, 150 qipr1=n L (@)T(0) and T(n,k) = 32, 150 arpr1=n L(@)T(bk —1) if & > 1 and T(n,k) = 0 if
kE > n with T(n,n) = 1 for all n > 0. They also may be attacked via generating function identities concerning F(z) = > -, T(n)z" and
Gr(z) = X,,50T(n,k)z™ eg. F(z) = 1+ zF(z)? so that F(z) = (1 — /I —4z)/(2z), and and Gy(z) = T(0,k) + 2F(z)Gx_1(z) so that
Gr(2) = [P ()]

8Between 12 and thousands.

March 2006 6 7.0.0

Smith typeset

16:04 18 Jun 2006 1Q

SAT problems soon. Also we conjecture that human hard-
ware limitations prevent easy copying of large programs any-
how. And for very complicated programs that solve varieties
of problems and reuse each other’s subroutines, it is very hard
to tell what is the “SAT-solving part” of the program, so that
you can “save it in a box” to prevent forgetting. We look at
this in more detail and hopefully clarity in the full paper, but
suffice it to say that this kind of human phenomenon seems
entirely compatible with, indeed predicted by, the HUH.

4. Human time-consumption behavior. Humans take
enormous amounts of time to invent/discover things, but then
use them to solve problems at a far more rapid rate. For ex-
ample learning to walk, learning to solve Rubik’s cube, and
learning to multiply numbers. This behavior is entirely com-
patible with our UACI construction’s “exponential roll out.”
Also humans exhibit “power law learning” curves of improve-
ment with “practice” [28][32]. The full paper proves a theorem
saying that for a certain explicit and reasonably large-seeming
class of problems (under standard computational complex-
ity assumptions) UACIs will also exhibit power law learning
curves.

8 Consciousness — still a mystery?

Although psychologists had experienced immense difficulty
trying to devise a consensus definition of “intelligence” (a
quest which hopefully has now ended), “consciousness” is an
even more murky and elusive concept. Because of that murk,
we cannot confidently provide a consensus-inspiring defini-
tion. Nevertheless we try by providing a “tentative proposal”
of a definition:

Tentative Proposal: A consciousness is “an intelligent en-
tity which interacts with some law-obeying randomized exter-
nal environment in an effort to increase some kind of numer-
ical reward.”

If it is accepted, then consciousness is trivialized because
any “intelligent” entity by our definition automatically is con-
scious! (The full paper provides a negative discussion that re-
futes all the most commonly-heard alternative notions about
consciousness.)

Sleep. The most dramatic feature of human consciousness
is the fact that it is turned off one-third of the time. The
full paper provides a long discussion of sleep. What is our
rationale for including that discussion? We claim that sleep
is a logically-crucial issue for the following reason. We have
provided a large amount of confirmatory evidence for the
Human UACI Hypothesis (HUH) extracted from the exper-
imental psychology literature. A critic might now carp that
perhaps that evidence was “cherrypicked,” i.e. that I looked
through the psychology literature seeking confirmatory evi-
dence but ignoring evidence that mitigated against the HUH.
That is not the case — my search simply did not uncover any
countervailing evidence. However, the closest thing I know to
countervailing evidence, is sleep! That is because the HUH
does not predict sleep. HUH also does not forbid sleep, but
conceivably some other hypothesis about how human intel-
ligence works, would predict sleep — and if it also predicted
all the same phenomena that HUH predicts, then the exper-
imental confirmation of that other hypothesis would have to

March 2006

be judged superior. Furthermore, the full paper exhibits two
kinds of computer programs whose performance is inherently
increased by “sleep,” causing us to worry that there indeed
maght be such an alternative hypothesis lurking. That is the
full paper’s rationale for examining known facts about sleep
in considerable detail, and it finds (in agreement with pre-
vious workers [35][36]) that the most obvious guesses about
sleep all are known to be false. The only proposed sleep ex-
planations that currently appear still to be standing are the
hypotheses that sleep is either an evolutionary accident or
merely intended to keep animals “quiet and out of trouble,”
and for many animals — to a large extent including for hu-
mans — sleep is in no way necessary nor even helpful for any
known facet of our intelligence. Indeed, it appears likely that
quite-intelligent animals exist that never sleep. In view of
this (pending any increases in our understanding of sleep) we
conclude that sleep cannot constitute a challenge to the HUH.

9 Toward practicality

The full paper contains a long discussion, including many
ideas and thought experiments, of how to make a more prac-
tical and “less brute force” UACI. There is immense scope
for such improvements and it is entirely unclear how far and
fast they can be pushed. However the analysis in the full pa-
per makes it at least plausible that at least a mild degree of
competence by human standards may be attainable.

This effort could easily require 50 years of work by an en-
tire community. To keep such an effort sane and measure
its progress, we propose setting up standardized “intelligence
contests.” Specifically, there could be a web site on which is
found a standard intelligence-test protocol, with both intelli-
gent entities (ET) and additional intelligence tests (PG and
SC) being provided continually by anybody in the world, and
with record performance on each kind of test being recorded.

To make an analogy, it took about 50 years of work by an
entire community, starting from the earliest experiments with
computer chess players, before reaching the point where com-
puters surpassed human chess strength. This effort included
many “false starts” (i.e. directions of research which ulti-
mately seemed not useful), misconceptions, and wrong esti-
mates. Many would argue that this effort would not have suc-
ceeded without annual computer chess tournaments and chess
ratings which quantitatively measured progress and thus kept
eveything sane. The problem of creating an artificial intel-
ligence is far more difficult and up to the present moment
there has not been any corresponding mechanism for keep-
ing the area sane and for quantitatively measuring progress.
We are saying that now, such a mechanism can be created,
fairly easily. The difficulty of creating it would be approxi-
mately comparable to the difficulty of creating internet “game
servers” such as the “generic game server” [6] and the “internet
chess club.” The full paper gives a more precise descritpion
of how to do this.

10 Previous work by Hutter

This work can be viewed as a rediscovery of ideas by Marcus
Hutter published in a 2004 book [15]. The full paper includes

10. 0. 0

Smith typeset

16:04 18 Jun 2006 1Q

a section giving an extensive survey of the relationships be-
tween our two works. Hutter’s and our terminology, topics,
and attitudes differ but we both have essentially the same
few core ideas — which are actually quite simple — namely
we both have similar “definitions of intelligence” and we both
have versions of “the UACI theorem.” Hutter actually goes
further in the sense that he defines a 2-parameter continuum
(he calls it “AiXi(t£)”) of “intelligences” while we only con-
cern ourselves with the “lowest point” on that continuum; and
Hutter employs more sophisticated techniques to accomplish
that. Also Hutter, building on work of Solomonoff, has in-
teresting “convergence theorems” whose impact is unclear to
me. (Le. I find it unclear whether these are really advances
over our own simpler theorems and if so how much that mat-
ters.) But the full paper gives arguments that Hutter’s extra
generality is ultimately undesirable. Hutter unlike us did not
examine the human-psychology literature nor did he find our
faster-than-brute-force search theorem. Finally, in some pa-
pers Hutter wrote with Legg [19] after his book, he made
what in our view is a mistake by advancing the notion that
there is a “universal intelligence test.” This directly contra-
dicts our idea that there are an infinite number of intelligence
tests, although there is a universal intelligent entity (UACTI)
that performs competitively-optimally on them all. It would
be wonderful if there really were a universal intelligence test,
but, at least with our definition of intelligence, we can prove
there is no such thing:

Theorem (no universal IQ test exists): Any (putatively
universal) intelligence test U of the form in §3 has the prop-
erty that some entity ET exists, that performs asymptotically
optimally on it, but performs pessimally on some other intel-
ligence test B.

Proof. To get asymptotically competitively optimal behav-
ior on U, simply make ET be a UACI as in theorem 3 of
84. To create B so that the ET will always score zero on B,
add a special modification to ET to detect test problems of
B’s form, and to deliver appropriately bad answers whenever
that detection happens. (We can design B to always out-

put problems in a special easy-to-detect format, such as an
all-1s bitstring, and B’s scorer will demand a certain easily-
evadable kind of answer to get a nonzero score, such as an
all-Os bitstring.)

To complete the proof, we need to argue that a suitable B
and ET-modification both exist such that the UACI’s asymp-
totically optimal cumulative score on test U, is only negligi-
bly diminished asymptotically. We can accomplish that by a
“Cantor diagonalization” argument. The successive problems
Py, output by U (or the successive probability distributions of
the Py if U is randomized) are considered. We can easily see
ala Cantor that there necessarily will exist an alternative se-
quence of Py, that will necessarily not be generated by U — or
only generated with negligible probability, indeed with total
expected number of equalities Pj = Pi|1<j<oo, 1<k<j3 Upper
bounded by an arbitarily small constant c, since, e.g, the ex-
pected count of P; equalities is < 0.5¢j~2. In fact, were U
deterministic one could construct B by simply making B be
U but with a postprocessing step added to alter U’s output
away from U’s (and away from all of U’s previous outputs)
whereas for randomized U one could try 2k%/c Monte-Carlo
experiments (for each running U up to k = j3) and then add
a postprocessing step to pick an easy-to-recognize output not
in the resulting 2j%/c-element set. Q.E.D.

The full paper goes on to see that there is (conjecturally) a
way to partially salvage the Legg-Hutter idea for a universal
intelligence test, albeit by going beyond the bounds of what
is a permissible intelligence test under our definition — but it
is probably of no practical interest. Thus the “universal 1Q
test” controversy has been essentially completely resolved.

11 Multiresearcher Consensus

I believe it would be useful — in the sense that it would prevent
several years from being wasted — to get a number of promi-
nent human- and artificial-intelligence researchers to sign the
following short “consensus statement”:

=

“Intelligence” and “intelligence test” both have mathematical definitions, which (perhaps up to minor alterations)

can be taken to be the ones in §3 of the present work.

2. It is already known how — easily — to build a “universal artificial intelligence” that would meet this definition,
but which unfortunately would perform poorly in practice.

3. The AI community should adopt the previous two points as the foundation for future research.

4. The Al community should organize a perpetually ongoing “intelligence contest” open to both human and com-

puter intelligences as contestants, accepting standardized “intelligence tests” contributed by anyone, and posting

scoring records of all contestants on all tests. This modus operandi should ensure that clear definable and mea-

surable gains in machine intelligence happen every year.

So far (22 May 2006) nobody has signed it besides me.

References

[1] Some of these references are not cited in the text. This is a useful
subset of the larger bibliography in [41].

[2] Alan Baddeley: Your memory, a user’s guide, Firefly Books (new
illustrated ed. 2004).

[3] Eric B. Baum: What is thought?, MIT Press 2004.

[4] Allan Borodin & Ran El-Yaniv: Online computation and com-
petitive analysis, Cambridge University Press 1998.

March 2006

[5] V.Braitenberg & A.Schiiz: Anatomy of the cortex, Springer 1991.

[6] Michael Buro & Igor Durdanovic: An overview of NECI’s generic
game server, http://www.cs.ualberta.ca/~mburo/ps/ggs.pdf,
http://www.cs.ualberta.ca/~mburo/ggsa/.

[7] Joan Daemen & Vincent Rijmen: The design of Rijndael, the
Advanced Encryption Standard, Springer-Verlag 2003.

[8] Ian J. Deary: Intelligence, a very short introduction, Oxford Univ.
Press 2001.

11. 0. 0

Smith

typeset

16:04 18 Jun 2006 1Q

(9]

[10]

[11]

[26]

[27]

28]

[29]

Tan J. Deary: Looking down on human Intelligence, Oxford Univ.
Press (psychology series #34) 2000.

D-Z. Du & K-I. Ko: Theory of Computational Complexity, John
Wiley & Sons 2000.

S. Even & R.E. Tarjan: A combinatorial problem which is com-
plete in polynomial space, J. Assoc. Computing Machinery 23
(1976) 710-719.

M.R. Garey & D.S. Johnson: Computers and Intractability: A
Guide to the Theory of NP-Completeness, Freeman, 1979.

Roger A. Horn & Charles R. Johnson:, Matrix Analysis, Cam-
bridge Univ. press, 1985.

Marcus Hutter: The Fastest and Shortest Algorithm for All Well-
Defined Problems, Int’l J. Foundations of Computer Science 13,3
(June 2002) 431-443.

Marcus Hutter: Universal Artificial Intelligence: Sequential De-
cisions based on Algorithmic Probability, Springer, 300 pages,
Berlin 2004. ISBN=3-540-22139-5. Most of Hutter’s papers are
cited in and/or incorporated into his book [15] and are available
on his web page http://www.idsia.ch/~marcus/ai.

Arthur R. Jensen: The g factor: The science of mental ability.
Westport, CT: Praeger 1998

Arthur R. Jensen: Straight talk about mental tests, Free Press,
New York 1981.

J.F. Korsh & P. LaFollette: Multiset Permutations and Loopless
Generation of Ordered Trees with Specified Degree Sequence, J.
Algorithms 34,2 (2000) 309-336.

Shane Legg & Marcus Hutter: A Universal Measure of In-
telligence for Artificial Agents, IDSIA technical report 04-
05 (Galleria 2, CH-6928 Manno-Lugano, Switzerland, April
2005); A Formal Measure of Machine Intelligence, IDSIA
TR 10-06 April 2006 (8 pages) presented at Annual Ma-
chine Learning Conference of Belgium and The Netherlands
(Benelearn-2006) and both are available on Hutter’s web page
http://www.idsia.ch/~marcus/official/publ.htm.

Leonid A. Levin: Universal sequential search problems, Problems
of Information Transmission 9 (1973) 265-266; original Russian
version: Problemy Peredaci Informacii 9,3 (1973) 115-116.

M. Li & P.M.B. Vitanyi: An introduction to Kolmogorov com-
plexity and its applications, Springer (2nd edition) 1997.

E.L.Loftus:
1996.

Eyewitness testimony, Harvard University Press

Joan M. Lucas: The rotation graph of binary trees is hamiltonian,
J. Algorithms 8,4 (1987) 503-535.

J.M. Lucas, D. Roelants van Baronaigien, F. Ruskey: On Ro-
tations and the Generation of Binary Trees, J. Algorithms 15,3
(1993) 343-366.

N.J.Mackintosh: IQ and human Intelligence, Oxford University
Press 1998.

B.D. McKay: Isomorph-free exhaustive generation, J. Algorithms
26,2 (1998) 306-324.

Marvin L. Minsky: Finite and infinute machines, Prentice-Hall
1967.

A. Newell & P.S. Rosenbloom: Mechanisms of skill acquisition
and the law of practice, 1-55 in J. Anderson (ed.) Cognitive Skills
and Their Acquisition, Lawrence Erlbaum Associates, Hillsdale,
NJ 1981.

B.Pakkenberg & 6 others: Aging and the human neocortex, Exp’l.
Gerontology 38 (2003) 95-99; B.Pakkenberg & H.J.G.Gundersen:
Neocortical neuron number in humans: effect of sex and age, J.
Comparative Neurology 384 (1997) 312-320.

March 2006

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

Christos H. Papadimitriou: Computational Complexity, Addison
Wesley 1994.

Elaine Rich & Kevin Knight: Artificial Intelligence (2nd ed.) Mc-
Graw Hill 1991.

P.S. Rosenbloom, J.E. Laird, A. Newell: The chunking of skill
and knowledge, 391-410 in Working models of human perception
(B.A.G. Elsendoorn & H. Bouma eds.) Academic Press 1989.

Stuart J, Russell & Peter Norvig: Artificial Intelligence: A Mod-
ern Approach, (2nd Edition) Prentice-Hall 2003.

Carla Savage: A survey of combinatorial Gray codes, SIAM Re-
view 39,4 (1997) 605-629.

Jerome M. Siegel: Why we sleep, Scientific American (Nov. 2003)
92-97.

Jerome M. Siegel: Clues to the functions of mammalian sleep,
Nature 437 (2005) 1264-1271.

R.S. Siegler & M.W.Alibali:
Prentice-Hall 2005.

Children’s thinking (4th ed.),

M.Sipser: A Complexity theoretic approach to randomness, Pro-
ceedings 15th ACM Symposium on Theory of Computing STOC
(1983) 330-335.

Michael Sipser: Introduction to the Theory of Computation, PWS
publishers 1997.

W.D.Smith: Information content of human intelligence and life,
http://math.temple.edu/~wds/homepage/works.html #94.

W.D.Smith: Mathematical definition of intelligence (and conse-
quences), http://math.temple.edu/~wds/homepage/works.html
#93.

Ray Solomonoff: The Universal Distribution and Machine Learn-
ing, The Computer Journal 46,6 (Nov. 2003) 598-601.

Ray Solomonoff: Three Kinds of Probabilistic Induction: Uni-
versal Distributions and Convergence Theorems, To appear in
Festschrift for Chris Wallace.

Ray Solomonoff: Progress in Incremental Machine Learning; Re-
vision 2.0, 30 Oct. 2003, Given at NIPS Workshop on Univer-
sal Learning Algorithms and Optimal Search, Dec. 14, 2002,
Whistler, B.C., Canada.

Ray Solomonoff: Two Kinds of Probabilistic Induction, The Com-
puter Journal 42,4 (1999) 256-259.

Ray Solomonoff: A Formal Theory of Inductive Inference, I: In-
formation and Control 7,1 (1964) 1-22; II: 7,2 (1964) 224-254.
[All of these Solomonoff papers are available on his web page
http://world.std.com/~rjs/pubs.html.]

Norman E. Spear & David C. Riccio: Memory phenomena and
principles, Allyn & Bacon 1994.

Charles Spearman: “General Intelligence,” objectively determined
and measured, American J. Psychology 15 (1904) 201-293.

Louis L. Thurstone: Vectors of the mind, 1935, Thurstone later
redid and expanded this book as Multiple Factor Analysis 1947
(both University of Chicago Press).

A.M.Turing: Computing machinery and intelligence, Mind 59
(Oct. 1950) 433-460.

A.M.Turing: On Computable Numbers, With an Application to
the Entscheidungsproblem, Proc. London Math. Soc. 2,42 (1936)
230-265; 43 (1937) 544-546.

Patrick H. Winston: Artificial Intelligence, Addison-Wesley (now
3rd Edition) 1992.

Eugene B. Zechmeister & Stanley E. Nyberg: Human memory,
Brooks/Cole 1982.

11. 0. 0

