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Abstract — (1) We define “range voting.” (2) More generally we define the wide class of “COAF voting systems,”

(3) We reach an understanding of optimum voter strategy in COAF voting systems, at least in a certain probabilistic

model, the “Gaussian model,” of how the other voters behave, and in the limit V → ∞ of a large number of voters.

(4) This understanding also works for Condorcet and IRV voting (which are not COAF), albeit in a more limited

way. (5) We find that range voting is the uniquely best COAF system, in a certain sense: Roughly speaking, range

voting is the only COAF system which allows voters to be maximally expressive without being strategically stupid.

We also find (for the first time) an infinite number of nontrivial voting systems which satisfy Mike Ossipoff’s “favorite

betrayal criterion” (FBC), and show that range voting is the unique FBC-obeying COAF system with maximum voter

expressivity. Most of these results were due to me in 1999-2000 but I did not write them up very well at that time.

1 Range and Approval Voting

In a C-candidate election conducted with range voting your vote is an assignment of a score in the interval [0, 1] to each
candidate. For example a legal vote in a 4-candidate election would be (0, 1, 0.4, 1). The candidate with the greatest score-sum
wins.

Approval voting [2] is the same, except that only the two endpoints of the [0, 1] interval are allowed as scores. Giving a score
of 1 is said to represent your “approval” of that candidate.

2 COAF Voting Systems (Compact set based, One-vote, Additive, Fair)

Let there be C candidates and V voters, C fixed, V large.

Definition 1. A “COAF Voting System” is a single-winner election that works as follows. Each voter chooses, from a fixed
Compact set S ⊂ RC of “allowed votes,” One C-vector. The vectors are Added. The maximum entry in the summed
C-vector corresponds to the winner. Such a system is “Fair” if S is invariant under the group of C! permutations of the C
coordinates of RC .
Voting system The Compact Set of Allowed Votes
Plurality The C permutations of (1, 0, 0, 0, . . . , 0)
Approval The 2C vectors of form (±1,±1,±1, . . . ,±1)
Dabagh “vote and a half” The (C − 1)C permutations of (2, 1, 0, 0, 0, . . . , 0)
Used on Nauru Island The C! permutations of (1, 1/2, 1/3, 1/4, . . . , 1/C)
Borda1 The C! permutations of (C − 1, C − 2, C − 3, . . . , 1, 0)
“Vote for-and-against” The (C − 1)C permutations of (+1,−1, 0, 0, 0, . . . , 0)
Anti-plurality The C permutations of (−1, 0, 0, 0, . . . , 0)

Continuum “cumulative voting” The ~x with
∑C

j=1 xj = 1 and xj ≥ 0(∀j)

Boehm’s “signed voting” The 2C permutations & sign changes of (±1, 0, 0, 0, . . . , 0)

L2-sphere voting The ~x with
∑C

j=1 x2
j = 1

Range Voting The unit C-dimensional hypercube [0, 1]C

Figure 2.1. Some interesting COAF voting systems. Some well-known voting systems which are not COAF include:
Condorcet systems, Instant Runoff (transferable vote), Bucklin, Woodall-DAC [4]; in all four of these cases the votes are
preference orderings of the C candidates. N

∗Non-electronic mail to: 21 Shore Oaks Drive, Stony Brook NY 11790.
1Some people also allow “truncated preference” vote-vectors, such as (3, 2,

1

2 ,
1

2 ), in (their version of) Borda.
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2.1 Conditions which cause optimum range voting strategy to be approval-style
Theorem 2 (Approval strategy I). Assume the candidates can be pre-ordered in decreasing likelihood of election chances,
and that each’s chance is hugely greater than the next one’s. (Note: this assumption is valid in the Gaussian model with
V → ∞ that we shall describe in §5; assuming generic real parameters the probability ratios tend exponentially to ∞.) Then
“approval style” range voting (where you give every candidate either the maximum- or minimum-possible score) is strategically
optimum (or at least, the utility of the best approval-style vote only falls below that of the truly-best range vote by a negligibly
small amount).

Proof: In this case you can assign your scores to the candidates one by one in order, only basing your decision on a candidate’s
score on information about him and the previous candidates – the later ones are irrelevant to that decision. Then, for each
candidate X you score, his score cannot affect the winning chances of the previously-scored ones if X does not win. X ’s
score then can only affect the chance X wins, not the chances for previous candidates, unless X wins – and it does so in
a monotonic manner. Hence the decision on X should be purely based on whether X is superior or inferior in utility to
the expected utility among the previous winners given your previous votes: if superior, give X the maximum, otherwise the
minimum score. �

Theorem 3 (Approval strategy II). Assume the probability of an election-leading near-tie (which your vote can hope
to alter) between two of the candidates is very unlikely and the probability of a 3-or-more-way near-tie is even more, indeed
neglectibly, unlikely. Also assume your probability of breaking an AB tie is proportional to your vote’s A−B score difference.
Then: “approval style” range voting is strategically optimum (or at least, the utility of the best approval-style vote only falls
below that of the truly-best range vote by a neglectibly small amount).

Proof: Give maximum score to A and minimum to B where AB is the most important (utility-wise, i.e. probability of that
tie times candidate-utility difference in maximum) possible tie. There is no reason to want any other vote: You might want
to lower A’s score by some amount ∆ if by so doing you could increase the vote difference for some other pair (or pairs) by
∆ (in total); but no – since that other pair (or pairs) has (have) less utility, that move would be bad for you. So your best
vote (maximizing expected utility) then always maxes-out or mins-out every score you can. �

Theorem 4 (Full knowledge). For a voter with complete knowledge of all the other votes, an optimum range vote is
always trivial to determine, and wlog is an “honest approval-style” (or one could even demand it be a “plurality-style”), vote.
E.g. give the maximum score to the best candidate who can win and to all better candidates, and the minimum score to all
others.

3 Examples of non-approval-style optimum strategy in range voting

The assumptions in theorem 2 and 3, while plausible in large real elections, usually are false in small ones. We shall give
incomplete-knowledge election examples in which all approval-style range votes are strategically sub-optimal.

3.1 First example: ignorance
In a 3-voter (or more voter) [0,1]-range-voting election, assume the totals of the votes of the other two (or more) voters are
either

(1, 1.1, 1) or (0, 1.1, 1.2) (1)

but you do not know which. Call the candidates A,B, and C. Your candidate-utilities:

UA = 10, UB = 5, UC = 0. (2)

• If you vote (1, 0, 0), then A wins in scenario #1 but C wins in scenario #2.
• If you vote (1, 1, 0), then B wins in scenario #2 but B wins in scenario #1.
• If you vote (1, 1, 1), then B wins in scenario #1 and C wins in scenario #2.

But if you vote (1, 0.5, 0), then A wins in scenario #1 and B wins in scenario #2, which is the best you can hope for in
either case (and is strictly better than any of the above votes) so that this “honest” vote here also happens to be the strategic
vote giving you the best possible expected utility.

3.2 Second example: you, a known, and a random voter
In the following 3-voter election, call the candidates A, B, and C. Let Rj denote independent uniform random numbers in
[0, 1], so that voter#2 is regarded as completely unknown to you, while voter#1 is regarded as completely known.

Voter A B C
voter#1 0 0.798 0.618
voter#2 R1 R2 R3

you(voter#3) 1 V 0
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Assume the election-utilities (for you) of the three candidates are

UA = 1, UB = 0.832, UC = 0 (3)

Then here are the expected utilities of various possible votes you could make (result of 25 million Monte Carlo experiments):

Vote V Utility
1(exaggerated) 0.8354
0.83(honest) 0.8436
0.58(best?) 0.8512
0(exaggerated) 0.8359

As you can see, neither the honest range vote, nor either of the two “approval style” exaggerated ones, is strategically best.

For those unsatisfied with inexact results arising from Monte-Carlo numerical integrations, we remark that it is in fact possible
to find the exact rational utility answers by evaluating the volumes of certain 3-dimensional polyhedra. Specifically, voter
#2’s vote is a “unit cube” and the vote-total from all the voters is then a point in an appropriately translated unit cube.
The probabilities of the various election outcomes are then the volumes of the intersections of this translated unit cube with
the “payoff regions” (such as the set where A > B and A > C). These intersections each are certain interior-disjoint convex
polyhedra, whose volumes may be evaluated by dividing them into tetrahedra and then computing appropriate determinants.

3.3 Third example: you, a known, and two random voters
In the following 4-voter election, call the candidates A, B, and C. Again let Rj denote independent uniform random numbers
in [0,1].

Voter A B C
voter#1 0 0.896 0.219
voter#2 R1 R2 R3

voter#3 R4 R5 R6

you(voter#4) 1 V 0

Assume the election-utilities (for you) of the three candidates are

UA = 1, UB = 0.940, UC = 0 (4)

Then here are the expected utilities of various possible votes you could make (result of 25 million Monte Carlo experiments):

Vote V Utility
1(exaggerated) 0.9435
0.94(honest) 0.9441
0.46(best?) 0.9478
0(exaggerated) 0.9409

Again, neither the honest range vote, nor either of the two “approval style” exaggerated ones, is strategically best.2

4 Review: Tricks with Gaussians

A Gaussian probability density in C-dimensional space is one proportional to

exp (−~xM~x) (5)

where M is a positive definite symmetric C × C matrix. If M is proportional to the C × C identity matrix, the Gaussian is
“spherical,” otherwise it is “ellipsoidal.”

Gaussian densities are easy to integrate over halfspace or “slab” regions (bordered by two parallel hyperplanes). Simply
perform the linear transformation ~x → M1/2~x to cause the Gaussian to become spherical with characteristic matrix I. This
maps the halfspace (or slab), to a new halfspace (or slab). The spherical Gaussian integrated over a slab with distances of
its bounding hyperplanes to the origin A and B, is simply Z(B) − Z(A) where Z is the cumulative density function of the
standard 1-dimensional Gaussian (with M = 1).

In particular [using
∫

∞

−∞
exp(−x2)dx =

√
π] the integral of EQ 5 over all C-space is

πC/2 |detM |−1/2 (6)

2The idea that examples such as these might exist, was pointed out by Boris Alexeev, although his specific attempts to produce such an example
failed due to incorrect arithmetic. The probabilities in this example again can be regarded as volumes of certain polyhedra – albeit this time four

dimensional polyhedra – and hence again in principle could be computed as exact rational numbers. All Monte Carlo experiemnts have been done
with several random number generators and feature self-agreement up to the final deciaml place.
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and the reciprocal of this is, of course, the appropriate normalizing factor to make this Gaussian become a probability
distribution.

Gaussians are also easy to deal with inside subspaces (whether translated or not) because they are (up to altering the
normalizing factor) still Gaussians in the subspace.

The central limit theorem tells us that the sum of a large number V of bounded independent random C-vector variables with
smooth densities, will, if translated so its mean lies at the origin ~0 and then scaled by V −1/2, approach a Gaussian density
in the limit V → ∞.

Consequently, instead scaling that sum by V −1 (which is what happens when computing the candidates’ average scores in
range voting) leads, in the V → ∞ limit, to a Dirac delta function “spike” located at the mean.

These spike-like distibutions are even easier to integrate over convex regions R (asymptotically in the limit V → ∞). That
is because the integral is the same, to within asymptotically negligible error, as the integral within an arbitrarily small
neighborhood of the single point in R where the density is greatest. If that magic point is in fact the centerpoint of the
Gaussian, then a neighborhood of diameter≫ V 1/2 will suffice (we now assume a convention of no rescaling) but if it is any
other point, then merely diameter≫ 1 is all that is required.

Incidentally, the only reason I am restricting myself to convex R is that this forces there to be at most one maximum of the
Gaussian within R (one “magic point”). With nonconvex R more maxima could occur, including, possibly, coequal maxima.
That would complicate things, but usually not intractibly so. And even for many nonconvex regions it often still is obvious
that at most one maximum matters, the rest (if any) being exponentially neglectibly tiny in comparison when V → ∞.

This “magic point method” makes performing all sorts of probability-integration tasks extremely easy in the V → ∞ limit.
Furthermore, its validity does not even depend on exactly having a Gaussian. Remember, the central limit theorem actually
does not say anything particularly useful about the“tails”of our Gaussians. So one might worry about the validity of applying
the magic point method inside tail regions. Let us examine that question. Consider the simplest (1D) case: the sum of V
independent “Bernoulli” (binary-outcome coin flip ±1/2) random variables. As was well known since the days of de Moivre,
this leads to the “binomial distibution”

Prob(S) =
V !

(V/2 − S)! (V/2 + S)!
, |S| ≤ V/2 (7)

which is approximated by a normal distribution when V is large:

V !

(V/2 − S)! (V/2 + S)!
≈ 2V

√

πV/2
exp

−2S2

V
(8)

As you can see, the true binomial distribution falls off somewhat faster in its tails than the normal approximation, but shares
with that approximation the property of unimodality. This faster falloff causes our “magic point method” actually to work
better for the true than the normal-approximate distribution in the tails, because it allows replacing our demand that the
neighborhood size be ≫ 1, with a neighborhood size of order 1 (or even some o(1) sizes will do) centered at the magic point,
still yielding asymptotic validity in the V → ∞ limit.

5 Optimum voting strategy in a Gaussian probability model with a large

number of voters

We are going to consider the question of what your strategically-optimum (expected-utility-maximizing) vote is, in any COAF
voting system, in the following Gaussian probabilistic model:

1. You know your utility-value UX for each of the C candidates (here candidate X).
2. You have seen a pre-election poll of a random voter subsample, which tells you that the total vote from the other

voters is a Gaussian random variable and tells you the mean C-vector (centerpoint) and the covariance matrix of that
Gaussian. (Or perhaps no covariance matrix is given, in which case we shall assume the Gaussian is spherical.)

We shall assume all of the real numbers in this data are “generic,” that is, satisfy no algebraic relationships. (This allows us
to avoid worrying about “ties.”) Finally, we shall assume that the number V of voters is made very large (V → ∞) so that
their mean-vote Gaussian random variable becomes spike-like.

The “payoff regions” of C-space are the regions of vote-vector-total space in which one candidate wins, for example A wins if
A > B, A > C, and A > D in a 4-candidate election. These payoff regions are unbounded convex polytopes.

The 7-step procedure to find the strategically-best vote-vector is as follows.

Step 0. Order the candidates in decreasing order of a priori likelihood of winning the election.

Every probability (including these) that we are going to care about is going to be a Gaussian integral over a
convex polytopal region R.
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These integrals may be rapidly estimated using the “magic point method.” If the magic point (maximizing the
Gaussian within R) happens to be on the boundary of R, e.g. a corner, then some difficulties can ensue because,
e.g. the solid-angle factor represented by the corner can be difficult to evaluate. However, this does not matter
because these factors are enormously outweighed in the V → ∞ limit by the exponentially huge differences in
size among the Gaussian heights at the magic points for various regions. So (assuming generic reals so there are
no height equalities) only these Gaussian heights matter, nothing else matters, when it comes to deciding which
integral of two is the larger.

Also, we should point out that finding the “magic point” at which a given Gaussian is maximized (or equiva-
lently, where its logarithm – a concave-∩ quadratic function of ~x – is maximized) inside a convex polytope R, is
just an instance of “convex quadratic programming” and hence is soluble by a polynomial time algorithm.

Assuming (as we have) generic real data, each candidate’s election chances are exponentially enormously huger
than the next’s in the V → ∞ limit (justifying the assumption in theorem 2).

Step 1. Find the most-likely lead-near-tie between two candidates.

The likelihood of a tie-within-∆ between A and B is the integral of the Gaussian over the slab-like region
|A − B| ≤ ∆ intersected with the convex polytope A > C, A > D, B > C, B > D. Again, this is a Gaussian
integral over a convex polytopal region.

Step 2. Of those two candidates, give the one with the most utility the maximum, and the other the minimum, vote-score
allowed by the rules of that voting system (and given that the previously-assigned scores are fixed).

Note: for many voting systems, e.g. plurality and L2-ball voting, at some early point in this FOR-loop,
the rest of the vote often becomes uniquely determined, i.e. forced by the rules of that voting system given the
preceding scores. In that case we can terminate the algorithm early.

Step 3. Now proceed as follows among the remaining candidates X in most-likely to least-likely order. FOR each X :

Step 4. Determine the most likely way in which X can be involved in a lead-tie to within ∆.

This lead-near-tie is going to be among a set of candidates, e.g. A, B, C, X , corresponding to the point of the
linearly-transformed space in which the Gaussian is spherical and ~0-centered, in which X is behind the lead by at
most ∆, and which (among all such X-nearly-leads points) lies the closest to the origin ~0 (i.e. which maximizes the
Gaussian in the original space). Unfortunately (in the sense that it makes calculations harder) this candidate-set
is not necessarily of cardinality=2.

Step 5. By integrating the Gaussian over the full set of such X-nearly-leads points, find the a priori (conditioned on X nearly
leading) probabilities PY that each non-X candidate Y would win that election (without X), and compute E =

∑

Y PY UY .

The simplest case is if there is only one non-X candidate Y involved in the lead-near-tie, in which case PY = 1
without any calculation needed. Otherwise, the PY calculations unfortunately can involve difficult multiple
integrations of Gaussians over polytopal regions - “difficult”because the magic point method is inadequate because
a finer degree of accuracy is required. (The difficulty is that all the eligible non-X candidates involved in the tie
share the same “magic point” therefore our usual technique of just dismissing one as comparatively negligible, is
not applicable – we actually need to calculate.) In practice, though, Monte-Carlo approximate integrations are
quite adequate, and we do not need to find each PY in its own integration; it suffices to evaluate the expected
utility E =

∑

Y PY UY in a single integration. (Another way of saying the same thing: all the PY may be found
in a single run of Monte-Carlo experiments.)

Step 6. If UX > E then award X the maximum possible score as X ’s vote-score; if < then the minimum (and = is not
possible by our genericity assumption).

Step 7. END FOR.

We call this the “moving weighted average”method because each candidate X ’s vote-score is chosen by contrasting his utility
UX with a weighted average of the utilities of certain other (previously-scored) candidates, and with the weights and the
candidate-set possibly changing as we go.

Theorem 5 (Optimum strategy in COAF voting systems). The above algorithm determines the unique strategically
optimum (maximizing expected utility of the election result) vote, in any given COAF voting system, in the Gaussian probability
model of the other voters, in the V → ∞ limit, assuming generic real parameters and assuming no “ties” occur at any stage
of the algorithm.

Proof: By theorem 2 and its proof, it is generically valid to choose the vote-scores for each candidate in decreasing order of
their a priori election chances, ignoring the later ones when making the candidate-X decision. In that case each successive
decision must be made to maximize expected utility, which is precisely what we do. �
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6 Examples of optimum voting strategy in the Gaussian V → ∞ model

We here shall consider voting systems other than range voting. Range voting will be addressed next section.

6.1 Borda voting – typical example
Suppose the candidates are A, B, C, D, E in decreasing order of winning-chances. In fact (to be more precise) suppose the pre-
election poll (which you regard as being a random subsample of the Borda votes) gives totals for (A, B, C, D, E) proportional
to (20, 16, 13, 11, 10), which 5-vector we regard as the mean of a spherical Gaussian. Suppose your utilities for the election
of each are

UA = 40, UB = 60, UC = 25, UD = 75, UE = 10. (9)

Then your honest and optimally-strategic Borda votes are:

Honest:

(A, B, C, D, E) = (2, 3, 1, 4, 0)

Strategic:

(A, B, C, D, E) = (0, 4, 1, 3, 2)
(10)

Observe that these two votes bear little relation to one another. This example is quite typical of the way that strategic Borda
votes often seem “random” and almost entirely unrelated to the honest ones.

To outline how the strategic vote was found: realize that (with this Gaussian-mean) each candidate, successively, is, assuming
it is going to be nearly-tied for the lead, most likely to do so by being tied with A alone. Therefore, we go through the
candidates X in order awarding each either the least or grestest still-available score (under the rules of Borda voting and
considering the previously-assigned scores) depending on whether UX < UA or not.

6.2 Plurality and Continuum Cumulative voting
Generically, the optimum strategy is always the following: Vote for the candidate, among the two pre-election-poll-leaders,
with the greatest utility. This has been called the “lesser of two evils.”

In continuum cumulative voting, the best strategy is the same (vote everything for the best-utility among the two pre-election-
poll frontrunners, and zero for everybody else). If all voters do that, the same “lesser of two evils” winner as with plurality
is elected.

6.3 Anti-Plurality voting
Generically, the optimum strategy is always the following: Vote against the candidate, among the two pre-election-poll-
leaders, with the least utility. Note that if all voters do that, then the winner of the election (assuming C ≥ 3) is assured to
be “dark horse”who was not one of the pre-election poll leaders. I call voting systems such as this which tend (with strategic
voters) to invalidate their own pre-election polls, “suicidal.”

6.4 Borda voting – DH3 pathology
Suppose the candidates are A, B, C, D in decreasing order of winning-chances, and that you regard A, B, C as roughly equally
likely (probabilities 1/3 each) to win. (We here are departing from our usual genericity assumption.) Also suppose the “dark
horse”D is universally perceived as having no chance to win – because Society seems divided into three roughly-equinumerous
camps favoring A, B, and C respectively.

If you are in the A-camp and hence for you UA > UB ≈ UC ≫ UD, then your most-strategic vote is (A, B, C, D) = (3, 1, 0, 2) or
(3, 0, 1, 2); choose one of these two at random by a coin flip. If everyone acts this way, then the universally-agreed-to-be-worst
candidate D will win the election. This is quite suicidal (for every meaning of the word)!

Incidentally: if all voters act this way then the winner in any Condorcet voting system will also be D. That may be a strong
indictment of all Condorcet voting systems.

6.5 Borda voting – another pathology
Suppose the candidates are A, B, C, D, E in decreasing order of winning-chances based on the pre-election poll. Suppose
roughly half the populace thinks UA > UB and half thinks UB > UA. Then roughly half the strategic votes will be of the
form (A, B, C, D, E) = (4, 0, [3, 2, 1]) and the other half will be of the form (A, B, C, D, E) = (0, 4, [3, 2, 1]) where the square
brackets denote “some permutation of.” If all voters act this way, then some member of {C, D, E} will (generically) win the
election. This again is “suicidal” voting system behavior and again can force the election of a horrible “dark horse.”

These kinds of pathological behaviors indeed were immediately observed on Kiribati, the world’s only government to employ
Borda voting [3]. Kiribati then abandoned Borda and switched to plurality voting. Nauru’s system, in contrast, is immune
to both DH3 and this pathology.
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6.6 Dabagh voting
Generically, the optimum strategy is always the following: Vote 2 for the candidate (call him X), among the two pre-election-
poll-leaders (call them X and Y ), with the greatest utility and 0 for the other. Now go though the remaining candidates in
decreasing order of their winning chances. For the first one Z you find who has greater utility than the expected utility of
the winner among the candidates more-likely than Z to win (conditioned on Z being in a near-tie with that winner), give Z
your 1-vote. If no such Z exists then award the 1 to the least-likely candidate to win.

Generically, if all voters act this way then the same winner (lesser of two evils) will occur as with strategic plurality voting,
but with the twist that the least-likely “darkest horse” candidate simultaneously will receive an astoundingly large vote total.

6.7 For-and-against and L2-sphere voting
With L2-sphere voting, your best vote is of the form (+2−1/2,−2−1/2, 0, 0, 0, . . . , 0) where your positive and negative votes are
for the two pre-election-poll frontrunners. This is the same as the best strategic vote with for-and-against voting. Generically
the same “lesser of two evils”winner will then arise as in strategic plurality voting; however, if those two are closely matched,
then a small fraction of other kinds of voters can cause a hard-to-predict winner.

6.8 Boehm’s signed voting
Is interesting. It can be possible for the usual lesser-of-two-evils candidate to win, or a hard to predict candidate. Our
algorithm actually is inadequate in that it produces two “tied” possible votes for the two frontrunner candidates, namely
(+1, 0) or (0,−1). Deciding which among these to use, actually does depend on using the “later” candidates to perform a
“utility tiebreak” (this would be an enhanced version of our algorithm).

7 Range Voting strategy in the Gaussian model

7.1 Three results about range votign that are valid fully generally – i.e. without need of
the Gaussian model

Theorem 6 (Monotonicity). Increasing your vote-score for X cannot decrease X’s chances of winning; decreasing your
vote-score for X cannot increase X’s chances of winning.

Theorem 7 (No favorite-betrayal). It is never strategically forced to give X less than the maximum possible score, if X
is your true favorite (or one of your true favorite) candidates.

Proof: Increasing X ’s score will not change the winner (except if it changes to X). �

Similarly, there is no strategic reason to give your most-hated candidate anything other than the minimum-possible score.

Theorem 8 (No order reversal in 3-candidate elections). It is never strategically forced to misorder X > Y if you
truly regard Y > X, in your range vote, if there are ≤ 3 candidates.

Proof: Call the three candidates X, Y, and Z. By the preceding result we can assume wlog your favorite and most-hated
candidates are respectively given the maximum- and minimum-possible vote-scores. It then is not possible for you to vote
X > Y if you honestly think UY > UX . �

But if there are four candidates, then we shall see, via either of two examples, that dishonesty can be strategically forced.

7.2 Strategic dishonesty in range voting I: correlation (highly ellipsoidal Gaussian)
There are two liberals L1, L2 and two conservatives C1, C2 running. You believe that L1 and L2 will get a near-equal number
of the other people’s votes, and ditto for C1, C2, but don’t know whether the liberals or conservatives will be ahead.3 Then
your best strategy is to vote in the style

L1 = 1, L2 = 0, C1 = 1, C2 = 0 (11)

even if you prefer both L’s over both C’s (or both C’s over both L’s). (We assume you slightly prefer the candidates with
smaller subscripts.)

(This example also can be generalized to 2N candidates falling into N ultra-correlated pairs. It apparently originally traces
to S.J.Brams and was shown to me by Rob LeGrand.)

3This kind of situation can be modeled with a highly ellipsoidal Gaussian distribution being returned by a pre-election poll in which the
correlation and covariance matrices are published, not just the estimated means. We admit that the sort of pre-election polls we have seen in
newspapers and television never do publish covariance information, so this is somewhat unrealistic. However, this scenario as a whole nevertheless
is tolerably realistically plausible.
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7.3 Strategic dishonesty in range voting II: even without correlations (exactly spherical
Gaussian)

Let the 4 candidates be A, B, C, D. Let the pre-election poll results say the vote totals (mean of the Gaussian) are A = 100,
B = 80, C = 70, D = 10, (well more precisely, proportional to these; the totals are these times a number of order V ) say,
so A appears most likely to win, then B, then C, then D. We assume these 4 vote totals are samples from a spherically
symmetric 4-dimensional Gaussian, i.e. with no correlations or anticorrelations among candidates. (It is easier to make one
of our examples if correlations are assumed – as we just saw – but our point here is they are not needed.) There are V voters
where we assume V → ∞ (we work in this limit) and the Gaussian has mean of order V and peakwidth (standard deviation)
of order

√
V . Let your true utilities be:

UA = 0, UB = 20, UC = HUGE, UD = 25. (12)

Here HUGE denotes some sufficiently large constant.

Theorem 9 (Dishonesty example). In this scenario in the Gaussian model, the unique strategic range vote (which
maximizes your expected election-result-utility) is (A, B, C, D) = (0, 1, 1, 0). This is dishonest for B and D.
Proof: The top-two pair is AB – most likely to be tied for lead – other ties are exponentially less likely when V → ∞ – so
we give A = 0 and B = 1 in the vote to give us maximum chance to favorably break an AB tie. (Since UB > UA.)

Now AC is the next pair (second most likely to tie for the lead, but in the V → ∞ limit, it is exponentally far less likely to
be AC than it is to be AB; but AC is exponentially more likely than any other non-singleton set) so give C = 1 to make C
win over A in a situation where AC tied for lead and B and D’s winning chances may be neglected. (Since UC > UA.)

Finally among sets involving D tied for the lead, the most likely to result in a lead-tie is A, B, C, D 4-way near-tie near
260/4=65 each. That is because any other location in the 4-space having D maximal has a larger sum-of-squares distance
from (100,80,70,10) and hence is exponentially less likely in the V → ∞ limit.

Now even if you don’t believe in the 4-way-near-tie, fine. More precisely, all we need to believe, is it is going to come down to
either a DC, DB, or DA battle (conditioned on the assumption that D is involved in the lead-tie) with some fixed positive
conditional probabilities for each, not necessarily 1/3, 1/3, 1/3, in the V → ∞ limit. Call these probabilities PA, PB, PC .
Basically what happens is as you move away from the magic (65, 65, 65, 65) point, but preserving the assumed fact that D
is maximal: as soon as you go a distance of order 1, i.e. order 1 vote worth, that causes a factor of order eO(1) falloff in
probability. Hence when V → ∞ there is negligible probability (conditioned on D leading or co-leading) that we are more
than a distance of order (log V )/V away from the magic 65, 65, 65, 65 point. You can see that using EQ 5 defining the
Gaussian (which we assume is still valid out here in the tail, perhaps somewhat unrealistically, but it is ok since we took the
whole Gaussian model as an assumption, and anyhow as I’ve argued it apparently would be valid enough even out here in
the tail, even without such an assumption) using standard deviation of order

√
V and distance-to-center of order V . That is

the underlying reason for the positive PA, PB, PC existing.4

So in this final case where we assume D has a chance (which is an assumption needed to make it worth deciding on a vote
about D at all) we should vote D = 0 provided that

25 = UD < PAUA + PBUB + PCUC (13)

which by making UC HUGE enough (since the values of PA, PB, PC exist and do not depend on UA, UB, UC), always happens.
So we must vote D = 0. �

The thinking in this example actually can be generalized to provide a way to determine your strategically optimum range-vote
in any Gaussian-model scenario in the V → ∞ limit, namely the algorithm in §5.5

8 Axiomatic characterizations of range voting

8.1 Favorite-betrayal
Mike Ossipoff has emphasized the importance of the following criterion for single-winner voting systems in order that they
lead to a good democracy.

4You may here worry that perhaps a 3-way or 4-way tie could be important, in which case the strategically best vote might not even be
approval-style at all. However, if we agree in this example to make our spherical Gaussian have variance which is a sufficiently large constant,
then the conditional probability of a more-than-2-way tie can be made arbitrarily small, so this is not a worry. Arbitrarily large variances arise in
practice if, e.g, the votes are postulated to come in blocs of order 1000 highly correlated votes. Also, a different reason why the optimum vote here
must be approval-style, regardless of worries about 3-way near-ties, was given in theorem 2, which makes this whole issue moot.

5But Mike Ossipoff comments: I want to re-emphasize that, although in extremely unlikely examples, reversing a preference can be optimal in
Approval, one should never vote someone over one’s favorite. One should always vote top for one’s favorite in Approval or Range voting by theorem
7; no exceptions.

One author familiar with the subject said that the kind of probability knowledge that would be needed to make preference-reversal optimal in
Approval is so rare that such situations can be disregarded.

And (WDS further comments) even with such knowledge... these situations still (empirically) seem quite rare. And even when they do occur they
usually have a small probability of changing the winner, hence do not matter much. My computer simulations with 4- and 5-candidate elections
indicated a typical utility change due to true-strategic voting versus ”honest approval” (threshhold strategy) voting of order 1 part in 1000.
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Favorite-Betrayal Criterion (FBC): Voters should have no incentive to vote someone else over their favorite.

(Cf. theorem 7.) While FBC may sound like an obvious criterion, very few of the usual election method proposals comply with
it. For example, the following election suffices to demonstrate FBC-failure for most of the strict-rank-order-based election
methods (e.g. Nanson, Condorcet, Instant Runoff, Borda, Woodall DAC) one runs across:

#voters Their Vote
8 B > C > A
6 C > A > B
5 A > B > C

Most methods agree that the winner is B, but if the six C > A > B voters insincerely switch to A > C > B, betraying their
favorite C, then A becomes the winner, which those voters prefer.

For most methods with rank-ordering votes allowing equalities,

#voters Their Vote
3 A = B > C
3 C = A > B
3 B = C > A
2 A > C > B
2 B > A > C
2 C > B > A

is a 3-way tie which breaks in favor of A if the A = B > C voters change their vote to A > B > C, thus betraying their true
co-favorite B but improving the election result in their view. (This latter example is due to Kevin Venzke.)

Theorem 10 (FBC-obeying COAF systems). The COAF voting systems (aside from trivial ones where no voter choice
is possible) which obey FBC, are precisely the ones whose convex-hull’s extreme points are the 2C approval-votes. (These
include approval voting itself, and range voting.)

Proof: If your favorite candidate is not one of the k ≥ 2 pre-election-poll frontrunners, then it is easy to see in the Gaussian
model of §5 that your vote-score for him will necessarily be below the strategic vote-score you give to one of those frontrunners,
in some situations, unless the set of allowed C-vector votes, scaled and translated to just fit inside the C-dimensional unit
cube, includes every one of the 2C corners of that hypercube (i.e. the 2C approval votes). �

Remark. This leads to an infinite number of FBC-obeying COAF voting systems, arising from any subset of the unit
C-dimensional cube which includes all of its vertices. E.g. for a mere 2-parameter infinity of examples, consider range voting
where the voter is required to score at least one candidate above a and at least one candidate below b, for any given a, b with
0 < a < b < 1.

Theorem 11 (Range Voting characterization I). Range voting is: the unique FBC-obeying COAF voting system with
maximum C-dimensional volume for its allowed-vote-set (i.e. maximum“expressive freedom” for the voter) given that that set
is pre-scaled to have some fixed diameter or to have some fixed maximum−minimum score-range for some given candidate.

8.2 Expressivity for strategic voters
For any COAF voting system, there is a set of possible allowed votes you can cast. We now enquire about generically
strategically accessible subsets (SSAs) of those possible votes. Specifically, in the Gaussian model of §5, only certain of
the allowed votes are actually possible outputs of the algorithm that finds strategically optimum votes as a function of both
the Gaussian’s parameters and your candidate-utility C-vector (assuming both consist of generic reals).

If the Gaussian parameters g are regarded as fixed, then in general there is an even smaller g-dependent set SSAGF(g) of
strategically accessible votes.

Let k ≥ 2. Let SSAGF(g, u)k be the subset of allowed votes that still remain strategically accessible given g and your utilities
u for the k candidates most likely (according to g) to win (both regarded as made of generic reals), but with your remaining
candidate-utilities as-yet unspecified. The larger the SSAGF(g, u)ks are, the more“expressive freedom”the strategically-aware
voter may be said to have.

Theorem 12 (Range Voting characterization II). Range voting is the unique COAF voting system (for a given diameter
of6 the allowed-vote compact set) in which, for each k ∈ {0, 2, 3, 4, . . . , C}, the set SSAGF(g, u)k generically has nonzero, and
maximum possible, (C − k)-dimensional measure.

Proof: This may be proven by induction on the number of dimensions (number of candidates). The point is that, inductively,
after k candidates have been removed from the picture by pre-assigning their vote-scores, the remaining vote scores will
necessarily be range votes for C − k candidates. The basis of the induction (1-3 candidate cases) is easy.

In fact, in the 3-candidate case, what we are demanding is that the intersection of the allowed-vote set (pre-scaled to have
fixed Lp diameter) with the plane (X = 1 say) giving the maximum score to one candidate, and the plane (Y = 0, say) giving

6Here “diameter” may be measured in any Lp metric, p ≥ 1.
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the minimum score to another, always be a 1-dimensional set of maximum possible total measure (length), no matter which
two axes “X” and “Y ” were.

Now wlog we may choose X and Y to be such that the allowed-vote set has maximum widths in the X and Y directions, and
minimum in the Z direction, if all such widths are not identical. That already would invalidate the theorem if these widths
were non-identical as we can see by considering the voting system whoxe allowed-vote set is a “brick.” Given that the wdiths
are identical, it is plain that the intersection of the two planes and the vote-set can be a subset of a vertical line whose total
measure is at most equal to the Z-width, and this is always achieved if and only if the entire “edge of the cube” is in the set.
So we may restrict ourselves to voting systems which include the entire “wire frame” 7 of the unit cube defining the maximum
1D widths, in their allowed vote set, in the 3-candidate case. To now maximize 3-volume we now are forced to demand the
allowed vote set be the entire cube. That provides the basis (when C − k = 3) of the induction.

This basis case may be restated as follows: “Range voting is the unique 3-candidate COAF voting system in which it always
remains possible to vote honestly and maximally expressively (i.e. one’s vote score for Q is completely unrestricted between
the maximum and minimum allowed scores for any candidate) about the least-popular-in-the-pre-election-polls candidate
Q, given that this voter has already chosen the scores for the two more-popular candidates by consideration of overriding
strategic considerations.” �

9 Optimum voting in Condorcet and other non-COAF systems

Condorcet voting systems share some features with COAF systems – specifically, one may first “add up” a set of votes (more
precisely, one adds up pairwise election totals of various allowed types), and then deduce the winners from the totals. Hence
it might be hoped that optimum strategy for Condorcet systems would also be easily comprehensible. However, I doubt that.

In a 3-candidate election let X , Y and Z denote the number of A > B, B > C, and C > A votes respectively (or −X is
the number of B > A votes if X is negative). Then 3-candidate Condorcet votes are actually the same thing as 3-candidate
approval votes (with the “stupid”+++ and −−− approval votes disallowed), but the winner is determined quite differently.
Specifically (ignoring ties), A wins if and only if

(X > 0 ∧ Z < 0) ∨ (X > 0 ∧ Y > 0 ∧ Z > 0 ∧ Z < X ∧ Z < Y ) ∨ (X < 0 ∧ Y < 0 ∧ Z < 0 ∧ Z < X ∧ Y < X). (14)

More generally, all of the usual Condorcet election schemes may be thought of as being just like COAF methods but in a
(C−1)C/2-dimensional space where C is the number of candidates, and except with the winner determined by membership in
certain nonconvex polytopal sets. (This was only allowing strict preference orderings as votes. If equal rankings are allowed
in votes, then (C − 1)C-dimensional space.) These nonconvex polytopes can be expressed as boolean combinations of convex
ones (as here) but those boolean expressions can become very large and complicated, e.g. with an exponential-in-C number
of terms in them.

The non-convexity and high logical complexity of the payoff regions means that determining the most-likely way for some
candidate to win (or nearly-win), is no longer necessarily easy. And that in turn leads me to suspect that determining
strategically optimum Condorcet votes might be very difficult if C is allowed to be large.

For several voting systems, including “Instant-Runoff Voting,” it has been proven [1] to be NP-hard – in situations with a
large number C of candidates – to vote optimally.

However, if C is fixed, strategic voting in both IRV and all the usual Condorcet systems, becomes generically feasible. One
simply subdivides the payoff regions into a fixed number of simplices (which are, of course, convex) and then uses them. The
usual procedure then works: pre-order the candidates in decreasing likelihood of their election chances (each is exponentially
hugely more likely than the next to win in the V → ∞ limit); for each candidate X compute the most likely way it can
get into a near-win; and then alter the still-available degrees of freedom in the vote in order to maximize or minimize X ’s
winning chances in that scenario (depending on UX versus a weighted average U for the previous candidates). Keep doing
this until the vote is uniquely specified.

Because the polytopes in C dimensions with C fixed necesaarily have bounded complexity, and because subdividing any
C-dimensional polytope in to simplices is a polynomial time task if C is fixed,8 and finally because convex programming is
in polynomial time, we conclude

Theorem 13 (Polynomial time strategizing). If the number C of candidates is fixed, then in the Gaussian statistical
model there is polynomial-time algorithm to find your strategically-optimal vote (maximizing expected utility for you of the
election winner), in both Instant Runoff Voting and all the usual Condorcet Voting Systems. If C is not fixed, i.e. allowed to
become large, this is still a valid algorithm, although it might no longer be in polynomial time.

This has never been stated previously. Note that for many COAF systems, e.g. range voting, we get a polynomial-time
algorithm even with no constraint on C, but that is not the case here.

7Actually, only half of the wires are demanded, and a specific half, but this does not matter.
8Chop up everything into convex polytopes using the facial hyperplanes, then divide them into simplices by “coning off” to an extra central

vertex, treating the faces recursively in one dimension lower.
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