
 
 
 
 
 
 
 
 

On the Robustness of Majority Rule* 
 
 
 

by 
 
 
 

Partha Dasguptaa and Eric Maskinb 
 
 
 
 
 

January 1998 
revised June 2007 

 
 
 
 
 
* This work was supported by grants from the Beijer International Institute of Ecological 
Economics, Stockholm and the National Science Foundation.  We thank Salvadoar Barbera 
and John Weymark for helpful comments. 
 
 
a Faculty of Economics, University of Cambridge. 
 
b Institute for Advanced Study and Department of Economics, Princeton University. 



 

 

Abstract 

 

 

 

 We show that simple majority rule satisfies five standard and attractive axioms—

the Pareto property, anonymity, neutrality, independence of irrelevant alternatives and 

(generic) decisiveness—on a bigger class of preference domains than (essentially) any 

other voting rule.  Hence, in this sense, it is the most robust voting rule.  This 

characterization of majority rule provides both an alternative to and generalization of 

May’s (1952) characterization. 

 



 1

1. Introduction 

 How should a society select a president? How should a legislature decide which 

version of a bill to enact? 

 The casual response to these questions is probably to recommend that a vote be 

taken. But there are many possible voting rules—majority rule, plurality rule, rank-order 

voting, unanimity rule, approval voting, instant runoff voting, and a host of others (a voting 

rule, in general, is any method for choosing a winner from a set of candidates on the basis 

of voters’ reported preferences for those candidates1)—and so this response by itself, does 

not resolve the question.  Accordingly, the theory of voting typically attempts to evaluate 

voting rules systematically by examining which fundamental properties or axioms they 

satisfy. 

 One generally accepted axiom is the Pareto property, the principle that if all voters 

prefer candidate x to candidate y, then x should be chosen over y.2  A second axiom with 

strong appeal is anonymity, the notion that no voter should have more influence on the 

outcome of an election than any other3(sometimes called the “one person/one vote” 

principle).  Just as anonymity demands that all voters be treated alike, a third principle, 

                                                 
1 In many electoral systems, a voter reports only his or her favorite candidate, rather than express a ranking of 
all candidates. If there are just two candidates (as in referenda, where the “candidates” are typically “yes” and 
“no”), then both sorts of reports amount to the same thing. But with three or more alternatives, knowing just 
voters’ favorite is not enough to conduct some of the most prominent voting methods, such as majority rule 
and rank-order voting. 
2 Although the Pareto property is quite uncontroversial in the context of political elections, it is not so 
readily accepted—at least by noneconomists (philosophers, in particular)—in other social choice settings.  
Suppose, for example, that the “candidates” were two different national health care plans.  Then, we might 
well imagine that factors such as fairness, scope of choice, degree of centralization could to some degree 
supplant citizens’ preferences. 
3 Like the Pareto property, anonymity is not so widely endorsed in nonelection settings.  In our healthcare 
scenario (see footnote 2), for example, it might be considered proper to give more weight to citizens with 
low incomes. 
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neutrality, requires the same thing for candidates: no candidate should get special 

treatment.4   

 Two particularly prominent voting rules that satisfy all three axioms—Pareto, 

anonymity, and neutrality—are (i) simple majority rule, according to which candidate x is 

chosen if, for all other candidates y in the available set, more voters prefer x to y than y to x; 

and (ii) rank-order voting (also called the Borda count5), under which each candidate gets 

one point for every voter who ranks her first, two points for every voter who ranks her 

second, etc., and candidate x is chosen if his point total is lowest among those in the 

available set. 

 But rank-order voting fails to satisfy a fourth standard principle, independence of 

irrelevant alternatives (IIA), which has attracted considerable attention since its emphasis 

in Nash (1950) and Arrow (1951).6  IIA dictates if candidate x is chosen from the set, and 

now some other candidate y is removed from the set, then x is still chosen..7  To see why 

rank-order voting violates IIA consider an electorate consisting of five voters, Ann, Bob, 

Charlie, Doris, and Elsie.  Suppose that there are three candidates—x, y, and z—and that 

Ann, Bob, and Charlie all prefer x to y and y to z but that Doris and Elsie both prefer y to z 

and z to x.  Then, y will win the election with a point total of 8 (2 points from two first-

                                                 
4 Neutrality is hard to quarrel with in the setting of political elections.  But if instead the “candidates” are, 
say, various amendments to a nation’s constitution, then one might want to give special treatment to the 
alternative corresponding to no change—i.e., the status quo—to ensure that the constitutional change 
occurs only with overwhelming support. 
5 After the eighteenth-century French engineer Jean-Charles Borda, who first formalized rank-order voting 
rules. 
6 The Nash and Arrow versions of IIA differ somewhat.  Here we follow the Nash formulation. 
7 IIA – although perhaps not quite so transparently desirable as the other three—has at least two strong 
arguments in its favor.  First, as the name implies, it ensures that the outcome of an election will be 
unaffected by whether candidates who themselves have no chance of winning are on the ballot or not.  
Second, it is closely connected with the property that voters should have no incentive to vote strategically, 
i.e., at variance with their true preferences (see Theorem 4.73 in Dasgupta, Hammond, and Maskin 1979).  
Still, it has generated considerably more controversy than the other properties, particularly among 
proponents of rank-order voting (the Borda count), which famously violates IIA (see the text to follow). 
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place votes and 6 points from three second–place votes), compared with point totals of 9 

for x and 10 for z.  But notice that if z is not a candidate at all, then x will win with a point 

total of 7 (3 points from three first-place votes and 4 points from two second-place votes) 

compared with y’s point total of 8.  Thus, whether the “irrelevant” candidate z is present or 

absent determines the outcome under rank-order voting, contradicting IIA. 

 Under majority rule (we will henceforth omit the qualification “simple” when this 

does not cause confusion with other variants of majority rule), by contrast, the choice 

between x and any other candidate y turns on only how many voters prefer x to y and how 

many y to x - - and not on whether or not some third candidate z is an option.  Thus, in the 

above example, x is the winner (it beats all other candidates in head-to-head comparisons) 

whether or not z is on the ballot.  In other words, majority rule satisfies IIA. 

 But majority rule has a well-known flaw, discovered by Borda’s arch rival the 

Marquis de Condorcet (1785) and illustrated by the Paradox of Voting (or Condorcet 

Paradox): it may fail to generate any winner.  Specifically, suppose that there are three 

voters 1, 2, 3, three alternatives x, y, z, and that the profile of voters’ preferences is as 

follows 

1 2 3
x y z
y z x
z x y

 

(i.e., voter 1 prefers x to y to z, voter 2 prefers y to z to x, and voter 3 prefers z to x to y).  

Then, as Condorcet noted, a two-thirds majority prefers x to y, so that y cannot be chosen; a 

majority prefers y to z, so that z cannot be chosen; and a majority prefers z to x, so that x 

cannot be chosen.  That is, majority rule fails to select any alternative; it violates 

decisiveness, which requires that a voting rule pick a (unique) winner. 
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 In view of the failure of these two prominent voting methods, rank-order voting and 

majority rule, to satisfy all of the five axioms—Pareto, anonymity, neutrality, IIA and 

decisiveness—it is natural to enquire whether there is some other voting rule that might 

succeed where they fail.  Unfortunately, the answer is negative: no voting rule satisfies all 

five axioms when there are three or more candidates (see Theorem 1), a result closely 

related to Arrow’s (1951) Impossibility Theorem. 

 Still, there is an important sense in which this conclusion is too pessimistic: it 

presumes that to satisfy an axiom a voting rule must conform to that axiom regardless of 

what the combination of voters’ preferences turn out to be.8  Yet, in practice, some 

combinations may be highly unlikely.  One reason for this may be ideology.  As Black 

(1948) noted, in many elections, the typical voter’s attitudes toward the leading candidates 

will be governed largely by how far away they are from his own position in left-right 

ideological space.  This means that in the 2000 U.S. presidential election, where the four 

major candidates from left to right were Ralph Nader, Al Gore, George W. Bush, and Pat 

Buchanan, a voter favoring Gore might have the ranking 

Gore 
Nader 
Bush 
Buchanan 

 
but would be highly unlikely to rank the candidates in say, the order 

Gore 
Buchanan 
Bush 
Nader, 

 

                                                 
8 In technical language, this is called the unrestricted domain requirement. 

 
or even           
 
 

Gore 
Bush 
Nader 
Buchanan, 
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since Bush is closer than Buchanan to Gore ideologically.  In other words, the graph of a 

voter’s utility for candidates will be single-peaked when the candidates are arranged 

ideologically on the horizontal axis.  Single-peakedness is of interest because, as Black 

showed, majority rule satisfies decisiveness generically9 when voters’ preferences conform 

to this restriction. 

 In fact, single-peakedness is by no means the only plausible restriction on 

preferences that ensures the decisiveness of majority rule.  The 2002 French presidential 

election, where the three main candidates were Lionel Jospin (Socialist), Jacques Chirac 

(Conservative), and Jean-Marie Le Pen (National Front), offers another example.  In that 

election, voters—regardless of their views on Jospin and Chirac—had extreme views on Le 

Pen: polls suggested, that among the three candidates, nearly everybody ranked him first or 

last; very few placed him in between.  Whether such polarization is good for France is open 

to debate, but it is definitely good for majority rule: as we will see in section 3, such a 

restriction—in which one candidate is never ranked second—guarantees, like single-

peakedness, that majority rule will be generically decisive. 

 Thus, majority rule works well—in the sense of satisfying our five axioms—for 

some domains of voters’ preferences, but not for others (including the unrestricted domain).  

A natural issue to raise, therefore, is how its performance compares with that of other 

voting rules.  As we have already noted, no voting rule can work well for all domains.  So 

the obvious question to ask is: which voting rule(s) works well for the biggest class of 

                                                 
9 We clarify what we mean by “generic” decisiveness below. 
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domains (and, in particular, is there a voting rule that works well for a bigger class of 

domains than majority rule does)?10 

 We show that majority rule is the unique answer to this question.  Specifically, we 

establish (see Theorem 2) that if a given voting rule F works well on a domain of 

preferences, then majority rule works well on that domain too.  Conversely, if F differs 

from majority rule11, there exists some other domain on which majority rule works well but 

F does not. 

 Thus majority rule is essentially uniquely the voting rule that works well on the 

most domains; it is, in this sense, the most robust voting rule.12  Indeed, this gives us a 

characterization of majority rule (see Theorem 3) different from the classic one derived by 

May (1952).  For the case of two alternatives, May showed that majority rule is the unique 

voting rule satisfying a weak version of decisiveness, anonymity, neutrality, and a fourth 

property, positive responsiveness.13  Our Theorem 3 strengthens decisiveness, omits 

positive responsiveness and imposes Pareto and IIA to obtain an alternative 

characterization that applies not just to the two-alternative case but generally. 

 Theorem 2 is related to a result obtained in Maskin (1995).  Like May, Maskin 

imposed somewhat different axioms from ours.  In particular, instead of decisiveness—

which requires that there be a unique winner—he allows for the possibility of multiple 

                                                 
10 It is easy to exhibit voting rules that satisfy four out of our five properties on all domains of preferences.  
For example, supermajority rules such as 2

3 -majority rule (which chooses alternative x over alternative y if 
x garners at least a two-third majority over y) satisfy Pareto, anonymity and neutrality, and IIA on any 
domain.  Similarly, rank-order voting satisfies Pareto, anonymity, neutrality, and decisiveness on any 
domain. 
11 More accurately, the hypothesis is that F differs from majority rule for a “regular” preference profile 
belonging to a domain on which majority rule works well. 
12 More precisely, any other maximally robust voting rule can differ from majority rule only for “irregular” 
profiles on any domain on which it works well (see Theorem 3). 
13 A voting rule is positively responsive if wherever alternative x is chosen (perhaps not uniquely) for a 
given specification of voters’ preferences and those preferences are then changed only so that x moves up 
in some voter’s ranking, then x becomes uniquely chosen. 
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winners but insists on transitivity (indeed, the same is true of some earlier versions of this 

paper; see Dasgupta and Maskin 1998): if x beats y and y beats z, then x should beat z.  But 

more significantly, his proposition requires two strong and somewhat unpalatable 

assumptions.  The first is that the number of voters be odd.  This is needed to rule out exact 

ties: situations where exactly half the population prefers x to y and the other half prefers y 

to x (oddness is also needed for much of the early work on majority rule, e.g., Inada, 1969).  

In fact, our own results also call for avoiding such ties.  But rather than simply assume an 

odd number of voters, we use the fact that even when there is an even number, an exact tie 

is unlikely if there are many voters.  Hence, we suppose a large number of voters and ask 

only for generic decisiveness (i.e., decisiveness for “almost all” preferences).  Formally, we 

work with a continuum of voters, but it will become clear that we could alternatively 

assume a finite number by defining generic decisiveness to mean “decisive for a 

sufficiently high proportion of preferences.”  In this way, we avoid “oddness” (an 

unappealing assumption, since it presumably holds only half the time).   

 Second, Maskin (1995) invokes the restrictive assumption that the voting rule F 

being compared with majority rule satisfies Pareto, anonymity, IIA and neutrality on any 

domain.  This is quite restrictive because, although it accommodates certain methods (such 

as the supermajority rules and the Pareto-extension rules), it eliminates such voting rules as 

the Borda count, plurality voting, and runoff voting.  These are the most common 

alternatives in practice to majority rule, yet fail to satisfy IIA on the unrestricted domain.  

We show that this assumption can be dropped altogether. 

 We proceed as follows.  In section 2, we set up the model.  In section 3, we define 

our five properties formally: Pareto, anonymity, neutrality, independence of irrelevant 
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alternatives, and generic decisiveness.  For completeness (Theorem 1), we show that no 

voting rule always satisfies these properties, i.e., always works well.  In section 4 we 

establish two lemmas that characterize when rank-order voting and majority rule work 

well.  We use the second lemma in section 5 to establish our main result, Theorem 2.  We 

obtain our alternative to May’s (1952) characterization as Theorem 3.  Finally, in section 6 

we discuss a few extensions. 

 

2. The Model 

 Our model in most respects falls within a standard social-choice framework. Let X 

be the set of social alternatives (including alternatives that may turn out to be infeasible). 

For technical convenience, we take X to be finite with cardinality ( )2m ≥ . The possibility 

of individual indifference often makes technical arguments in the social-choice literature a 

great deal messier (see, for example, Sen and Pattanaik, 1969). We shall simply rule it out 

by assuming that voters’ preferences can be represented by strict orderings (of course, with 

only a finite number of alternatives, the assumption that a voter is not exactly indifferent 

between any two alternatives does not seem very strong.) If R is a strict ordering, then, for 

any alternatives ,x y X∈ with x y≠ , the notation xRy denotes “x is strictly preferred to y in 

ordering R.”14  For any subject Y X⊆  and any strict ordering R, let 
Y

R  be the restriction 

of R to Y. 

Let Xℜ be the set of all logically possible strict orderings of X. We shall typically 

suppose that voters’ preferences are drawn from some subset Xℜ⊆ℜ .  For example, for 

                                                 
14 Formally, a strict ordering (sometimes called a “linear ordering”) is a binary relation that is reflexive, 
complete, transitive, and antisymmetric (antisymmetry means that if xRy and x ≠ y, then it is not the case that 
yRx) 
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some ordering ( )1 2, , , mx x x…  of the social alternatives, ℜ  consists of single peaked 

preferences (relative to this ordering) if, for all R∈ℜ , whenever 1i ix Rx +  for some i, then 

1j jx Rx +  for all j i> ; and whenever 1i ix Rx+  for some i, then 1j jx Rx+ for all j i< . 

 For the reason mentioned in the Introduction (and elaborated on below), we shall 

suppose that there is a continuum of voters indexed by points in the unit interval [ ]0,1 .  A 

profile  on ℜR  is a mapping 

[ ]: 0,1 →ℜR , 

where ( )iR  is voter i’s preference ordering.  Hence, profile R is a specification of the 

preferences of all voters.  For any Y X⊆ , 
Y

R  is the profile R restricted to Y. 

 We shall use Lebesgue measure μ  as our measure of the size of voting blocs.15  

Given alternatives x and y and profile R, let 

( ) ( ){ },q x y i x i yμ=R R| . 

Then ( ),q x yR  is the fraction of the population preferring x to y in profile R. 

 A voting rule F is a mapping that, for each profile on XℜR 16 and each feasible 

subsetY X⊆ , assigns a subset (possibly empty) ( ),F Y X⊆R , where if 
Y Y

′=R R , then 

                                                 
15 Because Lebesgue measure is not defined for all subsets of [ ]0,1 , we will restrict attention to profiles R 

such that, for all ( ){ } and ,x y i x i y| R  is a Borel set.  Call these Borel profiles. 
16  Strictly speaking, we must limit attention to Borel profiles—see footnote 15—but henceforth we will not 
explicitly state this qualification. 
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( ) ( ), ,F Y F Y′=R R .17  Y can be interpreted as the feasible set of alternatives and ( ),F YR  

as the winning candidate(s). 

 For example, suppose that MF  is simple majority rule.  Then, for all R and Y, 

  ( ) ( ) ( ){ }, , ,  for all MF Y x Y q x y q y x y Y= ∈ ≥ ∈R RR , 

i.e., x is a winner in Y provided that, for any other alternative y Y∈ , the proportion of 

voters preferring x to y is no less than the proportion preferring y to x.  Such an alternative x 

is called a Condorcet winner.  Note that there may not always be a Condorcet winner, i.e., 

( ),MF YR  need not be nonempty (if, for example, the profile corresponds to that in the 

Condorcet Paradox). 

 A second example comprises the “supermajority” rules.  For instance, two-thirds 

majority rule 2 3F  can be defined so that, for all R and Y, 

 ( )2 3 ,F R Y Y ′= , 

where Y ′  is the biggest subset of Y such that, for all ,x y Y ′∈  and z Y Y ′∈ − , ( ) 2
3,q x y <R  

and ( ) 2
3,q x z ≥R .  That is, x is a winner if it beats all nonwinners by at least a two-thirds 

majority, and it neither beats nor is beaten by any other winner by two-thirds majority or 

more. 

 As a third example, consider rank-order voting.  Given XR∈ℜ  and Y, let ( )Y
Rv x  

be 1 if x is the top-ranked alternative of R in Y, 2 if x is second-ranked in Y, and so on.  

Then, given profile ( ) ( ) ( )
1

0
,  Y

iv x d iμ∫ RR  is alternative x’s rank-order score (the total 

                                                 
17 The requirement that ( ) ( ), ,F Y F Y′=R R  if 

Y Y
′=R R  may seem to resemble IIA, but it is 

actually much weaker.  It says merely that the winner(s) should be determined only by voters’ preferences 
for feasible candidates, and not by their preferences for infeasible ones.  Indeed, all the voting rules we 
have discussed—including rank-order voting—satisfy this requirement. 
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number of points assigned to x) or Borda count.  If ROF  is rank-order voting, then, for all 

R and Y,  

 ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 1

0 0
, ,  for all RO Y Y

i iF Y x Y v x d i v y d i y Yμ μ= ∈ ≤ ∈∫ ∫R RR . 

 Finally, consider plurality rule PF  defined so that for all R and Y, 

 

( ) ( ) { }{ } ( ) { }{ }{ },  for all   for all for all F Y x Y i x i y y Y x i z i y y Y x z Yρ μ μ= ∈ ∈ − ≥ ∈ − ∈R R R

 

That is, x is a plurality winner if it is top-ranked in Y for at least as many voters as any other 

alternative in Y. 

3. The Properties 

 We are interested in five standard properties that one may wish a voting rule to 
satisfy. 
 
 
 
Pareto Property on ℜ : For all R on ℜ  and all ,x y X∈  with x y≠ , if, for all ( ),  i x i yR , 
 
 then, for all Y, x Y∈  implies ( ),y F Y∉ R . 
 
 
 
 In words, the Pareto property requires that if all voters prefer x to y, then the voting 

rule should not choose y if x is feasible.  Virtually all voting rules used in practice satisfy 

this property.  In particular, majority rule and rank-order voting (as well as supermajority 

rules and plurality rule) satisfy it on the unrestricted domain Xℜ . 

Anonymity on ℜ :  Suppose that [ ] [ ]: 0,1 0,1π →  is a measure-preserving permutation of 

[ ]0,1  (by “measure-preserving” we mean that, for all Borel sets 
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[ ] ( ) ( )( )0,1 ,  T T Tμ μ π⊂ = ).  If, for all on ℜR , πR  is the profile such that 

( ) ( )( )i iπ π=R R  for all i, then, for all Y, ( ) ( ), ,F y F yπ =R R . 

In words, anonymity says that the winner(s) should depend only on the distribution 

of voters’ preferences and not on who has those preferences.  Thus if we permute the 

assignment of voters’ preferences by π , the winners should remain the same. (The reason 

for requiring that π  be measure-preserving is to ensure that the fraction of voters preferring 

x to y be the same for πR  as it is for R .)  Anonymity embodies the principle that 

everybody’s vote should count equally.18  It is obviously satisfied on Xℜ  by both majority 

rule and rank-order voting, as well as by all other voting rules we have discussed so far. 

Neutrality on ℜ : Suppose that : X Xρ →  is a permutation of X .  For all R  and Y, let 

,YρR  be a profile such that, for all i and all x, ( ),y Y x i y∈ R  if and only if 

( ) ( ) ( ),Yx i yρρ ρR .  Also, for all Y, let ( ){ }1Y x x Yρ ρ −= ∈ .  Then, for all R  on ℜ and 

all Y, ( )( ) ( ),, ,YF Y F Yρ ρρ =R R , provided that there exists a profile ,YρR on ℜ . 

In words, neutrality requires that a voting rule treat all alternatives symmetrically.  Once 

again, all the voting rules we have talked about satisfy neutrality, including majority rule 

and rank-order voting. 

 As noted in the Introduction, we will invoke the Nash (1950) version of IIA: 

Independence of Irrelevant Alternatives (IIA) on ℜ : For all profiles R on ℜ and all Y, if  

( ),x F Y∈ R  and Y ′  is a subset of Y such that x Y ′∈ , then ( ),x F Y ′∈ R . 

                                                 
18 Indeed, it is sometimes called “voter equality” (see Dahl, 1989). 
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 Clearly, majority rule satisfies IIA on the unrestricted domain Xℜ  because if x 

beats each other alternative by a majority, it continues to do so if some of those other 

alternatives are removed.  However, rank-order voting violates IIA on Xℜ  as we showed 

by example. 

 Finally, we require that voting rules select a single winner: 

Decisiveness: For all R and Y, ( ),F YR is a singleton, i.e., it consists of a single element. 

Actually, decisiveness is too strong because, for example, it rules out the possibility of 

exact ties.  Suppose, say, that 2m =  and exactly half the population prefers x to y, while 

the other half prefers y to x.  Then no neutral voting rule will be able to choose between x 

and y; they are perfectly symmetric.  Nevertheless this indecisiveness is a knife-edge 

phenomenon - - it requires that the population be split precisely 50-50. 

Thus, there is good reason for us to “overlook” it as pathological or irregular.  And, 

because we are working with a continuum of voters, there is a formal way in which we can 

do so. 

 Specifically, let S be a subset of (0, 1).  A profile R on ℜ  is regular with respect to 

S (which we call an exceptional set) if, for all alternatives x and y, 

 ( ), .q x y S∉R  

That is, a regular profile is one for which the proportions of voters preferring one 

alternative to another all fall outside the specified exceptional set. 

Generic Decisiveness on ℜ :  There exists a finite exceptional set S such that, for all Y and 

all profiles R on ℜ  that are regular with respect to S, ( ),F YR is a singleton. 
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 In other words, generic decisiveness requires that a voting rule be decisive only for 

regular profiles, ones where the preference proportions do not fall into some finite 

exceptional set.  For example, as Lemma 2 below implies, majority rule is generically 

decisive on a domain of single-peaked preferences because there exists a unique winner for 

all regular profiles if the exceptional set consists of the single point 1
2 , i.e., { }1

2S =   

 In view of the Condorcet paradox, majority rule is not generically decisive on 

domain Xℜ .  By contrast, rank-order voting is generically decisive on all domains 

including Xℜ .  We shall say that a voting rule works well on a domain ℜ  if it satisfies the 

Pareto property, anonymity, neutrality, IIA, and generic decisiveness on that domain.  

Thus, in view of our previous discussion, majority rule works well, for example, on a 

domain of single-peaked preferences.  In section 4, we will give general characterization of 

when both majority rule and rank-order voting work well. 

 Although decisiveness is the only axiom for which we are considering a generic 

version, we could easily accommodate generic relaxations of the other conditions too.  This 

seems pointless, however, because, to our knowledge, no commonly-used voting rule has 

nongeneric failures except with respect to decisiveness. 

Theorem 1:  If 3m ≥  no voting rule works well on Xℜ . 

Proof:  Suppose, contrary to the claim, F works well on Xℜ .  We will use F to construct a 

social welfare function satisfying the Pareto property, anonymity, and IIA, contradicting 

the Arrow impossibility theorem (Arrow 1951). 

 Let S be the exceptional set for F on ℜ .  Because S is finite (by definition of 

generic decisiveness), we can find an integer 2n ≥  such that, if we divide the population 

into n equal groups, any profile for which all voters within a given group have the same 
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ranking must be regular with respect to S.  Let 10, n⎡ ⎤⎣ ⎦ be group 1, ( 1 2,n n ⎤⎦ be group 2, …, and 

( 1 ,1n
n
− ⎤⎦  be group n.  Given profile R for which all voters within a given group have the 

same ranking and X X′ ⊆ , let X ′R  be the profile that is the same as R except that the 

elements of X ′  have been moved to the top of all voters’ rankings: for all i,  

 ( ) ( ) if and only if  ,  for all ,  or  ,Xx i y x i y x y X x y X′ ′∈ ∉R R  

   ( ) ,  for all  and Xx i y x X y X′ ′ ′∈ ∉R  

Construct a social welfare function : n
X Xf ℜ →ℜ  so that, for all n-tuples ( )1, , n

n XR R ∈ℜ…  

and ,x y X∈ , 

(1)  ( ) { }( ),
1, ,  if and only if ,x y

nxf R R y x F X∈… R    , 

where R corresponds to ( )1, , nR R… , i.e., it is the profile such that, for all i and j, ( ) ji R=R  

if and only if voter i belongs to group j.  To begin with, f is well-defined because, since F 

satisfies the Pareto principle, either { }( ), ,x yx F X∈ R  or { }( ), ,x yy F X∈ R .  Similarly, f 

satisfies the Pareto principle and anonymity. 19  To see that f satisfies IIA (the Arrow 1951 

version), consider two n-tuples ( )1, , nR R…  and ( )1
ˆ ˆ, , nR R…  such that 

( )
{ } ( )

{ }1 1, ,
ˆ ˆ, , , ,n nx y x y

R R R R=… … , and let R  and R̂  be the corresponding profiles.  From 

generic decisiveness, Pareto, and IIA 

   { }( ) { } { }( ) { }, ,, , , ,x y x yF X F x y x y= ∈R R  

(2) 

                                                 
19 We have previously defined the Pareto property and anonymity for voting rules.  Here we mean their 
natural counterparts for social welfare functions.  So Pareto requires that if everyone prefers x to y, the 
social ranking will prefer x to y.  And anonymity dictates that if we permute voters’ rankings, the social 
ranking remains the same. 
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   { }( ) { } { }( ) { }, ,ˆ ˆ, , , ,x y x yF X F x y x y= ∈R R    . 

But by definition of a voting rule, { } { }( ) { } { }( ), ,ˆ, , , ,x y x yF x y F x y=R R , and so from (1) and 

(3) 

   ( ) ( )1 1
ˆ ˆ, ,  and only if , ,n nxf R R y xf R R y… …    , 

establishing Arrow-IIA. 

 Finally, we must show that f is transitive.  Consider an n-tuple ( )1, , nR R…  and 

alternatives x, y, z for which  

  ( ) ( )1 1, ,  and , , .n nxf R R y yf R R z… …  

Consider { }( ), , ,x y zF XR , where R is the profile corresponding to ( )1, , nR R… .  From 

Pareto, { }( ) { }, , , , , .x y zF X x y z∈R   If { }( ), , ,x y zF X y=R , then from IIA { }( ), ,x yF X y=R , 

contradicting ( )1, , nxf R R y… .  If { }( ), , ,x y zF X z=R , we can derive a similar contradiction 

with ( )1, , nyF R R z…   Hence, { }( ), , , ,x y zF X x=R  and so we conclude, from IIA, that 

{ }( ), , ,x zF X x=R  implying that ( )1, , nxF R R z… .  Thus, transitivity obtains, and so f is a 

social welfare function satisfying Pareto, anonymity, and IIA. 

 Q.E.D. 

4. Preliminary Results 

 We have seen that rank-order voting violates IIA on Xℜ .  We next show, however, 

that it satisfies IIA on domains for which “quasi-agreement” holds. 
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Quasi-agreement on ℜ : Within each triple { }, ,   x y z X⊆ , there exists an alternative, 

say x , such that either (a) for all ,  and R xRy xRz∈ℜ ; or (b) for all ,  and R yRx zRx∈ℜ ; or 

(c) for all R∈ℜ , either  or yRxRz zRxRy . 

In other words, quasi-agreement holds on domain ℜ  if, for any triple of alternatives, all 

voters with preferences in ℜ  agree on the relative ranking of one of these alternatives: 

either it is best within the triple, or it is worst, or it is in the middle. 

Lemma 1:  ROF  satisfies IIA on ℜ  if and only if quasi-agreement holds on ℜ . 

Proof:  See appendix. 

 We turn next to majority rule.  We already suggested in the previous section that a 

single-peaked domain ensures generic decisiveness.  And we noted in the Introduction that 

the same is true when the domain satisfies the property that, for every triple of alternatives, 

there is one that is never “in the middle.”  But these are only sufficient conditions for 

generic transitivity; what we want is a condition that is both sufficient and necessary. 

 To obtain that condition, note that, for any three alternatives x, y, z, there are six 

logically possible strict orderings, which can be sorted into two Condorcet “cycles”20: 

  cycle 1        cycle 2

x y z x z y
y z x z y x
z x y y x z

|
|
|  

We shall say that a domain ℜ  satisfies the no-Condorcet-cycle property 21 if it contains no 

Condorcet cycles.  That is, for every triple of alternatives, at least one ordering is missing 

                                                 
20 We call these Condorcet cycles because they constitute preferences that give rise to the Condorcet 
paradox 
21 Sen (1966) introduces this condition and calls it value restriction. 
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from each of cycles 1 and 2 (more precisely for each triple { }, ,x y z , there do not exist 

orderings R, R ,R′ ′′ in ℜ  that, when restricted to { }, ,x y z , generate cycle 1 or cycle 2). 

Lemma 2:  Majority rule is generically decisive on domain ℜ  if and only if ℜ  satisfies 

the no-Condorcet-cycle property.22 

Proof:  If there existed a Condorcet cycle for alternatives { }, ,x y z  in ℜ , then we could 

reproduce the Condorcet paradox by taking { }, ,Y x y z= .  Hence, the no-Condorcet-cycle 

property is clearly necessary. 

 To show that it is also sufficient, we must demonstrate, in effect, that the Condorcet 

paradox is the only thing that can interfere with majority rule’s generic decisiveness.  To do 

this, let us suppose that MF  is not generically decisive on domain ℜ .  Then, in particular, 

if we let { }1
2S =  there must exist Y and profile R on ℜ  that is regular with respect to { }1

2  

but for which ( )MF R  is either empty or contains multiple alternatives.  If there exist 

( ), ,Mx y F y∈ R , then 

   ( ) ( ) 1
2, ,q x y q y x= =R R    , 

contradicting the fact that R is regular with respect to { }1
2 .  Hence ( ),MF YR  must be 

empty.  Choose 1x Y∈ .  Then, because ( )1 ,Mx F y∉ R , there exists 2x y∈  such that 

   ( ) 1
2 1 2,q x x >R    . 

Similarly, because ( )2 ,Mx F y∉ R , there exists 3x Y∈  such that 

   ( ) 1
3 2 2,q x x >R    . 

                                                 
22 For the case of an odd and finite number of voters, Inada (1969) establishes that the no-Condorcet-cycle 
property is necessary and sufficient for majority rule to be transitive. 
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Continuing in this way, we must eventually reach tx Y∈  such that 

(3)   ( ) 1
1 2,t tq x x − >R  

But there exists some tτ <  such that 

(4)   ( ) 1
2, tq x xτ >R    . 

If t is the smallest index for which this can happen, then 

(5)   ( ) 1
1 2,tq x xτ− >R    . 

Combining (3) and (5), we conclude that there must be a positive fraction of voters in R 

who prefer tx  to 1tx −  to xτ , i.e., 

(6)   1
t
t

x
x
xτ

− ∈ℜ    .23 

By similar argument, it follows that 

   1

1

   
 ,  
   

t
t

t t

x x
x x
x x

τ
τ
−

−

∈ℜ    . 

Hence, ℜ violates the no-Condorcet-cycle property, as was to be shown. 

 Q.E.D. 

 It is easy to check that a domain of single-peaked preferences satisfies the no-

Condorcet-cycle property.  Hence, Lemma 2 implies that majority rule is generically 

decisive on such a domain.  The same is true of the domain we considered in the 

Introduction in connection with the 2002 French presidential election. 

5. The Robustness of Majority Rule 

We can now state our main finding: 

                                                 
23 To be precise, formula (6) says that there exists an ordering in R∈ℜ  such that 1t tx Rx Rxτ− . 
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Theorem 2:  Suppose that voting rule F works well on domain ℜ .  Then, majority rule 

MF  works well on ℜ  too.  Conversely, suppose that MF  works well on domain Mℜ .  

Then, if there exists profile  on MℜDR , regular with respect to F’s exceptional set, such 

that 

(7)   ( ) ( )mF F≠D DR R    , 

there exists a domain ′ℜ  on which MF  works well, but F does not. 

Remark:  Without the requirement that the profile DR  for which and MF F  differ belongs 

to a domain on which majority rule works well, the converse assertion above would be 

false.  In particular, consider a voting rule that coincides with majority rule except for 

profiles that violate the no-Condorcet-cycle property.  It is easy to see that such a rule 

works well on any domain for which majority rule does because it coincides with majority 

rule on such a domain. 

Proof:  Suppose first that F works well on ℜ .  If, contrary to the theorem, MF  does not 

work well on ℜ , then, from Lemma 2, there exists a Condorcet cycle in ℜ : 

(8)    
         
 ,    ,   
         

x y z
y z x
z x y

∈ℜ    , 

for some , ,x y z X∈ .  Let S be the exceptional set for F on ℜ .  Because S is finite (by 

definition of generic transitivity), we can find an integer n such that, if we divide the 

population into n equal groups, any profile for which all the voters in each particular group 

have the same ordering inℜ  must be regular with respect to S. 

 Let 10, n⎡ ⎤⎣ ⎦  be group 1, ( 1 2,n n ⎤⎦  be group 2, …, and ( 1 ,1n
n
− ⎤⎦  be group n.  Consider a 

profile 1R on ℜ  such that all voters in group 1 prefer y to x and all voters in the other 

groups prefer x to y.  That is, the profile is 
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(9)   1 2 n
y x x
x y y

"    . 

From (8), such a profile exists on ℜ .  

 Because F is generically decisive on ℜ , there are two cases: either (i) 

{ }( )1, ,F x y x=R  or (ii) { }( )1, ,F x y y=R  strictly preferred to x under ( )1F R . 

Case (i): { }( )1, ,F x y x=R  

 Consider a profile 1
∗R  on ℜ  in which all voters in group 1 prefer x to y to z; all 

voters in group 2 prefer y to z to x; and all voters in the remaining groups prefer z to x to y.  

That is, 

                24 

(10)   1
1 2 3   n
x y z z
y z x x
z x y y

∗ = "R    . 

Notice that, in profile 1
∗R , voters in group 1 prefer x to z and that all other voters prefer z to 

x.  Hence, neutrality and the case (i) hypothesis imply that  

(11)   { }( )1 , ,F x z z∗ =R    . 

Observe also that, in 1
∗R , voters in group 2 prefer y to x and all other voters prefer x to y.  

Hence from anonymity and neutrality and the case (i) hypothesis, we conclude that  

(12)    { }( )1 , ,F x y x∗ =R    . 

Now (11), (12), IIA, and generic decisiveness imply that  

(13)    { }( )1 , , ,F x y z z∗ =R    . 
                                                 
24 This is not quite right because we are not specifying how voters rank alternatives other than x, y, and z.  
But from IIA, these other alternatives do not matter for the argument. 
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But (13) and IIA imply that  

    { }( )1 , ,F y z z∗ =R    . 

Hence, from neutrality, for any profile 2R  on ℜ such that  

(14)    1 2 3 n
y y x x
x x y y

"    , 

we must have, 

(15)    { }( )2 , ,F x y x=R    . 

That is, we have shown that if x is chosen over y when just one out of n groups prefers y to 

x (as in (9)), then x is again chosen over y when two groups out of n prefer y to x (as in 

(14)). 

 Now choose 2
∗R  on ℜ  so that 

(16)   2
1 2 3 4 n
x y y z z
y z z x x
z x x y y

∗ = "R    . 

Arguing as above, we can use (14) – (16) to show that x is chosen over y if three groups out 

of n prefer y to x.  Continuing iteratively, we conclude that x is chosen over y even if 1n −  

groups out of n prefer y to x, which, in view of neutrality, violates the case (i) hypothesis.  

Hence case (i) is impossible. 

Case (ii): { }( )1, ,F x y y=R  

But from the case (i) argument, case (ii) leads to the same contradiction as before.  We 

conclude that MF  must work well on ℜ  after all, as claimed. 
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 For the converse, suppose that there exists domain Mℜ  on which MF  works well.  

If F does not work well on Mℜ too, we can take M′ℜ ℜ=  to complete the proof.  Hence, 

assume that F works well on Mℜ  with exceptional set S and that there exists ,Y x  and 

y Y∈ , and regular profile DR  on Mℜ  such that ( ) ( ), ,my F Y F Y x= ≠ =D DR R .  Then, 

from IIA, there exist ( )0,1α ∈  with Sα ∉  and  

(17)   1 α α− >  , 

and ( ), 1q x y α= −DR  such that 

{ }( ), ,MF x y x=DR    . 

and 

(18)   { }( ), ,F x y y=DR    . 

Because F  satisfies IIA on Mℜ , we can assume that DR  consists of just two 

orderings  ,R R′ ′′∈ℜ  such that 

(19)    and y R x x R y′ ′′    . 

Furthermore, because F  is anonymous on Mℜ , we can write DR  as 

(20)   [ ) [ ]0, ,1
R R
α α

=
′ ′′

DR    , 

so that voters between 0 and α  have preferences R′ , and those between α  and 1 have R′′ . 

 

Consider { },z x y∉  and profile DDR  such that 
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(21)  [ ) [ ) [ ]0, ,1 1 ,1
.

z z x
y x z
x y y

α α α α− −
=   DDR 25 

Note that in (21) we have left out the alternatives other than x, y, and z.  To make matters 

simple, assume that the orderings of DDR  are the same for those alternatives.  Suppose, 

furthermore, that, in these orderings, x, y, and z are each preferred to any alternative not in 

{ }, ,x y z .  Then, because ,Sα ∉ DDR  is regular. 

 Let ′ℜ  consist of the orderings in DDR .  From Lemma 2, MF  works well on ′ℜ .  

So, we can assume that F does too (otherwise, we are done).  From generic decisiveness 

and because DDR  is regular, { }( ), , ,F x y zDDR  is a singleton.  From Pareto, we cannot have 

{ }( ), , ,F x y z y=DDR , since z Pareto dominate y.  If { }( ), , ,F x y z x=DDR , then from IIA 

{ }( ), ,F x y x=DDR , contradicting (18).  Thus, we must have { }( ), , ,F x y z z=DDR , implying 

from IIA that { }( ), ,F x z z=DDR , which contradicts (18) because of anonymity and 

neutrality.  Hence, F does not work well on ′ℜ  after all. 

 Q.E.D. 

 As a simple illustration of Theorem 2, let us see how it applies to rank-order voting.  

If { }, ,X x y z= , Lemma 1 implies that ROF  works well, for example, on the domain 

    ,  
x z
y y
z x

⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

   . 

                                                 
25 We have again left out the alternatives other than , ,x y z , which we are entitled to do by IIA.  To make 

matters simple, assume that the orderings of DDR  are all the same for these other alternatives.  Suppose 
furthermore that, in these orderings, , ,x y z  are each preferred to any alternative not in { }, ,x y z . 
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And, as Theorem 2 guarantees, MF  also works well on this domain, since it obviously does 

not contain a Condorcet cycle.  Conversely, on the domain 

(*)    ,   , 
      

x y z
y z w
z x y
w w x

⎧ ⎫⎪ ⎪′ℜ = ⎨ ⎬
⎪ ⎪⎩ ⎭

   , 

{ }( ) { }( ), , , , , , , ,M ROF w x y z F w x y z≠R R  for the profile R in which the proportion of 

voters with ordering 
x
y
z
w

is .3, the proportion with ordering 
y
z
x
w

is .3 and that with ordering 
z
w
y
x

 

is .4. 

From Lemma 2, MF  works well on ′ℜ  given by (*).  Hence, from Lemma 1, ′ℜ  

constitutes a domain on which MF  works well but ROF  does not, as guaranteed by 

Theorem 2. 

 In the Introduction, we mentioned May’s (1952) characterization of majority rule 

for two alternatives.  In view of Theorem 2, we can provide an alternative characterization, 

which also extends to more than two alternatives.  Specifically, call two voting rules F and 

F ′  generically identical on domain ℜ  if there exists a finite set ( )0,1S ⊂  such that 

( ) ( ), ,F Y F Y′=R R  for all Y and all on ℜR  for which ( ),q x y S∉R .  Call F maximally 

robust if there exists no other voting rule that (i) works well on every domain on which F 

works well and (ii) works well on some domain on which F does not work well.  

Theorem 1 implies that majority rule can be characterized as essentially the unique voting 

rule that satisfies Pareto, anonymity, neutrality, IIA and generic decisiveness on the most 

domains: 
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Theorem 3: Majority rule is maximally robust, and any other maximally robust voting rule 

F is generically the same as majority rule on any domain on which F or majority rule works 

well. 

6.  Further Work 

 The symmetry inherent in neutrality is often a reasonable and desirable property—

we would presumably want to treat all candidates in a presidential election the same.  

However, there are also circumstances in which it is natural to favor certain alternatives.  

The rules for changing the U.S. Constitution are a case in point.  They have been 

deliberately devised so that, at any time, the current version of the Constitution—the status 

quo—is difficult to revise. 

 In related work (Dasgupta and Maskin 2007), we show that when neutrality is 

dropped (and the requirement that ties be broken “consistently” is also imposed), then 

unanimity rule with an order of precedence 26(the rule according to which x is chosen over 

y if it precedes y in the order of precedence, unless everybody prefers y to x) supplants 

majority rule as the most robust voting rule.  It is, of course, not surprising that with fewer 

axioms to satisfy, there should be voting rules that satisfy them all on a wider class of 

domains than majority rule does.  Nevertheless, it is striking that, once again, the 

maximally robust rule is so simple and familiar. 

                                                 
26 For discussion of this voting rule in a political setting see Buchanan and Tullock  (1962). 



Appendix 

 

Lemma 1: For any domain ℜ , ROF  satisfies IIA on ℜ  if and only QA holds on ℜ . 

Proof: Assume first that QA holds on ℜ .  We must show that ROF  satisfies IIA on ℜ .  

Consider profile R and subset Y such that ( ),F Y x=R  

(A1)   ( ),F Y x=R    , 

for some x X∈ .  We must show that, for all { }y Y x∈ − , 

(A2)   { }( ),F Y y x− =R    . 

Suppose, to the contrary that 

(A3)   { }( ) { }, ,  for F Y y z z Y x− = ∈ −R    . 

(A1) and (A2) together imply that z must rise relative to x in some voters’ rankings in R 

due to the deletion of y, i.e. 

(A4)   
x
y
z
∈ℜ    . 

But (A2) implies that there exists i such that 

(A5)   ( )z i xR    . 

Hence (A4),(A5) and QA imply that 

(A6)   { }, ,
,

x y z

x z
y y
z x

⎧ ⎫⎪ ⎪ = ℜ⎨ ⎬
⎪ ⎪⎩ ⎭

 

Now (A3) and (A6) imply that there exists w Y∈  such that (i) if R∈ℜ  with zRyRx , then 

zRwRx  and (ii) if R′∈ℜ  with xR yR z′ ′  then either (a) wR x′  or (b) zR w′ .  Thus, if (a) 

holds, we have 



 2

(A7)   { }, ,
,

x w z

z w
w x
x z

⎧ ⎫⎪ ⎪ ⊆ ℜ⎨ ⎬
⎪ ⎪⎩ ⎭

 

and if (b) holds 

(A8)   { }, ,
,

x w z

z x
w z
x w

⎧ ⎫⎪ ⎪ ⊆ℜ⎨ ⎬
⎪ ⎪⎩ ⎭

 

But (A7) and (A8) both violate QA< and so (A2) must hold after all. 

 Next, suppose that QA does not hold on ℜ .  Then there exist alternatives x, y, z 

such that 

(A9)   { }, ,
,

x y z

x y
y z
z x

⎧ ⎫⎪ ⎪ ⊆ ℜ⎨ ⎬
⎪ ⎪⎩ ⎭

   . 

Consider the profile ∗R  in which proportion .6 of the population has ranking 
x
y
z

 and 

proportion .4 has 
y
z
x

.  Then  

   { }( ), , ,ROF x y z y∗ =R    . 

But, 

   { }( ), ,ROF x y x∗ =R    , 

Contradicting IIA,  Thus a violation of QA implies that ROF  does not work well. 

           Q.E.D. 
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