ANOMALOUS OUTCOMES IN PREFERENTIAL VOTING

ANTHONY QUAS

ABSTRACT. We consider the preferential voting system and investigate the
frequency of non-monotonic allocations of votes, in which by getting more
votes, a winning candidate can become a losing candidate.

1. INTRODUCTION

There has been considerable attention given over the last centuries to the problem
of finding a voting system that produces outcomes that are genuinely representative
of the will of the electorate. In some of the earliest recorded debate on the issue, in
the late 18th Century, the French Mathematicians Borda and Condorcet became
involved in a debate over the best system to use for election of members to the
French Academy of Sciences. They both introduced voting systems, versions of
which remain in use today. In fact, large numbers of voting systems and variants
are in common use [5, 9].

It is well known that in electoral systems in which one is seeking a winner (or an
overall ordering) from n > 3 candidates, there are a number of desirable conditions
that are mutually incompatible. Specifically, Arrow’s impossibility theorem [2]
shows that the only voting system satisfying monotonicity (informally that getting
extra votes cannot cause a candidate to lose an election), independence of irrelevant
alternatives (where if a non-winning candidate is removed and all of her votes are
transferred to the next preference of the voter, the winner should still win) and
decisiveness (where every election has a winner) is a dictatorship!

In spite of these proven incompatibilities, it is of interest to look for a voting
systems that avoids these difficulties as much as possible. In particular, it is of
interest to consider the frequency of the failure of the various desired conditions.

In the preferential voting system (also known as the alternative vote system, the
Hare system of voting or instant runoff voting), a simpler version of the more widely
used single transferable vote introduced by Hare [8], a voter makes a selection
from the slate of candidates by indicating an order of preference from his top
candidate (marked with a 1) downwards. To count the election, the first place
votes for each candidate are counted up and the candidate with the fewest first
choice votes is eliminated. Each vote for that candidate is then transferred to the
candidate indicated as the next preference. This process is repeated until a single
candidate remains. This candidate is then declared the winner. This system is used
in Australian Elections for the House of Representatives as well as in City Council
elections in Cambridge, Massachusetts. Recently, the system has been adopted in
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San Francisco. It is being considered for implementation in statewide elections in
Alaska and Vermont.

The preferential voting system (and also the single transferable vote or STV
system) has a drawback, which is that it fails to be monotonic. We formally define
this property as follows. Suppose for some particular assignment of votes, candidate
X is the winner. Further suppose the votes are subsequently modified by improving
on certain ballots the position of X relative to the other candidates but without
changing the relative position of any other pair of candidates on any ballot. A
voting system is called monotonic if X is necessarily still be the winner using the
modified ballots.

The following example demonstrates that the preferential voting system fails to
be monotonic. In the first election, the initial proportions of the vote are A: 41%, B:

ABC | ACB | BAC | BCA | CAB | CBA
Election 1 | 20 21 5 25 14 15
Election 2 | 22 21 5 23 14 15

30% and C: 29%. When C is eliminated, the votes marked CAB are redistributed
to A, whereas the votes marked CBA are redistributed to B. Once this is done, A
has 55% of the vote, whereas B has 45% of the vote so A is the winner.

In the second election, the initial proportions of the vote are A:43%, B:28% and
C:29%. After B is eliminated and the votes are redistributed, A has 48% of the
vote, whereas C has 52% of the vote so that C is the winner.

One notes though that the only difference between the two elections is that 2%
of the electorate has switched its vote from BCA to ABC from the first election to
the second. Thus by gaining more of the vote, A has become a loser!

While the lack of monotonicity in the voting system is fairly well-known, at least
in the technical literature, this information does not appear to have entered the
public discussion of this voting system. In a report [4] on voting systems to the
British House of Lords, commisioned by the Electoral Reform Society, it was stated
(based on articles of Allard [1] and Bradley [3]):

STV has been criticised for not being monotonic in certain cir-
cumstances. This, however, is a theoretical rather than a practical
difficulty.

The article continued with two assertions:

(1) It has been shown that in the UK elections non-monotonicity
would only occur once every century.
(2) Moreover, non-monotonicity has never been demonstrated in any

STV election.

The purpose of this article is to question these two assertions and to draw a
wider conclusion, namely that under the models that we will study, not only is
non-monotonicity possible, it is overwhelmingly likely if there are large numbers of
candidates.

2. DESCRIPTION OF THE MODELS AND STATEMENT OF RESULTS

In a non-monotonic system, by definition, some allocations of votes can be mod-
ified as described above in favor of the winner, with the effect that the winner then
loses the election. Such an allocation of votes will be said to be non-monotonic.
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In this paper, we will discuss the frequency of non-monotonic allocations under
two models of voting.

For simplicity, we assume that all voters rank all candidates. To describe the
first model, we note that if there are n candidates, there are n! possible orderings
of the candidates. The election is completely described by knowing the proportion
of voters with each of the n! preference lists. Thus we can view vote allocations as
points in an n! — 1-dimensional simplex. In the simplex model, an assumption is
made that vote allocations are uniformly distributed on the simplex. Let P™ denote
the simplex of possible allocations of votes. The first model therefore corresponds
to the normalized Lebesgue measure on the simplex, which we shall denote by Pg,;.

ABC BAC BCA CBA
o o ®
A B C

FIGURE 1. Political Spectrum Model

The second model is called the political spectrum model. In this model, the
political spectrum is the unit interval [0,1] and the n candidates are assumed to
be located at independent uniformly distributed points of the political spectrum.
Voters correspond to the continuum of points in [0, 1] and they are also assumed to
be uniformly distributed. A particular voter z lists candidates in order of increasing
distance from z.

In this way, the interval is divided into (%) +1 subintervals of voters with identical
preference lists. The proportion of voters with a given preference list is then given
by the measure of the subinterval with that preference list. In this way, our second
model specifies a second measure on the simplex.

We denote this measure by Ppg. We note that the measure is highly singular
since it is supported on a collection points for which at most (3) + 1 of the n!
coordinates are non-zero.

The model is illustrated in Figure 1. Here the candidates are A, B and C and
the voters with each of the preference lists ABC, BAC, BCA and CBA are marked
on the figure (preference lists ACB and CAB are impossible as for example any
voter with first choice A would prefer B to C). The proportion of voters with a
given list is given by the length of the interval corresponding to the voters with
that particular list.

If we let N™ denote the set of vote allocations on P™ which are non-monotonic,
then our task is to estimate the probabilities Pg,(N") and Pgg(N™).

Theorem 1. We have P%,,(N") =1— O(n=(179).

We remark that we have calculated PZy(N™) and PEg(N™) in the case n = 3,
where the values were respectively 13/288 (4.5%) and 5/72 (6.9%). These values
were the result of explicit integration over the region of non-monotonicity mentioned
above.

In particular, it is not hard to show that in the political spectrum model with
three candidates, there is a non-monotonic allocation of votes if and only if the
central candidate gets at least 25% of the vote and is the first to be eliminated. To
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see this, note that in this case, the non-winning outer candidate can give the winner
enough of her vote to have slightly less of the vote than the central candidate. This
candidate is then eliminated (now having the smallest share of the vote) and all
of her votes go to the central candidate rather than to the more extreme winner,
allowing the central candidate to become the new winner.

As an application of this, one can examine British electoral data from 1983.
In the South Derbyshire seat, there were three candidates: Conservative (43.8%),
Labour (29.2%) and SDP (27.0%). The SDP was certainly the central candidate
and crossover from Labour to Conservative seems very unlikely. Given this, we
see that had the preferential voting system been in use, this result would almost
certainly have been non-monotonic. While it is not possible based on the recorded
information (or even based on the actual ballot papers) to conclude with certainty
what would have happened in the preferential voting system, it strongly suggests
that if one knows what to look for, there would not be a problem in finding a
counterexample to Assertion (2) above. Similar examples in the same year’s election
appear to contradict Assertion (1) also.

We note that in the political spectrum model, we have so far been unable to
demonstrate rigorously that PRg(N™) — 1, but there is considerable computer evi-
dence that this is the case. The main difficulty is that there are many different ways
in which non-monotonicity can occur. One simple criterion by which one can detect
that a candidate will not be elected is if her vote share is a ‘local minimum’ vote
share on the political spectrum at some stage (i.e. if she has a smaller proportion
of the vote at some stage than either of her neighbours). Accordingly the idea is to
perturb the votes such that at some stage, the winning candidate becomes a local
minimum. Computer evidence suggests that the probability of being able to do this
increases rapidly to 1 as n increases. Since this is only one mode of inducing non-
monotonicity and a fairly crude one at that, it seems likely that the true percentage
is significantly higher than is currently being detected by the simulations.

3. CONDORCET WINNERS

Our strategy for the proof of Theorem 1 will involve estimating the probability
that there is a Condorcet winner. A Condorcet winner is a candidate who would
beat any other candidate in a one-to-one contest, that is a candidate X with the
property that for any other candidate Y, more than 50% of the voters put X higher
than Y on their preference lists. The well-known Condorcet paradox states that
there need not be a Condorcet winner in an election.

We will show that in the simplex model, with probability approaching 1 as the
number of candidates tends to infinity, there is no Condorcet winner. Given this,
our approach to showing non-monotonicity will be as follows. Since it can be
assumed that there is no Condorcet winner, there will be a candidate who would
prevail in a one-to-one contest with the winner. The idea is then to modify the
votes in favor of the winner to ensure that all the candidates apart from the winner
and the second candidate are eliminated so that the actual winner and the second
candidate are compared head-to-head. At this point, the winner is defeated.

By contrast, it is not hard to see that in the political spectrum model, there is
almost surely a Condorcet winner, namely the candidate closest to the center of
the interval. (More generally if the voters are assumed to be distributed according



ANOMALOUS OUTCOMES IN PREFERENTIAL VOTING 5

to some other distribution, the Condorcet winner is the candidate closest to the
median position on the spectrum of the voters).

Theorem 2. If we let C™ be the collection of vote allocations in P™ for which there
is a Condorcet winner, then P%;, = O(n~(179)),

In the proof, we shall make use of the following simple theorem.

Lemma 3. Suppose that X and X' are two random variables taking values in a
measurable space Z with probability distributions P and P'. Let X be a measure on
Z such that P and P' are both absolutely continuous with respect to A and write p
and p' for the densities of P and P' with respect to .

If for some 0 < € < 1 and constant C, there exists a set A C Z such that
P(A) >1—¢, P'(A) > 1—¢€ and |logp —logp' — C| < € on A, then the total
variation distance between P and P' is at most 23e.

Proof. On A, we have e“~¢p'(z) < p(x) < e“T¢p/(x). Integrating this inequality
over A, we recover the two inequalities e“~¢(1 —¢) < 1 and 1 —e < e“*t¢. In
particular, (1—e)e™¢ < e¢ < e¢/(1—¢). It then follows that e3¢ < p(z)/p'(z) < e3¢
on A so that |p(z) — p'(z)| < (e3¢ — 1)p/(z) on A. Now integrating |p(z) — p'(z)|
over the space, we get a bound of 2¢ on A° and e3** — 1 < 21e on A. The result
follows. |

Proof of Theorem 2. There are two steps to the proof. First, after restricting the
orders given by the voters to orderings on the first |n/9]| candidates, it is shown
that the resulting distribution is close in total variation distance to a multivariate
normal distribution. Second, the probability of non-monotonicity is estimated in
the easier case of the multivariate normal distribution.

If the candidates are numbered from 1 to n, we shall take m = |n/9] and
estimate the probability that 1 is a Condorcet winner when the votes are restricted
to orderings of the first m candidates. Since if 1 is a Condorcet winner overall, she
is automatically a Condorcet winner in the restricted election, this will allow us to
get an upper bound on the probability of there being a Condorcet winner overall.

Clearly when there are m candidates under consideration, there are m! possible
orders. Let the orders be my,...,7m. The restricted vote allocation is a point on
the m! — 1-dimensional simplex Ezl X; =1, where X; represents the proportion
of the electorate with restricted order 7;. We shall need to study the induced
distribution on that space.

By assumption, the probability density function on the full n! — 1-dimensional
simplex is given by po(u1,...,un—1) = C, in the region > U; < 1. Define U, =
1— (Ui +...Un—1).- The U; represent the proportion of the electorate with each
of the n! full orders. Since for each ordering of the first m candidates, there are
n!/m! possible extensions to the entire field of n candidates, we will assume that the
U; are numbered so that the jth block of n!/m! U variables corresponds to those
orderings in which amongst the first m candidates, the ordering is ;. This gives
X; =Ug—iyntymi41 + - - -+ Ujpiym for j <ml. Given this, we can change variables
on the n!—1-dimensional simplex to (X;) (where j runs from 1 to m!—1) along with
(U(j=1)nt/mt+i) (where j runs from 1 to m! and ¢ runs from 1 to n!/m!—1). With
respect to these variables, the simplex is defined by the inequalities Ug;_1)n1/mi41 +
vt Uj pyymi-r £ X5 (for 1 <5 < m!) and Xy + ...+ Xy < 1. Since the
Jacobian of the change of variables is 1, the numerical value of the density remains
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the same under this transformation. Integrating over the u;, we recover the joint
probability density function of the marginal distribution of (X1, ..., Xmi—1):
p(r1, - o Tmi—1) = Cw?!/m_l .. x:brig/lnll_l(l -z — ... — wmg_l)"l/mlfl,
where C is a normalizing constant. If we write 2, for 1 — (21 + ...+ 2Zn1—1), then
this may be more simply expressed as
plx1, .. Tp_1) = Ca:’fl/m*l .. .a;x!/m!*l

It is helpful to observe that each of the variables X; (1 < ¢ < m!) have beta
distributions with parameters n!/m! and n! — n!/m!. In other words, they have a
density on [0, 1] given by Cz™/™~1(1 — z)™~™/™~1 for a normalizing constant C.
One can then calculate the mean and variance of these variables to be 1/m! (as
expected) and (m! + 1)/(m!?(n! + 1)) (approximately 1/(m!n!)).

We now construct affine copies Y; of the X;, setting the mean to 0 and the
variance to approximately 1. Specifically, we define ¥; = v/n!m!(X; — 1/m!) (for
1 < i < m!). Note that > .Y; = 0. As before, we write y,, for the expression
—(y1+- .. Ymi—1). When expressed with respect to the variables (Y;), the probability
density becomes

log p(y1,-- -, Ymi—1)
o (™ 1) (tog (L4 B ) b pog (L 4 Y
B m! 8 m! n!m! 8 m!  /mln!

! m! fm!
=C + (n_"_1> (log <1+ ﬁ'm) +...+1log <1+ ﬁ(lhm)) )
m! n! n!

where by the C’s, we mean in each case different constants. Using Chebyshev’s
inequality, we estimate that the probability that a given variable Y; satisfies |Y;| >
m!is O((m!)~2). Since there are m! variables (including the remainder term Y1),
we calculate that the probability that any one of them has a deviation of this order
is O((m!)~1) = o(e ™).

We let A be the set where |Y;| < m! for each i. By the above, this is a set with
high probability. Taking a Taylor expansion of the expression for the density above,
we see that the first order terms cancel so that we get

1
log p(y1,- -+, Ymi—1) =C — 5(1/% + ooty +O(m2 il ?).

It can be seen that this error term is o(e™™).
We shall compare the distribution of (Y71,...,Y,—1) with a multivariate normal
distribution (Zi,..., Zu1—1) defined by
2

1
logp'(21,- -, 2m—1) = C' — §(z1 +o 42 (e Fzm)?).

In order to apply Lemma 3, it is just necessary to ensure that the sequence
(Z1,...,Zmi_1) takes values in the set A with high probability. For details of
multivariate normal distributions, the reader is referred to [7]

To establish this, we recover from the above expression the covariance matrix of
the variables (Z1,..., Zmi—1) by inverting the matrix in the above bilinear form.
Specifically, the inverse of the covariance matrix is given by
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21 1 --- 1
1 2 1 1
A'=1]11 1
11 1 --- 2
We therefore see that the covariance matrix of the variables (Z;) is given by
m—-1 -1 -1 - -1
-1 ml-1 -1 --- -1
1 -1 -1 —1
m!
-1 -1 -1 -+ ml-1
Setting Z,,y = —(Z1 + ... + Zmi—1), we see that the variables Z; each have

variance of (m!—1)/m! (and mean 0) and hence the previous argument shows that
with very high probability (1 —o(e™™)), (Z;) € A.

It follows that the total variation distance between the random variables (Y;)
and (Z;) is o(e™™) (that is to say that if we denote by Pyyn the distribution on
R™ of the random variables (Z;) and by Py the distribution of (Y;), then for any
event E, |Py(E) — PMVN(E)l = 0(€_n))

Recall that we need to estimate the probability that candidate 1 is a Condorcet
winner. Clearly, for candidate 1 to be a Condorcet winner it is necessary that for
each j with 1 < 57 < m, Z{s: 154} X > %, where by the notation 1 >, 7, it is
meant that candidate 1 is preferred to candidate j in the order m,. Expressed in
terms of the variables Y;, this says simply > ¢ . ;5 ; ¥s > 0. Letting A be the
region in R™ where these inequalities hold, we are trying to estimate Py (A4). As
explained above, it is then sufficient to estimate Pyyn(A) or in other words the
probability that Z{S: 15,5} Zs > 0 for each j with 1 <j <m.

From the matrix, we see that for ¢ < j < m!, the covariance of Z; and Z; is
—1/m!. Tt is straightforward to check that this holds also if j = m!.

It will be convenient to introduce new variables, W;, given by

6
Wi=\l i > Zs,
{s:1>,j}
so that it is now sufficient to estimate instead the probability that W; is positive

for all 2 < j < m.
We calculate the variance and covariances of the variables W;. We see that

Var(W) = - (<m!/2> +((m!/2)? ~ m!/2);n—1!) =2 and

m!—1
m!

m!—1
!

+((m!/2)? - m!/g)%> _

Clearly the variables (W;)2<j<m have a mean zero multivariate normal distri-
bution (as they are a linear combination of mean zero random variables with a
multivariate normal distribution). This distribution is therefore defined by the
above variances and covariances. In order to estimate the probability that the

fori #3j

Cov (Wi, W;) = % ((m!/3) -
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W; are all positive, we introduce a further set of random variables with the same
distribution.

Namely, we let N and Ns, ..., N, be independent normal random variables with
mean 0 and variance 1. Now forming V; = N/v/2 — Nj, we see immediately that
the variables (V;) have the same distribution as the variables (W;) above.

To estimate the probability that the (W;) are all positive, it is now sufficient to
estimate the probability of the event that N > \/§Nj simultaneously for each j.
Denote this event by S. We observe that for any number a, S C {N > av2} U
{N; < a:2<j <m}. This gives the bound

1 o0 2 1 o0 2 m—1
P(S <—/ —f/th+<1——/ _t/2dt)
( )_\/27r a\/ﬁe V2T Ja ¢

e e=/2 (1 1 m
<o+ |1l-——F=\-—= )
2\ /Ta Vor \a o

where the last inequality comes from the following bound (see [6], page 166):

e ™21 1 1 [ oy, e /1
—— (-5 )<= etdt< =,
Vor \z 23 V2or Jg Var T

valid for z > 0.

Setting a = /(2 — €) logm, we see

P(5) < = + (1 #yn_l = 0(m=(79) = 0(n=79).

T 2m?2-¢\ /(2 — e)m logm ~ ml=e/3

Since there are n candidates, the probability that one of them is a Condorcet winner
is bounded above by O(n~(1=¢)). This completes the proof of the theorem. O

4. PROOF OF THEOREM 1

Proof of Theorem 1. If m, is an ordering of 1,...,n, write U for the proportion of
the people with 7, as their choice. It can be seen as above that the random variables
U, have density p(u) = (n! — 1)(1 — »)™~2. Similarly, the joint distribution of two
of the random variables U, and Uy is pa(u,u’) = (n! — 1)(n! — 2)(1 — u — u')™ 3.
Using this, we see that variance v of one of the variables is (n! —1)/(n!® +n!?) and
the covariance ¢ of two of them is —1/(n!® +n!?). Accordingly, if a new variable Y
is formed by taking the sum of any fixed subset (of size r) of the Us, its variance is
given by rv +r(r — 1)e =r(n! —r)/(n!® + n!?) < 1/(4(n!)).

For 1 <i,j,k < mn (with j # k) and a subset B of {1,2,...,n} not containing
any of i, j or k, let V; jx,B be the sum of the U; over those s with the property
that & >, j and 7 is the maximum of =, restricted to {1,...,n} \ B. Since these
variables V are of the form described above, we can estimate that the probability
that such a variable differs from its expectation by more than 1/(4n) is bounded
above by 4n?/n! (using Chebyshev’s theorem). Since there are less than n32" such
variables, the probability that any one of them differs from its average value by
more than 1/(4n) is bounded above by 4n52"/n! = o(n~1).

Let S1 be the event that none of the random variables differs from its expectation
by more that 1/(4n) and Sz be the event that there is no Condorcet winner. From
Theorem 2, P(S; N S3) = 1 — O(n~'*¢). We will show that vote allocations in
S1 N Sy are non-monotonic.
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To see this, fix an allocation in S;NS>. We will denote the winner of the election
by 1. Since there is no Condorcet winner, there is another candidate preferred to
1 by the majority of the electorate. We will call this candidate 2. We modify the
vote in favor of 1 by reassigning all votes that prefer 1 to 2 to candidate 1. Since
the majority of the electorate preferred 2, the proportion of votes for candidate 1
is now (slightly) less than one half. All the remaining votes for other candidates
have candidate 2 placed higher than candidate 1.

Initially, the votes for the candidates are 1 — 6% for candidate 1, L + 4 for
candidate 2 and % + § for the other candidates, where each time ¢ is used, it
denotes an unknown quantity less than 1/(4n) in modulus. Similarly, §* is an
unknown positive quantity. To justify these assertions, note that the number of
votes after adjustment for a candidate ¢ with 2 <4 <nis V; 5 ¢ and the quantities
1/n and 1/2n are simply the expectations of the relevant random variables.

Accordingly, one of the ‘other’ candidates is removed and his/her votes are re-
distributed to the subsequent choices of the voters. Note that candidate 1 does not
receive any further votes in this redistribution, but that the votes are equally likely
to go to any of the remaining candidates.

Accordingly, after the first round of removals is complete, the proportions for
the candidates are % — ¢ for candidate 1, % + m + 6 for candidate 2, and
% + m + ¢ for the others, (the number of votes for a remaining candidate i
with 2 <4 < n being V;; 5 (,} where z was the candidate eliminated in the first
round.

Given that the vote allocation was in S,, the quantities § are all bounded above
by 1/(4n) in modulus so that candidate 2 remains ahead of all the remaining can-
didates of 3 to n. This means that again, one of the ‘others’ will be removed. This
process continues, with candidate 2 remaining ahead of all the other candidates
until only candidates 1 and 2 remain. By assumption, a majority of the electorate
prefer candidate 2 to candidate 1, so that candidate 1 (the previous winner) has
become a loser by gaining extra votes. This completes the proof.

O
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