Constructions of nXn skew-Hadamard matrices for n=4,8,12,...,96,100

(Return to main page)

Circulant constructions of nXn skew-Hadamard matrices for n=4,8,12,20,24,32,44,48,60,68,72,80,84

by Warren D. Smith Aug 2006.

An nXn matrix H is "Hadamard" if all its entries are ±1 and HTH=HHT=nIn, i.e. all its rows are orthogonal. It is "skew-Hadamard" if, in addition, H+HT=2In. The simplest example is the 2x2 matrix

+-
++
It is a very old and famous (but still unproven) conjecture that Hadamard, indeed skew Hadamard, matrices exist for every n divisible by 4. (As of August 2006: Skew Hadamard matrices are known to exist for for all n<188 with n divisible by 4; non-skew Hadamards are known to exist for for all n<668 with n divisible by 4.)

P=n-1 is prime in the cases n=4,8,12,24,32,44,48,60,68,72,80,84... Then the PxP matrix M with entries Mij=+1 if j-i is a square mod P (otherwise use -1), can be augmented with an all + top-row and all - (except for the diagonal entry) left-column to get a skew-Hadamard matrix. For example, take n=8=1+7 (and the squares mod 7 are 0,1,2,4) to get this 8x8 skew-Hadamard matrix (where - stands for -1 and + for +1):

H8 = ++++++++
     -+++-+--
     --+++-+-
     ---+++-+
     -+--+++-
     --+--+++
     -+-+--++
     -++-+--+

Doubling

If H is an nXn skew Hadamard matrix while A is an nXn symmetric Hadamard matrix (i.e. AT=A), then here is a 2nX2n skew Hadamard matrix:

 H  A
-A  H.

All the skew-Hadamard H-constructions above are (if we discard the first row and column) (n-1)X(n-1) circulant anti-symmetric. Therefore, if each of their (n-1)-long rows is reverse-ordered, they then become (n-1)X(n-1) back-circulant (and symmetric, since back-circulant matrices are always symmetric). If we then border them with an all - row and an all - column, we get a symmetric Hadamard A. We can then use this H and A in the doubling construction. That yields sizes n=8,16,24,40,48,64,88,96.

For a specific example, use the H8 we gave above, and

A8 = ++++++++
     +--+-+++
     +-+-+++-
     ++-+++--
     +-+++--+
     ++++--+-
     +++--+-+
     ++--+-++
to get this 16x16 skew Hadamard:
 ++++++++ ++++++++
 -+++-+-- +--+-+++
 --+++-+- +-+-+++-
 ---+++-+ ++-+++--
 -+--+++- +-+++--+
 --+--+++ ++++--+-
 -+-+--++ +++--+-+
 -++-+--+ ++--+-++

 -------- ++++++++
 -++-+--- -+++-+--
 -+-+---+ --+++-+-
 --+---++ ---+++-+
 -+---++- -+--+++-
 ----++-+ --+--+++
 ---++-+- -+-+--++ 
 --++-+-- -++-+--+

Yamada-Williamson constructions of nXn skew-Hadamard matrices for n=4,12,20,28,36,44,52,60,68,76,84,92,100

This section by Dr. Christos Koukouvinos [ckoukouv(AT)cc.uoa.gr] Nov 1999.

This list contains the so-called good matrices of order m, i.e. one circulant and three back circulant (1,-1) matrices A,B,C,D of order m where A is circulant and skew-type (i.e. A+AT=Im) while B,C,D are symmetric (i.e. B=BT) back-circulant and they all satisfy the matrix equation

AAT + BBT + CCT + DDT = 4m Im

Then using A,B,C,D, where A is circulant and B,C,D are backcirculant, in the following Williamson array, we can construct the skew Hadamard matrix H of order n=4m:

        A   B   C   D
H =    -B   A   D  -C
       -C  -D   A   B
       -D   C  -B   A
In the following list, - stands for -1 and n=4m. We only give the first rows of A,B,C,D since the rest of them follow from cyclic shifting to the right in the case of A and to the left in the cases of B,C,D.

m=1, 4m=4=12+12+12+12, one solution:

      1
      1
      1
      1

That leads to this 4x4 skew Hadamard:

++++
-++-
--++
-+-+

m=3, 4m=12=32+12+12+12, one solution:

      11-
      1--
      1--
      111

That leads to this 12x12 skew Hadamard:

++-+--+--+++
-++--+--++++
+-+-+--+-+++
-++++-+++-++
++--+++++++-
+-++-+++++-+
-++---++-+--
++-----++--+
+-+---+-+-+-
---+---++++-
-----+++--++
----+-+-++-+

m=5, 4m=20=32+32+12+12, one solution:

      111--
      1-11-
      1----
      1----
           

m=7, 4m=28=52+12+12+12, one solution:

      1111---
      1-1--1-
      1--11--
      1------
     

m=7, 4m=28=32+32+32+12, two solutions:

      111-1--
      111--11
      11-11-1
      1-1111-

      1111---
      11-11-1
      11-11-1
      1-1111-

m=9, 4m=36=52+32+12+12, one solution:

      1111-1---
      11-1--1-1
      1---11---
      111-11-11

m=11, 4m=44=52+32+32+12, three solutions:

      11-1--11-1-
      1111----111
      1-111--111-
      1---1--1---

      11--1-1-11-
      111--11--11
      11-1-11-1-1
      11--------1

      11----1111-
      111--11--11
      1-1-1111-1-
      1--1----1--

m=13, 4m=52=72+12+12+12, two solutions:

      11-1---111-1-
      1---111111---
      11-1--11--1-1
      1----1--1----

      11--1-1-1-11-
      1--111--111--
      111-1----1-11
      1-----11-----

m=13, 4m=52=52+52+12+12, four solutions:

      11----1-1111-
      11-11----11-1
      1-1111--1111-
      1-111-11-111-

      11----1-1111-
      11-1-1--1-1-1
      111--1111--11
      111-11--11-11

      11111--11----
      1-11--11--11-
      1111-1--1-111
      11-1-1111-1-1

      11-----11111-
      1--111--111--
      111-1-11-1-11
      1-111-11-111-

From now on we cease giving all solutions and only give one.
m=15, 4m=60=52+52+32+12, four solutions:

111111--11-----
1-11--1111--11-
1----1-11-1----
1-1---1--1---1-

m=17, 4m=68=72+32+32+12, two solutions:

11--11-1-1-1--11-
11--1--------1--1
111----1--1----11
11---1-1--1-1---1

m=19, 4m=76=72+52+12+12, five solutions:

1-1-----11--11111-1
11-11111----11111-1
1-1----11--11----1-
1--1-1-11--11-1-1--

m=21, 4m=84=92+12+12+12, four solutions:

11--1111111-------11-
111--1111-11-1111--11
1--11-1-1-11-1-1-11--
1---111-1-11-1-111---

m=23, 4m=92=92+32+12+12, six solutions:

111-1-------1111111-1--
11----1--1----1--1----1
11-1--11---11---11--1-1
1--11-1-1-1111-1-1-11--

m=25, 4m=100=92+32+32+12, three solutions:

11-----1-1---111-1-11111-
11-1111-1-11--11-1-1111-1
1---1--1111----1111--1---
1--1-111--1----1--111-1--

Koukouvinos indeed has a larger list giving at least one solution for each odd m≤35, and every solution for each odd m≤31; and in [S.Georgiou, C.Koukouvinos, S.Stylianou: On good matrices, skew Hadamard matrices and optimal designs, Comput. Statist. Data Anal. 41,1 (2002) 171-184] that was extended to give every solution with m≤39. Also for m=37 and m=43 see [D.Z.Dokovic: Skew Hadamard Matrices of orders 4x37 and 4x43, J. Combinatorial Theory A 61,2 (1992) 319-321].

Filling the missing spots

The only size below 100 not covered by the above constructions is 56. For that, the doubling construction would work if we had a symmetric 28x28 Hadamard to use as input, and here is one (from N.J.A.Sloane)

++++++++++++++-+++++++++++++
+++-++----++-++-+-++----++-+
++++-++----++-++-+-++----++-
+-+++-++----+++-+-+-++----++
++-+++-++----+++-+-+-++----+
+++-+++-++----+++-+-+-++----
+-++-+++-++---+-++-+-+-++---
+--++-+++-++--+--++-+-+-++--
+---++-+++-++-+---++-+-+-++-
+----++-+++-+++----++-+-+-++
++----++-+++-+++----++-+-+-+
+++----++-+++-+++----++-+-+-
+-++----++-++++-++----++-+-+
++-++----++-++++-++----++-+-
-+++++++++++++--------------
+-+-++----++-+---+--++++--+-
++-+-++----++-----+--++++--+
+-+-+-++----++-+---+--++++--
++-+-+-++----+--+---+--++++-
+++-+-+-++-------+---+--++++
+-++-+-+-++----+--+---+--+++
+--++-+-+-++---++--+---+--++
+---++-+-+-++--+++--+---+--+
+----++-+-+-++-++++--+---+--
++----++-+-+-+--++++--+---+-
+++----++-+-+----++++--+---+
+-++----++-+-+-+--++++--+---
++-++----++-+---+--++++--+--

We have now constructed a skew Hadamard nXn matrix for every n divisible by 4 with n≤100. The number of equivalence classes of 4mX4m skew Hadamard matrices is exactly known for m=1-7: it is 1, 1, 1, 2, 2, 16, 54. [Edward Spence: Classification of Hadamard matrices of order 24 and 28, Discrete Math. 140, 1-3 (1995) 185-243]. Indeed, Spence just emailed me a file containing all of them.

More known info

More known info is surveyed in
J.Seberry & M.Yamada: Hadamard matrices, sequences, and block designs, pp. 431-560 in Contemporary Design Theory, a collection of surveys (J.H.Dinitz & D.R.Stinson eds.), Wiley 1992, and
S.Georgiou, C.Koukouvinos, J.Seberry: Hadamard matrices, orthogonal designs and construction algorithms, pp. 133-205 in DESIGNS 2002: Further computational and constructive design theory, Kluwer 2003.


Return to main page