
Discrete Comput Geom (2011) 45: 596–616
DOI 10.1007/s00454-011-9340-1

k-means Requires Exponentially Many Iterations
Even in the Plane

Andrea Vattani

Received: 30 June 2009 / Revised: 29 November 2009 / Accepted: 7 December 2009 /
Published online: 23 March 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract The k-means algorithm is a well-known method for partitioning n points
that lie in the d-dimensional space into k clusters. Its main features are simplicity
and speed in practice. Theoretically, however, the best known upper bound on its
running time (i.e., nO(kd)) is, in general, exponential in the number of points (when
kd = Ω(n/ logn)). Recently Arthur and Vassilvitskii (Proceedings of the 22nd An-
nual Symposium on Computational Geometry, pp. 144–153, 2006) showed a super-
polynomial worst-case analysis, improving the best known lower bound from Ω(n)

to 2Ω(
√

n) with a construction in d = Ω(
√

n) dimensions. In Arthur and Vassilvitskii
(Proceedings of the 22nd Annual Symposium on Computational Geometry, pp. 144–
153, 2006), they also conjectured the existence of super-polynomial lower bounds for
any d ≥ 2.

Our contribution is twofold: we prove this conjecture and we improve the lower
bound, by presenting a simple construction in the plane that leads to the exponential
lower bound 2Ω(n).

Keywords k-means · Local search · Lower bounds

1 Introduction

The k-means method is one of the most widely used algorithms for geometric clus-
tering. It was originally proposed by Forgy in 1965 [7] and McQueen in 1967 [13],
and is often known as Lloyd’s algorithm [12]. It is a local search algorithm and par-
titions n data points into k clusters in this way: seeded with k initial cluster centers,
it assigns every data point to its closest center, and then recomputes the new centers

A preliminary version of this paper appeared in SoCG 2009 [16].

A. Vattani (�)
University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
e-mail: avattani@ucsd.edu

mailto:avattani@ucsd.edu

Discrete Comput Geom (2011) 45: 596–616 597

as the means (or centers of mass) of their assigned points. This process of assigning
data points and readjusting centers is repeated until it stabilizes.

Despite its age, k-means is still very popular today and is considered “by far the
most popular clustering algorithm used in scientific and industrial applications”, as
Berkhin remarks in his survey on data mining [5]. Its widespread usage extends over a
variety of different areas, such as artificial intelligence, computational biology, com-
puter graphics, just to name a few (see [1, 8]). It is particularly popular because of its
simplicity and observed speed: as Duda et al. say in their text on pattern classification
[6], “In practice the number of iterations is much less than the number of samples”.

Even if, in practice, speed is recognized as one of k-means’ main qualities (see
[11] for empirical studies), there are a few theoretical bounds on its worst-case run-
ning time and they do not corroborate this feature.

An upper bound of O(kn) can be trivially established since it can be shown that no
clustering occurs twice during the course of the algorithm. Inaba et al. [10] improved
this bound to nO(kd) by counting the number of Voronoi partitions of n points in R

d

into k classes. Other bounds are known for the special case d = 1. Namely, for the
one-dimensional case, Har-Peled and Sadri [9] provided a worst-case lower bound of
Ω(n), and showed an upper bound of O(nΔ2), where Δ is the spread of the point
set (i.e., the ratio between the largest and the smallest pairwise distance). They also
conjectured that k-means might run in time polynomial in n and Δ for any d .

The upper bound nO(kd) for the general case has not been improved since more
than a decade, and this suggests that it might be not far from the truth. Arthur and
Vassilvitskii [2] showed that k-means can run for super-polynomially many iterations,
improving the best known lower bound from Ω(n) [10] to 2Ω(

√
n). Their construc-

tion lies in a space with d = Θ(
√

n) dimensions, and they leave an open question
about the performance of k-means for a smaller number of dimensions d , conjectur-
ing the existence of superpolynomial lower bounds when d > 1. Also they show that
their construction can be modified to have low spread, disproving the aforementioned
conjecture in [9] for d = Ω(

√
n).

A more recent line of work that aims to close the gap between practical and the-
oretical performance makes use of the smoothed analysis introduced by Spielman
and Teng [15]. Arthur and Vassilvitskii [3] proved a smoothed upper bound of nO(k),
which was later improved to nO(

√
k) by Manthey and Röglin [14]. Very recently,

Arthur et al. [4] settled the smoothed running time of k-means, showing that if an
arbitrary input data set is randomly perturbed, then k-means will run in expected
polynomial time.

1.1 Our Result

In this work, we are interested in the performance of k-means in a low dimensional
space. We said it is conjectured [2] that there exist instances in d dimensions for any
d ≥ 2, for which k-means runs for a super-polynomial number of iterations.

Our main result is a construction in the plane (d = 2) for which k-means requires
exponentially many iterations to stabilize. Specifically, we present a set of n data
points lying in R

2, and a set of k = Θ(n) adversarially chosen cluster centers in R
2,

for which the algorithm runs for 2Ω(n) iterations. This proves the aforementioned

598 Discrete Comput Geom (2011) 45: 596–616

conjecture and, at the same time, it also improves the best known lower bound from
2Ω(

√
n) to 2Ω(n). Notice that the exponent is optimal disregarding logarithmic factor,

since the bound for the general case nO(kd) can be rewritten as 2O(n logn) when d = 2
and k = Θ(n). For any k = o(n), our lower bound easily translates to 2Ω(k), while
the upper bound is 2O(k logn).

A common practice for seeding k-means is to choose the initial centers as a subset
of the data points. We show that even in this case (i.e., cluster centers adversarially
chosen among the data points), the running time of k-means remains exponential.

Also, using a result in [2], our construction can be modified to an instance in
d = 3 dimensions having low spread for which k-means requires 2Ω(n) iterations,
which disproves the conjecture of Har-Peled and Sadri [9] for any d ≥ 3.

Finally, we observe that our result implies that the smoothed analysis helps even
for a small number of dimensions. In other words, perturbing each data point and
then running k-means would improve (even exponentially) the performance of the
algorithm.

2 The k-Means Algorithm

The k-means algorithm partitions a set X of n points in R
d into k clusters. It is seeded

with any initial set of k cluster centers in R
d , and given the cluster centers, every data

point is assigned to the cluster whose center is closest to it. The name “k-means”
refers to the fact that the new position of a center is computed as the center of mass
(or mean point) of the points assigned to it.

A formal definition of the algorithm is the following:

0. Arbitrarily choose k initial centers c1, c2, . . . , ck .
1. For each 1 ≤ i ≤ k, set the cluster Ci be the set of points in X that are closer to ci

than to any cj with j �= i.
2. For each 1 ≤ i ≤ k, set ci = 1

|Ci |
∑

x∈Ci
x, i.e., the center of mass of the points

in Ci .
3. Repeat Steps 1 and 2 until the clusters Ci and the centers ci do not change any-

more. The partition of X is the set of clusters C1,C2, . . . ,Ck .

Note that the algorithm might encounter two possible “degenerate” situations: the
first one is when no points are assigned to a center, and in this case that center is
removed and we will obtain a partition with fewer than k clusters. The other degen-
eracy is when a point is equally close to more than one center, and in this case the tie
is broken arbitrarily.

We stress that when k-means runs on our constructions, it does not fall into any of
these situations, so the lower bound does not exploit these degeneracies.

Our construction uses points that have constant integer weights. This means
that the data set that k-means will take as input is actually a multiset, and
the center of mass of a cluster Ci (that is Step 2 of k-means) is computed as∑

x∈Ci
wxx/

∑
x∈Ci

wx , where wx is the weight of x. This is not a restriction since
integer weights in the range [1,C] can be simulated by blowing up the size of the
data set by at most C: it is enough to replace each point x of weight w with a set

Discrete Comput Geom (2011) 45: 596–616 599

of w distinct points (of unitary weight) whose center of mass is x, and so close to
each other that the behavior of k-means (as well as its number of iterations) is not
affected. This is possible because when k-means runs on our construction a point
is never equally close to more than one center; therefore, all data points have some
“slack”.

3 Lower Bound

In this section, we present a construction in the plane for which k-means requires
2Ω(n) iterations. We start with some high level intuition of the construction, then
we give some definitions explaining the idea behind the construction, and finally we
proceed to the formal proof.

At the end of the section, we show a couple of extensions: the first one is a mod-
ification of our construction so that the initial set of centers is a subset of the data
points, and the second one describes how to obtain low spread.

A simple implementation in Python of the lower bound is available at the web
address supplied at [17].

3.1 High Level Intuition

The idea behind our construction is simple and can be related to the saying “Who
watches the watchmen?” (or the original Latin phrase “Quis custodiet ipsos cus-
todes?”).

Consider a sequence of t watchmen W0,W1, . . . ,Wt−1. A “day” of a watchman
Wi (i > 0) can be described as follows (see Fig. 1): Wi watches Wi−1, waking it
up once it falls asleep, and does so twice; afterwards, Wi falls asleep itself. The
watchman W0 instead will simply fall asleep directly after it has been woken up. We
observe that the days of the watchmen are not synchronized. Now if we begin with a
configuration where each watchman is awake (or even just Wt−1), it is clear that W0
will be woken up 2Ω(t) times by the time that every watchman is asleep.

In the construction, we have a sequence of gadgets G0, G1, . . . , Gt−1, where all
gadgets Gi with i > 0 are identical up to a uniform scale factor. Any gadget Gi (i > 0)
has a fixed number of points and two centers, and Gi ’s state (stage of the day) is
determined by the partition of its points induced by the current set of clusters. The
clustering indicating that Gi “fell asleep” has one center in a particular position S∗

i .
This position S∗

i is not an input point, but rather a distinguished point in the plane.

Fig. 1 The “day” of the watchman Wi , i > 0

600 Discrete Comput Geom (2011) 45: 596–616

In the situation when Gi+1 is awake and Gi falls asleep, some points of Gi+1 will
be assigned temporarily to the center of Gi located in S∗

i ; in the next step this center
will move so that in one more step the initial clustering (or “morning clustering”) of
Gi is restored: this models the fact that Gi+1 wakes up Gi .

Note that since each gadget has a constant number of centers, we can build an
instance with k clusters that has t = Θ(k) gadgets, for which k-means will require
2Ω(k) iterations. Also since each gadget has a constant number of points, we can build
an instance of n points and k = Θ(n) clusters with t = Θ(n) gadgets. This will imply
a lower bound of 2Ω(n) on the running time of k-means.

3.2 Definitions and Further Intuition

For any i > 0, the gadget Gi is a tuple (Pi , Ti , ri ,Ri) where each Pi ⊂ R
2 is a set of

seven weighted points {Pi,Qi,Ai,Bi,Ci,Di,Ei}, while Ti is the set of initial centers
of the gadget Gi and contains exactly two centers. Finally, ri ∈ R

+ and Ri ∈ R
+

denote respectively the “inner radius” and the “outer radius” of the gadget, and their
purpose will be explained later. Since the weights of the points do not change between
the gadgets, we will denote the weight of Pi (for any i > 0) with wP , and similarly
for the other points.

As for the “leaf” gadget G0, the set P0 is composed of only one point F (of con-
stant weight wF), and T0 contains only one center.

The set of points of the k-means instance will be the union of the (weighted)
points from all the gadgets, i.e.,

⋃t−1
i=0 Pi (with a total of 7(t − 1) + 1 = O(t) points

of constant weight). Similarly, the set of initial centers will be the union of the centers
from all the gadgets, that is,

⋃t−1
i=0 Ti (with a total of 2(t − 1) + 1 = O(t) centers).

As we mentioned above, when one of the centers of Gi moves to a special location
called S∗

i , it will mean that Gi has fallen asleep. For i > 0 we define S∗
i as the center

of mass of the subset {Ai,Bi,Ci,Di} of Pi , while S∗
0 coincides with F . We stress

that, for i > 0, S∗
i is not a point of the gadget Gi , but rather a special location in the

plane.
For a gadget Gi (i > 0), we depict the stages (clusterings) it goes through during

any of its day. The entire sequence is shown in Fig. 2.

MORNING

This stage takes place right after Gi has been woken up or in the beginning of
the entire process. The singleton {Ai} is one cluster, and the remaining points
{Bi,Ci,Di,Ei,Pi,Qi} form the other cluster. In this configuration, Gi is watching
Gi−1 and intervenes once it falls asleep.

FIRST CALL

Once Gi−1 falls asleep, Pi will join the cluster of Gi−1 cluster with center at S∗
i−1

(Part I). At the next step (Part II), Qi too will join that cluster, and Bi will instead
move to the cluster {Ai}. The two points Pi and Qi are waking up Gi−1 by causing a
restoration of its morning clustering, as we will explain later.

Discrete Comput Geom (2011) 45: 596–616 601

Fig. 2 The “day” of the gadget Gi . The diamonds denote the centers of the clusters. The locations of the
points in figure give an idea of the actual gadget used in the proof. Also, the bigger the size of a point, the
greater its weight

AFTERNOON

The points Pi , Qi and Ci will join the cluster {Ai,Bi}. Thus, Gi ends up with the
clusters {Ai,Bi,Ci,Pi,Qi} and {Di,Ei}. In this configuration, Gi is again watching
Gi−1 and is ready to wake it up once it falls asleep.

SECOND CALL

Once Gi−1 falls asleep, similarly to the first call, Pi will join the cluster of Gi−1 with
center at S∗

i−1 (Part I). At the next step (Part II), Qi too will join that cluster, and
Di will join the cluster {Ai,Bi,Ci} (note that the other cluster of Gi is the singleton
{Ei}). Again, Pi and Qi are waking up Gi−1.

NIGHT

At this point, the cluster {Ai,Bi,Ci,Di} is already formed, which implies that its
mean is located in S∗

i : thus, Gi is sleeping. However, note that Pi and Qi are still in
some cluster of Gi−1 and the remaining point Ei is in a singleton cluster. In the next
step, concurrently with the beginning of a possible call from Gi+1 (see Gi+1’s call,
Part I), the points Pi and Qi will join the singleton {Ei}.

The two radii of each gadget Gi (i > 0) can be interpreted in the following way.
Whenever Gi is watching Gi−1 (either morning or afternoon), the distance between
the point Pi and its center will be exactly Ri . On the other hand, the distance between
Pi and S∗

i−1 – where one of the centers of Gi−1 will move when Gi−1 falls asleep—
will be just a bit less than Ri . In this way, we guarantee that the waking-up process

602 Discrete Comput Geom (2011) 45: 596–616

Fig. 3 Gi+1’S CALL: how Gi+1 wakes up Gi . The distance between the two gadgets is actually much
larger than it appears in the figure

will start at the right time. Also, we know that this process will involve Qi too, and
we want the center that was originally in S∗

i−1 to end up at distance more than ri

from Pi . In that step, a center of Gi will be at distance exactly ri from Pi , and thus Pi

(and Qi too) will come back to one of the clusters of Gi .
Now we analyze the waking-up process from the point of view of the sleeping

gadget. We suppose that Gi (i > 0) is sleeping and that Gi+1 wants to wake it up. The
sequence is shown in Fig. 3.

Gi+1’S CALL

Suppose that Gi+1 started to wake up Gi . Then, we know that Pi+1 joined the cluster
{Ai,Bi,Ci,Di} (Part I). However, this does not cause any point from this cluster to
move to other clusters. On the other hand, as we said before, the points Pi and Qi will
“come back” to Gi by joining the cluster {Ei}. At the next step (Part II), Qi+1 too will
join the cluster {Ai,Bi,Ci,Di,Pi+1}. The new center will be in a position such that,
in one more step (Part III), Bi,Ci and Di will move to the cluster {Pi,Qi,Ei}. Also
we know that at that very same step, Pi+1 and Qi+1 will come back to some cluster
of Gi+1: this implies that Gi will end up with the clusters {Bi,Ci,Di,Ei,Pi,Qi} and
{Ai}, which is exactly the morning clustering: Gi has been woken up.

As for the “leaf” gadget G0, we said that it will fall asleep right after it has been
woken up by G1. Thus we can describe its day in the following way.

Discrete Comput Geom (2011) 45: 596–616 603

G0’S NIGHT

There is only one cluster which is the singleton {F }. The center is obviously F which
coincides with S∗

0 . In this configuration, G0 is sleeping.

G1’S CALL

The point P1 from G1 joins the cluster {P0} and in the next step Q1 will join the same
cluster, too. After one more step, both P1 and Q1 will come back to some cluster
of G1, which implies that the cluster of G0 is the singleton {F } again. Thus G0, after
having been temporarily woken up, falls asleep again.

3.3 Formal Construction

We start giving the distances between the points in a single gadget (intra-gadget). Af-
terwards, we will give the distances between two consecutive gadgets (inter-gadget).
Henceforth xAi

and yAi
will denote respectively the x-coordinate and y-coordinate

of the point Ai , and analogous notation will be used for the other points. Also, for a
set of points S , we define its total weight

wS =
∑

x∈S
wx,

and its mean

μ(S) = 1

wS

∑

x∈S
wx · x.

Observe that the total weight wS is a scalar, while the mean μ(S) is a point in the
plane. As we will see in Sect. 3.4, the values assigned to wP ,wQ,wA, . . . in our
construction will be positive integers with the property that wA = wB and wF =
wA + wB + wC + wD .

We start describing the distances between points for a non-leaf gadget. For sim-
plicity, we start defining the location of the points for an hypothetical “unit” gadget Ĝ
that has unitary inner radius (i.e., r̂ = 1) and is centered in the origin (i.e., P̂ = (0,0)).
Then we will see how to define a gadget Gi (for any i > 0) in terms of the unit gad-
get Ĝ .

The outer radius is defined as R̂ = (1 + δ) and also we let the point Q̂ be Q̂ =
(λ,0). The values 0 < δ < 1 and 0 < λ < 1 are constants whose exact values will be
assigned later. The point Ê is defined as Ê = (0,1).

The remaining points are aligned on the vertical line with x-coordinates equal to 1.
Formally,

xÂ = xB̂ = xĈ = xD̂ = 1.

As for the y-coordinates, we set yÂ = −1/2 and yB̂ = 1/2.
The value yĈ is uniquely defined by imposing yĈ > 0 and that the mean of the

cluster M = {Â, B̂, Ĉ, P̂ , Q̂} is at distance R̂ from P̂ . Thus, we want positive yĈ

that satisfies the equation ‖μ(M)‖ = R̂, which can be rewritten as

604 Discrete Comput Geom (2011) 45: 596–616

(
wA + wB + wC + wQλ

wM

)2

+
(

wCyĈ

wM

)2

= (1 + δ)2,

where we used the fact that wAyÂ + wByB̂ = 0 when wA = wB . The first and the
second term on the L.H.S. of the above equality correspond respectively to the x-
coordinate and to the y-coordinate of μ(M).

We easily obtain the solution

yĈ = 1

wC

√
(
wM(1 + δ)

)2 − (wA + wB + wC + wQλ)2.

Note that the value under the square root is always positive because λ < 1.
It remains to set yD̂ . Its value is uniquely defined by imposing yD̂ > 0 and that

the mean of the cluster N = {B̂, Ĉ, D̂, Ê, P̂ , Q̂} is at distance R̂ from P̂ . Analo-
gously to the previous case, yD̂ is the positive value satisfying ‖μ(N)‖ = R̂, which
is equivalent to

(1 + δ)2 =
(

wB + wC + wD + wQλ

wN

)2

+
(

wDyD̂ + wB(1/2) + wCyĈ + wE

wN

)2

.

Now, since the equation a2 + (b + x)2 = c2 has the solutions x = ±√
c2 − a2 − b,

we obtain the solution

yD̂ = 1

wD

√
(
wN (1 + δ)

)2 − (wB + wC + wD + wQλ)2 − wB/2 − wCyĈ − wE.

Again, the term under the square root is always positive.
Finally, we define Ŝ∗ = μ{Â, B̂, Ĉ, D̂}.
Now consider a gadget Gi with i > 0. Suppose we have fixed the inner radius ri

and the center Pi . Then we have the outer radius Ri = (1 + δ)ri , and we define the
location of the points in terms of the unit gadget by scaling of ri and translating by
Pi in following way: Ai = Pi + riÂ, Bi = Pi + riB̂ , and so on for the other points.

As for the gadget G0, there are no intra-gadget distances to be defined, since it has
only one point F .

For any i > 0, the intra-gadget distances in Gi have been defined (as a function
of Pi , ri , δ and λ). Now we define the (inter-gadget) distances between the points of
two consecutive gadgets Gi and Gi+1, for any i ≥ 0. We do this by giving explicit
recursive expressions for ri and Pi .

For a point Ẑ ∈ {Â, B̂, Ĉ, D̂}, we define the “stretch” of Ẑ (from Ŝ∗ with respect
to μ{Ê, P̂ , Q̂}) as

σ(Ẑ) =
√

d2
(
Ẑ,μ{Ê, P̂ , Q̂}) − d2(Ẑ, Ŝ∗),

where d(·, ·) denotes the Euclidean distance between two points. The stretch will
be a real number (for all points Â, B̂, Ĉ, D̂), given the values λ, δ and the weights
used in the construction. The values of the stretches will be used to characterize the
reassignments of the points Ai , Bi , Ci , and Di when the gadget Gi+1 is waking up
the (sleeping) gadget Gi . Specifically, consider the cluster S = {Ai,Bi,Ci,Di} with

Discrete Comput Geom (2011) 45: 596–616 605

center in S∗
i . As we will see later, for a point Z ∈ S , σ(Z) denotes how much the

center of S can be “pulled” by the (points of the) gadget Gi+1 before Z switches to
another cluster.

We set the inner radius r0 of the leaf gadget G0 to a positive arbitrary value, and
for any i ≥ 0, we define

ri+1 = ri

1 + δ

wF + wP + wQ

wP + (1 + λ)wQ

σ(Â), (1)

where we recall that wF = wA +wB +wC +wD . Note that the ratio ri+1/ri between
the radii does not depend on i.

Recall that S∗
i = μ{Ai,Bi,Ci,Di} for any i > 0, and S∗

0 = μ{F } = F . Assuming
we have fixed the point F somewhere in the plane, we define for any i > 0

xPi
= xS∗

i−1
+ Ri(1 − ε) = xS∗

i−1
+ ri(1 + δ)(1 − ε) (2)

and

yPi
= yS∗

i−1
,

where 0 < ε < 1 is some constant to define. Note that now the instance is completely
defined as a function of λ, δ, ε and the weights. Their values are still undefined and
will be defined in Sect. 3.4. We are now ready to prove the lower bound.

3.4 Proof

We assume that the initial centers—that we seed k-means with—correspond to the
means of the “morning clusters” of each gadget Gi with i > 0. Namely, the initial
centers are μ{Ai}, μ{Bi,Ci,Di,Ei,Pi,Qi} for all i > 0, in addition to the center
μ{F } = F for the leaf gadget G0.

In order to establish our result, it is enough to show that there exist positive integer
values wA, wB , wC , wD , wE , wF , wP , wQ (with wA = wB) and values for λ, δ and
ε, such that the behavior of k-means on the instance reflects exactly the clustering
transitions described in Sect. 3.2.

3.4.1 Chosen Values

The chosen values (as well as other derived values used later in the analysis) are given
in Table 1. Also wF = wA + wB + wC + wD = 50. The use of rational weights is
no restriction because the mean of a cluster (as well as k-means’ behavior) does not
change if we multiply the weights of its points by the same factor—in our case it is
enough to multiply all the weights by 100 to obtain integer weights.

Recalling that ri/Ri+1 is a constant by (1), we impose the value ε to be

0 < ε < min

{
1

2

(
ri

Ri+1
d(Ŝ∗, Ĉ)

)2

,
σ (Â) − σ(B̂)

σ (Â)
,

λ

1 + δ
,

1 − 1 + λ

1 + δ

(

1 + wP + wQ

wF

)}

.

606 Discrete Comput Geom (2011) 45: 596–616

Table 1 The relation
 denotes the less-or-equal component-wise relation

Values Unit gadget

δ = 0.025 r̂ = 1

λ = 10−5 R̂ = (1 + δ) = 1.025

wP = 1 P̂ = (0,0)

wQ = 10−2 Q̂ = (λ,0) = (10−5,0)

wA = 4 Â = (1,−0.5)

wB = 4 B̂ = (1,0.5)

wC = 11 (1,0.70223)
 Ĉ
 (1,0.70224)

wD = 31 (1,1.35739)
 D̂
 (1,1.3574)

wE = 274 Ê = (0,1)

wF = 50 (1,0.996)
 Ŝ∗
 (1,0.9961)

Clusters used in the proof

N = {Bi,Ci ,Di ,Ei ,Pi ,Qi } N ′ = {Bi,Ci ,Di ,Ei ,Qi }
N ′′ = {Ci,Di,Ei } N ′′′ = {Di,Ei }
M = {Ai,Bi ,Ci ,Pi ,Qi } M′ = {Ai,Bi ,Ci ,Qi }
C =

{
{Ai−1,Bi−1,Ci−1,Di−1}, i > 1

{F }, i = 1
C′ = C ∪ {Pi,Qi }

S = {Ai,Bi ,Ci ,Di } S ′ = {Ai,Bi ,Ci ,Di ,Pi+1}
S ′′ = {Ai,Bi ,Ci ,Di ,Pi+1,Qi+1}
Derived values used in the proof

(0.1432,1.0149)
 N = μ(N)
 (0.144,1.015)

(0.9495,0.386)
 M = μ(M)
 (0.9496,0.3861)

1.00312 ≤ α ≤ 1.00313

1.0526 ≤ β ≤ 1.05261

1.0003 ≤ σ(Â) ≤ 1.0004

1.0001 ≤ σ(B̂) ≤ 1.0002

1 ≤ σ(Ĉ) ≤ 1.0001

0.9999 ≤ σ(D̂) ≤ 0.99992

0.99 ≤ γ ≤ 0.99047

All the terms on the right hand side of the above are clearly positive except for the
last one. In order to show that even the last term is indeed positive, we observe that
(1 + δ)/(1 + λ) = 1 + (δ − λ)/(1 + λ). Therefore, the term can be rewritten as

1 −
(

1 + wP + wQ

wF

)(

1 + δ − λ

1 + λ

)−1

,

which is positive when (δ − λ)/(1 + λ) > (wP + wQ)/wF . This last inequality can
be verified by plugging in the values from Table 1.

Discrete Comput Geom (2011) 45: 596–616 607

3.4.2 Stage-by-Stage Proof

Throughout the proof, we will say that a point Z in a cluster C is stable with respect
to (w.r.t.) another cluster C′, if d(Z,μ(C)) < d(Z,μ(C′)). Similarly, a point Z in a
cluster C is stable if Z is stable w.r.t. any C′ �= C . Similar definitions of stability extend
to a cluster or clustering if the stability holds for all the points in the cluster or all the
clusters in the clustering.

Consider any stage of a gadget Gi (i > 1) and any stage of Gi+1. We observe that
a point of Gi is always stable w.r.t. any cluster of Gi+1 since the distance from this
point to its center is always at most 2ri , while its distance to any Gi+1’s center is at
least

d(Pi+1, S
∗
i) = ri+1(1 − ε)

= ri
1 − ε

1 + δ

wF + wP + wQ

wP + (1 + λ)wQ

σ(Â)

> ri
1

1 + δ

(

1 − σ(Â) − σ(B̂)

σ (Â)

)
wF + wP + wQ

wP + (1 + λ)wQ

σ(Â)

= ri
1

1 + δ

wF + wP + wQ

wP + (1 + λ)wQ

σ(B̂) > 49ri,

where we used (1)–(2) and the assumption on ε (also refer to Figs. 2 and 3.) There-
fore, in proving stability of a point (or cluster) of Gi , it will be enough to prove its
stability w.r.t. to clusters of Gi and Gi−1.

Note that the previous argument implies that a point of a gadget Gi is never as-
signed to a cluster of Gi+1. On the contrary, we recall that points of Gi are indeed
assigned to clusters of Gi−1 (during the waking-up process). Finally, we observe that
points of Gi are never assigned to a cluster of Gj with i − j ≥ 2 because by construc-
tion these points are always closer to some center of Gi or Gi−1 than to any center
of Gj . Specifically, consider any point Z ∈ R

2 with xZ ≤ xS∗
i−1

. In any stage of the
gadget Gi , the points Ai,Bi,Ci,Di are at distance at most 1.5ri from their (Gi ’s)
centers, while their distance from Z (and hence to any point of any Gj , j < i) is at
least 2ri . As for the point Ei , its distance from its (Gi ’s) center is always less than
0.5ri (thanks to its large weight), while its distance from Z is at least ri . Observe
that this means that all the points Ai,Bi,Ci,Di,Ei are never assigned to centers not
belonging to Gi . Finally, for Pi (resp., Qi), there is always a center of Gi or Gi−1 at
distance at most (1 − ε)Ri (resp., at most (1 − ε)Ri + λri) from it, while its distance
to any center of Gj with i − j ≥ 2 is at least (1 − ε)Ri + 2(1 − ε)Ri−1 (resp., at least
(1 − ε)Ri + λri + 2(1 − ε)Ri−1). Therefore, we can conclude that gadgets Gi and Gj

with |i − j | ≥ 2 cannot interfere.
For the proof, we will consider an arbitrary gadget Gi with i > 0 in any stage of its

day (some clustering), and we will show that the steps that k-means goes through are
exactly the ones described in Sect. 3.2 for that stage of the day (for the chosen values
of λ, δ, ε and weights). For the sake of convenience and w.l.o.g, we assume that Gi

has unitary inner radius (i.e., ri = r̂ = 1 and Ri = R̂ = (1 + δ)) and that Pi is in the
origin (i.e., Pi = (0,0)).

608 Discrete Comput Geom (2011) 45: 596–616

MORNING

We need to prove that the morning clustering of Gi is stable assuming that Gi−1 is
not sleeping. Note that this assumption implies that i > 1 since the gadget G0 is
always sleeping when G1 is in the morning. The singleton cluster {Ai} is trivially
stable. Therefore, we just need to show that N = {Bi,Ci,Di,Ei,Pi,Qi} is stable
w.r.t. to {Ai} and any cluster of Gi−1. In order to prove the stability of N w.r.t. {Ai},
it suffices to show that Bi , Qi and Pi are stable w.r.t. {Ai} since the other points
in N are further away from Ai . As for the stability of N w.r.t. a cluster of Gi−1,
observe that it is enough to show that Pi is stable w.r.t. that cluster because the points
Bi,Ci,Di,Qi are further away from any center of Gi−1, while Ei is very close to
its center (refer to Fig. 2, Morning, and values in Table 1). Letting N = μ(N) and
recalling wN = 321.01, we have

xN = wB + wC + wD + λwQ

wN
= 46.0000001

321.01
≈ 0.1433,

and

yN =
√

(1 + δ)2 − x2
N ≈ 1.0149.

We have that N has a distance of R̂ = (1 + δ) from the origin Pi by construction.
Thus, the point Pi is stable w.r.t. {Ai} since

d(Pi,N) = R̂ = (1 + δ) <
√

12 + (0.5)2 = d(Pi,Ai).

To prove the same for Qi , note that

d(Qi,Ai) =
√

(1 − λ)2 + (0.5)2 > R̂,

while, on the other hand, xN > xQi
implies d(Qi,N) < d(Pi,N) = R̂.

As for Bi , we have

d2(Bi,N) = (xB − xN)2 + (yB − yN)2

= ‖Bi‖2 + R̂ 2 − 2(xNxBi
+ yNyBi

).

With ‖B̂‖2 = 5/4, the inequality d(Bi,N) < d(Bi,Ai) = 1 simplifies to 5/4 + R̂ 2 −
2xN − yN < 1, which can be checked to be valid.

It remains to prove that Pi is stable w.r.t. any of Gi−1’s clusters. We observe that,
in any stage of Gi−1’s day different from the night, one of Gi−1’s centers has x-
coordinate and y-coordinate at most xCi−1 and less than yCi−1 , respectively, while
the other center has x-coordinate at most yPi−1 + ri−1(wB + wC + wD)/wE <

yPi−1 +0.17ri−1 = yCi−1 −0.83ri−1 (refer to Fig. 2 and Table 1.) Taking into account
that d(S∗

i−1,Ci−1) < 0.3ri−1 < 0.83ri−1 and that yS∗
i−1

= yPi
, the above observation

implies that the distance from Pi to any center of Gi−1 is more than the distance from
Pi to Ci−1. Using (2) and recalling that xCi−1 = xS∗

i−1
, Pythagorean theorem yields

Discrete Comput Geom (2011) 45: 596–616 609

d2(Pi,Ci−1) = (xPi
− xS∗

i−1
)2 + d2(S∗

i−1,Ci−1)

= R2
i (1 − ε)2 + r2

i−1d
2(Ŝ∗, Ĉ).

Thus, a sufficient condition for the inequality d2(Pi,Ci−1) > R2
i = d2(Pi,N) is

2εR2
i < r2

i−1d
2(Ŝ∗, Ĉ),

or

ε <
1

2

(
ri−1

Ri

d(Ŝ∗, Ĉ)

)2

,

which is true by the assumption on ε.

FIRST CALL

We start by analyzing Part I of this stage. Since we are assuming that Gi−1 is sleeping,
there must be some cluster C of Gi−1 with center in S∗

i−1. Specifically,

C =
{{

{Ai−1,Bi−1,Ci−1,Di−1}, if i > 1,

{F }, if i = 1.

Note that, in both cases, wC = 50. By (2), we have d(Pi, S
∗
i−1) < Ri , and so Pi will

join C . We claim that Qi is instead stable, i.e., d(Qi,N) < d(Qi, S
∗
i−1); this implies

that all other points of Gi are stable as well. We already know that d(Qi,N) < R̂, so
we show d(Qi, S

∗
i−1) > R̂. Using (2), we have

d(Qi, S
∗
i−1) = R̂(1 − ε) + λr̂ > R̂,

which holds since ε < λ/(1 + δ).
We now analyze the next iteration, i.e., Part II of this stage. We claim that Qi

will join C ∪ {Pi}, and Bi will join {Ai}. To establish the former, we show that (a)
d(Qi,μ(C ∪ {Pi})) < R̂ and that (b) d(Qi,μ(N ′)) > R̂ where N ′ = N − {Pi} =
{Bi,Ci,Di,Ei,Qi}. For (a) observe that

d
(
Qi,μ

(
C ∪ {Pi}

)) = λ + d
(
Pi,μ

(
C ∪ {Pi}

)) = λ + d
(
Pi,μ(C)

)
(1 − wP /wC)

= λ + Ri(1 − ε)(1 − wP /wC) < Ri + λ − RiwP /wC

< R̂ + λ − wP /wC < R̂,

where we used (2), and the last step follows by plugging in the values λ = 10−5,
wP = 1 and wC = 50. As for (b), since Pi is in the origin we can write N ′ = αN with
α = wN /wN ′ . Thus, the inequality we are interested in is

(λ − αxN)2 + (αyN)2
︸ ︷︷ ︸

d2(Qi,μ(N ′))

> R̂ 2.

610 Discrete Comput Geom (2011) 45: 596–616

Using the fact that x2
N + y2

N = R̂ 2 and dropping a minor term of λ2, we get to the
inequality (α2 − 1)R̂ 2 > 2λαxN . Observe that α > 1 implies α2 > α. Using this
and recalling that R̂ > 1 and xN < 1, we conclude that the inequality is implied by
α(1 − 2λ) > 1, which holds for the chosen values.

It remains to prove that Bi is not stable w.r.t. {Ai}, i.e., d(Bi,N
′) > d(Bi,Ai) = 1.

We need to prove the validity of the inequality

(1 − αxN)2 + (1/2 − αyN)2 > 1.

This can be easily verified by plugging in the upper bounds for the values α, xN

and yN .
Finally, we prove that Ci is instead stable w.r.t. N ′, i.e.,

(xCi
− αxN)2 + (yCi

− αyN)2 < (yCi
− yAi

)2.

Since Pi is in the origin, we can plug in the values xCi
= 1 and yAi

= 1/2. Also,
recalling that x2

N + y2
N = R̂ 2, we obtain

3

4
+ α2R̂ 2 − 2αxN < yCi

(1 + 2αyN),

which is implied by

3

4
+ α2R̂ 2 < yCi

(1 + 2αyN).

Again, the values in Table 1 satisfy this last inequality.

AFTERNOON

The last stage ended up with the Gi ’s clusters {Ai,Bi} and N ′′ = {Ci,Di,Ei}, since
Pi and Qi both joined some cluster C of Gi−1. Specifically,

C =
{

{Ai−1,Bi−1,Ci−1,Di−1}, if i > 1,

{F }, if i = 1.

We claim that, at this point, Pi,Qi and Ci are not stable and will all join the cluster
{Ai,Bi}.

Let C′ = C ∪ {Pi,Qi}; note that the total weight wC′ of the cluster C′ is the same
if Gi−1 is the leaf gadget G0 or not, since by definition

wC = wF = wA + wB + wC + wD = 50.

We start showing that d(Pi,μ(C′)) > r̂ = 1 which proves that the claim is true for Pi

and Qi . By defining d = xPi
− xS∗

i−1
, the inequality can be rewritten as

d − wP d + wQ(d + λ)

wC′
> 1.

Discrete Comput Geom (2011) 45: 596–616 611

By (2) and the definition of Ri = R̂, we have d = (1 + δ)(1 − ε). Therefore, since
wC = wC′ − wP − wQ, the above inequality is equivalent to

(1 − ε)(1 + δ)
wC
wC′

> 1 + λ
wQ

wC′
,

which is implied by

(1 − ε)(1 + δ)
wC
wC′

> 1 + λ,

since wQ = 10−2 and wC′ = wC +wP +wQ = 50+1+0.01 = 51.01. Now consider
the inequality

(1 + δ)
wC
wC′

> 1 + λ.

By plugging in the values δ = 0.025, λ = 10−5 and wC /wC′ = 50/51.01 > 0.98, the
above inequality is satisfied. Therefore, it suffices to have

ε < 1 − 1 + λ

1 + δ

wC′

wC
,

which is provided by the assumption on ε.
Now we prove that Ci is not stable w.r.t. to {Ai,Bi}, by showing that d(Ci,N

′′) >

yCi
where N ′′ = μ(N ′′). Note that the inequality is implied by xCi

− xN ′′ > yCi
,

which is equivalent to
wE

wN ′′
> yCi

,

which holds for the chosen values.
At this point, analogously to the morning stage, we want to show that this new

clustering is stable, assuming that Gi−1 is not sleeping. Note that the analysis in
the morning stage directly implies that Pi is stable w.r.t. any of Gi−1’s clusters. It
remains to prove that Pi is stable w.r.t. to N ′′′ = {Di,Ei}, and Di is stable w.r.t.
M = {Ai,Bi,Ci,Pi,Qi} (other points’ stability is implied).

As for the former, let M = μ(M) and N ′′′ = μ(N ′′′). Since d(Pi,N
′′′) = ‖N ′′′‖,

we have

d2(Pi,N
′′′) =

(
wD

wE + wD

)2

+
(

wE + yDi
wD

wE + wD

)2

= 1

(wE + wD)2

(
w2

D + w2
E + y2

Di
w2

D + 2wEwD + 2(yDi
− 1)wEwD

)

= 1 + y2
Di

w2
D + 2(yDi

− 1)wEwD

(wE + wD)2
≥ 1 + 2(yDi

− 1)wEwD

(wE + wD)2
. (3)

Since d(Pi,M) = 1+ δ, in order to prove d(Pi,N
′′′) > d(Pi,M), it suffices to verify

that

2(yDi
− 1)wEwD

(wE + wD)2
> 2δ + δ2,

which can be checked using the values in Table 1.

612 Discrete Comput Geom (2011) 45: 596–616

Finally, we prove Di ’s stability w.r.t. M, i.e., d(Di,M) > d(Di,N
′′′). Note that

d2(Di,M) ≥ (yDi
− yM)2,

and

d2(Di,N
′′′) =

(

1 − wD

wD + wE

)2

+
(

(yDi
− 1) − (yDi

− 1)
wD

wD + wE

)2

=
(

1 − wD

wD + wE

)2(
1 + (yDi

− 1)2).

Now using the values in Table 1 it can be verified that

(yDi
− yM)2 >

(

1 − wD

wD + wE

)2(
1 + (yDi

− 1)2).

SECOND CALL

For Part I of this stage, we consider the cluster M = {Ai,Bi,Ci,Pi,Qi}. We assume
Gi−1 is sleeping, and so there must be some cluster C of Gi−1 with center in S∗

i−1.
It is the case that C = {Ai−1,Bi−1,Ci−1,Di−1} if i > 1, and C = {F } if i = 1. Sim-
ilar to the first call (Part I), Pi will join C . As for the point Qi we already proved
that d(Qi, S

∗
i−1) > R̂. Also for M = μ(M) we have xM > xQi

= λ > 0. Since M

has a distance of R̂ from the origin Pi by construction, this implies d(Qi,M) < R̂.
Therefore, the point Qi is stable.

We now analyze the next iteration, i.e., Part II of this stage. We claim that Qi

will join C ∪ {Pi}, and Di will join M′ = M − {Pi} = {Ai,Bi,Ci,Qi}. This can be
proven analogously to Part II of the first call, by using M ′ = μ(M′) = βM , where
β = wM/wM′ . Since we already proved that d(Qi,C ∪ {Pi}) ≤ R̂, it is enough to
show that d(Qi,M

′) > R̂ to establish that Qi is not stable w.r.t. C ∪ {Pi}. Inequality
d(Qi,M

′) > R̂ is equivalent to

(λ − βxM)2 + (βyM)2 > R̂ 2.

Using the fact that x2
M + y2

M = R̂ 2 and dropping a minor term of λ2, we get to
the inequality (β2 − 1)R̂ 2 > 2λβxM . Since β > 1, R̂ > 1 and xM < 1, the above
inequality is implied by β(1 − 2λ) > 1, which can be easily verified using the values
in Table 1.

It remains to prove that Di is not stable w.r.t. M′, i.e., d(Di,N
′′′) > d(Di,M

′).
This can be verified by plugging the values in Table 1 in (3) for d2(Di,N

′′′) and in
the following equation for d2(Di,M

′),

d2(Di,M
′) = (1 − βxM)2 + (yDi

− βyM)2.

NIGHT

The last stage leaves us with the clusters {Ai,Bi,Ci,Di} and the singleton {Ei},
while Pi and Qi both joined some cluster C of Gi−1, where C = {Ai−1,Bi−1,

Discrete Comput Geom (2011) 45: 596–616 613

Ci−1,Di−1} if i > 1 and C = {F } if i = 1. We want to prove that in one iteration Pi

and Qi will join {Ei}. Consider the cluster C′ = C ∪ {Pi,Qi}. In the afternoon stage,
we already proved that d(Pi,μ(C′)) > r̂ , and since d(Pi,Ei) = r̂ = 1, the point Pi

will join {Ei}. For the point Qi , we have

d
(
Qi,μ(C′)

) = d
(
Pi,μ(C′)

) + λ > r̂ + λ,

while

d(Qi,Ei) =
√

r̂2 + λ2 < r̂ + λ.

Thus, the point Qi , as well as Pi , will join {Ei}.
Gi+1’S CALL

In this stage, we are analyzing the waking-up process from the point of view of the
sleeping gadget. We fix any i > 0 and suppose that Gi is sleeping and that Gi+1
wants to wake it up. Again w.l.o.g. we assume that Gi has unitary inner radius (i.e.,
ri = r̂ = 1 and Ri = R̂ = (1 + δ)) and that Pi is in the origin (i.e., Pi = (0,0)).

We start by considering Part I of this stage, when Pi+1 (only) joined the clus-
ter S = {Ai,Bi,Ci,Di}, while Pi and Qi joined the cluster {Ei}. Let S ′ = S ∪
{Pi+1} = {Ai,Bi,Ci,Di,Pi+1}. We want to verify that the points in S are stable
w.r.t. {Ei,Pi,Qi}, i.e., that for each Ẑ ∈ S ,

d
(
Ẑ,μ(S ′)

)
< d

(
Ẑ,μ{Ei,Pi,Qi}

)
.

Recall that S∗
i = μ{Ai,Bi,Ci,Di} = μ(S). By Pythagorean theorem and yPi+1 =

yS∗
i
,

d2(Ẑ,μ(S ′)
) = d2(Ẑ, Ŝ∗) + d2(Ŝ∗,μ(S ′)

)
.

Therefore, by rearranging the terms and the definition of σ(Ẑ), the above inequality
is equivalent to d(Ŝ∗,μ(S ′)) < σ(Ẑ). Given the ordering of the stretches, it is enough
to show it for Ẑ = D̂. By (2) and yPi+1 = yS∗

i
, we have that

d
(
Ŝ∗,μ(S ′)

) = (1 − ε)Ri+1
wP

wS ′
.

Also, using (1), we get

d
(
Ŝ∗,μ(S ′)

) = r̂(1 − ε)γ σ (Â),

where

γ = wP

wS ′
· wS ′ + wQ

wP + (1 + λ)wQ

.

Finally, it is easy to verify that γ σ(Â) < σ(D̂).
In Part II of this stage, Qi+1 joined S ′. Let S ′′ = S ′ ∪ {Qi+1} = {Ai,Bi,Ci,Di,

Pi+1,Qi+1}. We want to verify that all the points in S but Ai will move to the cluster
{Ei,Pi,Qi}.

614 Discrete Comput Geom (2011) 45: 596–616

We start by showing that

d
(
Ai,μ(S ′′)

)
< d

(
Ai,μ{Ei,Pi,Qi}

)
.

This inequality is equivalent to d(Ŝ∗,μ(S ′′)) < σ(Â), and we have

d
(
Ŝ∗,μ(S ′′)

) = (1 − ε)Ri+1
wP + (1 + λ)wQ

wP + wQ + wF

.

Using (1) to substitute Ri+1, we get d(Ŝ∗,μ(S ′′)) = (1 − ε)σ (Â), which proves that
Ai will not change cluster.

Similarly, we want to prove that, for Ẑ ∈ S − {Â}, it follows that

d
(
Ŝ∗,μ(S ′′)

) = (1 − ε)σ (Â) > σ(Ẑ).

Given the ordering of the stretches, it suffices to show it for Ẑ = B̂ . The proof follows
by recalling our assumption that

ε <
σ(Â) − σ(B̂)

σ (Â)
.

3.5 Extensions

The proof in the previous section assumed that the set of initial centers corresponds
to the means of the “morning clusters” for each gadget Gi with i > 0. A common
initialization for k-means is to choose the set of centers among the data points. We
now briefly explain how to modify our instance so to have this property and the same
number of iterations.

Consider adding two points for each gadget at exactly the positions where the
initial centers should be. Since the weights assigned to the old points are constant,
we can assign to the new points small enough, constant weights such that the new
points will affect the cluster centers only in a negligible way. Since the positions of
the cluster centers determine the way the points are reassigned, the algorithm will
proceed exactly as described in the previous sections with respect to the old points—
provided that the weights of the new points are small enough. Observe that the new
points might, of course, switch between clusters but in which cluster exactly they
happen to be at a certain point is irrelevant for our purposes. Note that this new
construction relies on the property that when k-means runs on the old construction a
point is never equally close to more than one center, that is, some slack is available
to the boundaries of each center.

Har-Peled and Sadri [9] conjectured that, for any dimension d , the number of iter-
ations of k-means might be bounded by some polynomial in the number n of points
and the spread Δ (Δ is the ratio between the largest and the smallest pairwise dis-
tance). This conjecture was already disproven by Arthur and Vassilvitskii in [2] for
d = Ω(

√
n). By using the same argument, we can modify our construction to an in-

stance in d = 3 dimension having linear spread, for which k-means requires 2Ω(n)

iterations. The main idea is to replace each point (xi, yi) ∈ R
2 of our construction in

Discrete Comput Geom (2011) 45: 596–616 615

d = 2 dimensions with two points (xi, yi, zi) and (xi, yi,−zi) in d = 3 dimensions,
where zi = i · Δ and Δ is the spread in our original construction: note that, assuming
the smallest pairwise distance in the original instance is 1, we would have for the
new instance a smallest and largest pairwise distance of Ω(Δ) and O(nΔ), respec-
tively. We observe that, even if this spread-reduction technique does not account for
weighted points (because the spread of the given construction would be infinite), we
can simulate integer weights in the range [1,C] by blowing up the size of the data
set by at most C. Thus, the conjecture by Har-Peled and Sadri does not hold for any
d ≥ 3.

4 Conclusions

We presented how to construct a two-dimensional instance with k clusters for which
the k-means algorithm requires 2Ω(k) iterations. For k = Θ(n), we obtain the lower
bound 2Ω(n). Our result improves the best known lower bound [2] in terms of number
of iterations (from 2Ω(

√
n) to 2Ω(n)), as well as in terms of dimensionality (from

d = Ω(
√

n) to d ≥ 2).
We observe that in our construction each gadget uses a constant number of points

and wakes up the next gadget twice. For k = o(n), we could use Θ(n/k) points for
each gadget, and it would be interesting to see if one can construct a gadget with this
many points that is able to wake up the next one Ω(n/k) times. Note that this would
give the lower bound (n/k)Ω(n/k), which for k = nc (0 < c < 1), simplifies to nΩ(k).
This matches the optimal upper bound O(nkd), as long as the construction lies in a
constant number of dimensions.

Acknowledgements I greatly thank Flavio Chierichetti and Sanjoy Dasgupta for their helpful comments
and discussions. I also thank David Arthur for having confirmed some intuitions on the proof in [2].

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Agarwal, P.K., Mustafa, N.H.: k-means projective clustering. In: Proceedings of the 23rd Symposium
on Principles of Database Systems, pp. 155–165 (2004)

2. Arthur, D., Vassilvitskii, S.: How slow is the k-means method. In: Proceedings of the 22nd Annual
Symposium on Computational Geometry, pp. 144–153 (2006)

3. Arthur, D., Vassilvitskii, S.: Worst-case and smoothed analysis of the ICP algorithm, with an applica-
tion to the k-means method. SIAM J. Comput. 39(2), 766–782 (2009)

4. Arthur, D., Manthey, B., Röglin, H.: k-means has polynomial smoothed complexity. In: Proceedings
of the 50th Annual IEEE Symposium on Foundations of Computer Science (2009)

5. Berkhin, P.: Survey of clustering data mining techniques. Technical report, Accrue Software, San Jose,
CA, USA (2002)

6. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2000)
7. Forgy, E.W.: Cluster analysis of multivariate data: efficiency versus interpretability of classifications.

In: Biometric Society Meeting, Riverside, California, 1965. Abstract in Biometrics, vol. 21, p. 768
(1965)

616 Discrete Comput Geom (2011) 45: 596–616

8. Gibou, F., Fedkiw, R.: A fast hybrid k-means level set algorithm for segmentation. In: Proceedings of
the 4th Annual Hawaii International Conference on Statistics and Mathematics, pp. 281–291 (2005)

9. Har-Peled, S., Sadri, B.: How fast is the k-means method? Algorithmica 41(3), 185–202 (2005)
10. Inaba, M., Katoh, N., Imai, H.: Variance-based k-clustering algorithms by Voronoi diagrams and

randomization. IEICE Trans. Inf. Syst. E83-D(6), 1199–1206 (2000)
11. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search

approximation algorithm for k-means clustering. Comput. Geom. 28(2–3), 89–112 (2004)
12. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–136 (1982)
13. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: Pro-

ceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–
297 (1967)

14. Manthey, B., Röglin, H.: Improved smoothed analysis of the k-means method. In: Proceedings of the
20th Annual Symposium on Discrete Algorithms, pp. 461–470 (2009)

15. Spielman, D.A., Teng, S.: Smoothed analysis of algorithms: why the simplex algorithm usually takes
polynomial time. J. ACM 51(3), 385–463 (2004)

16. Vattani, A.: k-means requires exponentially many iterations even in the plane. In: Proceedings of the
25th Annual Symposium on Computational Geometry, pp. 324–332. (2009)

17. Vattani, A.: k-means lower bound implementation, www.cse.ucsd.edu/~avattani/k-means/
lowerbound.py

http://www.cse.ucsd.edu/~avattani/k-means/lowerbound.py
http://www.cse.ucsd.edu/~avattani/k-means/lowerbound.py

	k-means Requires Exponentially Many Iterations Even in the Plane
	Abstract
	Introduction
	Our Result

	The k-Means Algorithm
	Lower Bound
	High Level Intuition
	Definitions and Further Intuition
	Formal Construction
	Proof
	Chosen Values
	Stage-by-Stage Proof

	Extensions

	Conclusions
	Acknowledgements
	Open Access
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

