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This paper considers a generalization of the single and multisource Weber
problem for the case when the “‘distance’’ function is some power K of the
usual /, distance Properties of the generalized problem are established, and
an appropriate generalization of the Weiszfeld iterative approach is given. A
convergence proof is supplied for an e-approximation to the original problem,
under certain restrictions on p and K.

ARLY CONTRIBUTIONS to the facilities location literature fa-

vored the Euclidean metric for modeling distances. Later the rec-
tangular metric came into vogue for approximating distances when move-
ment is restricted to a network which is basically a rectangular grid. A
selected bibliography of location analysis literature appears in Francis
and Goldstein (1974). Both metrics are special cases of the I, distance
function

by (x) = [T |x — a1, p=1(1)

where x and q, are points in N-dimensional space. This paper considers
the generalization

foss(x) = [X01 |xe — @fP]s, p=1, s>0. (2)

Love and Morris (1972, 1979) showed that (2) is quite accurate in
estimating road travel distances from point references.

Alternatively, let p/s = K and If,(x) = [,,(x)]%, then f,,,(x) is X (x).
Cooper (1968) used I3 to extend the generalized Weber problem. He
suggested that in many applicatons ¢ = a-d”* rather than ¢ = a-d more
accurately models cost (¢) in terms of distance (d), where a is the
constant of proportionality. Figure 1, from Cooper (1968), illustrates
economies and diseconomies that may be modeled. Cooper showed that
the value of K can significantly affect the problem solution.

In the following, a generalization of the Weber problem is posed, an
iterative solution algorithm is then developed, and a convergence proof
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38 Morris

is given. Finally, the multifacility problem is considered and convergence
of an extended version of the algorithm is established.
1. FORMALIZATION

Formally, let IX(x) = [¥¥: |x — @:["1*?, p = 1, K > 0. The following
properties and Figure 1 would seem to imply that L,X for K > 1 has less
practical appeal than for 0 < K < 1.

ProPERTY 1. [,X does not necessarily satisfy the triangle inequality
when K > 1.

PROPERTY 2. L,X satisfies the triangle inequality for 0 < K < 1.

Modeling distance and cost functions leads to an interest in solving the

p=a®
1\

K=1%

» d

Figure 1. Cost functions as powers of the distance variable.

following generalization of the Weber problem
minimize CLX(x) = Y71 w;lf(x), 3)

where x is the location of a “facility.” The a,, j = 1, - - -, n describe the
location of the fixed “demand” points and w, > 0 transforms l,’f,(x) into
“cost.” The literature of special cases of this problem is voluminous.
Weiszfeld (1937) presented an iterative method for solving (3) when p =
2 and K = 1. Later related works are referenced in Morris and Verdini
(1979) and Ostresh (1978). Ostresh proved global convergence for a
modification of Weiszfeld’s method. Most works concentrated on (3),
with p = 2 and K = 1. Cooper (1968) applied the iterative approach when
p =2 and K > 0 and Katz (1969) studied the local convergence. Eyster et
al. (1972) extended the approach to multifacility problems with p =1 or
2 and K = 1, and Ostresh (1977) proved it to be a descent algorithm for
p = 2. Morris and Verdini further extended the method to solving single
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Convergence Using a ‘'Distance’’ Function 39

and multifacility problems with K = 1 and p = 1. However, no complete
proof of global convergence has previously been published for other than
single facility problems with p = 2 and K = 1.

The following properties characterize problem (3).

PROPERTY 3. CL,%(x) is convex when K = 1.

Proof. CL,¥(x) is a positive linear combination of 15 (x), /=1, -+, n.
When K = 1, {X(x) is the composition of a monotone nondecreasing
convex function with the convex /, distance function.

ProPERTY 4. The fixed points a,, j = 1, --- , n are local minima of
CL%(x) when0 < K < 1.

Proof. Generalizing Cooper’s (1968) proof for Euclidean distances, let
1£(x) = C,(x). Choose a neighborhood about a, such that for all 0 < r <
T, max,.(d/dr)C/(a, + 72) > —M,, where M, is a positive real number
and ||z|, = 1. Let || - |, denote the Z, norm. Then (d/dr)CL*(a, + 72) =
Y, wid/dr)Cla, + 12) + w(d/dr)Cda, + 72) > =Y, wM, + Kw,/
1 since C,(a, + t2) = r*. Choose 1 < 7, such that Kw,/t"™% > Y.,
w,M,. Since 0 < K < 1, (d/dr)CL"(a, + 72) > 0 for 0 < 7 < 7, which
establishes the result.

The proof shows these minima become stronger as K — 0. Since they
occur at distinct points the following property holds.

PROPERTY 5. Cl,,K(x) is neither convex nor concave when 0 < K < 1.

Figure 2 illlustrates the local minima encountered when 0 < K < 1. The
example problem has fixed points in one-dimensional space at a, = j,
Jj=1,--.,5and all w, = 1 with K = 0.25, 0.50 and 0.75. As expected, the
cusps become more pronounced as K is decreased.

2. THE ALGORITHM

To circumvent potential convergence difficulties caused by undefined
quotients consider a differentiable approximation for IX(x). Define
LE(x) as [Lp, ()], p = 1, K > 0, € > 0, where L,,(x) = (3%, [(x —
a,)® + €]”/*}"/7 and ¢ is a smoothing constant. e-approximation has been
used in Eyster et al. (1972), Love (1969), Love and Morris (1975), Morris
and Verdini (1979), and Wesolowsky and Love (1972).

Problem (3) is now approximated by

minimize CL,*(x) = Y7~ w,LK(x). (4)

Since L,,(x) is strictly convex (Morris and Verdini [1979]), so is CL,%(x),
for K = 1. Denote 8CL,*(x)/ax. by V.CL,*(x), the tth element of the
gradient vector, then
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40 Morris
V.CL,5(x) = Y71 w,K(x: — a,)[(x: — a;)* + €}P/* [ Lpj(x)]*P.
Using V.CL,*(x*) =0,¢t=1, ..., N produces
x* =, wl(x* — a,) + P!
L (x*) 10, /X, w[(x* — a,)® + €P*! (5)
J[Lp(x*}*P), t=1,...,N.
Replacing * on the left by r + 1 and on the right by r yields the iterative
cel
A
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Figure 2. Examples of C[,* for K < 1.

scheme. See Morris and Verdini for a report on computational experience
for K = 1. For the special case p = 2, e = 0 and K = 1, Katz (1974) has
shown that, when x* is a fixed point, the convergence rate can be linear,
sublinear or quadratic; when x * is not a fixed point convergence is always
linear.
Using steps like those in Morris and Verdini gives
xi=x" - (K 21 wy[(x — ajt)2 + f]p/Q_l

(L (=1 TVCL (), (6)
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Convergence Using a “'Distance’’ Function 41
or ™ =ax"— [M(x")]"'"VCL,X(x").

[M(x")]' is a diagonal matrix with positive diagonal elements and is
therefore positive definite. This guarantees —[M(x")]"'VCL,*(x") is a
descent direction. The algorithmic map is

T:ix — T(x) = x — [M(x))]"'VCL,X(x), (7)

with iterates given by x™*' = T'(x"). Termination might be warranted
when either | CL,*(x") — CL,X(T(x"))| or | x" — T(x")||, is small enough.

Wagner ([1975], see p. 551) suggests using a classical inequality to stop
a gradient search technique. For K = 1, CL,®(x) is convex and the
inequality takes the form

CL%(x*) = CL,*(x") + 3, V.CL,X(x") - (x,* — x/), (8)
for any x* and x”, or
Y V.CLX(x") - (x/ — x*) = CL&(x") — CL,%(x*).
Let e; > 0 be such that |x,” — x:*| < e;, and let x* solve (4). Then
e |V.CL,%(x") e, = CL,*(x") — CLX(x*) = 0, 9)

which supplies a convenient bound on the suboptimality of the iterate x’.
The bound is convenient since V,CL,%(x") is effectively calculated when
computing x™*'. By the proof of Lemma 4 below, e, may be taken to be
max;|x — a.|,t =1, ---, N, which is also easily calculated as iterations
are performed. The bound in (9) is similar to that suggested by Love and
Yeong who pointed out the need for rational stopping rules in this
context. Their bound (posed for K = 1) also accounts for the error induced
by approximating the original problem. For 0 < K < 1, CL,*(x) is not
convex. A rational stopping rule is lacking for this case.

The following property can be proved as was an analogous property in
Morris and Verdini. It indicates a growing insensitivity to the original
problem as € is increased, but supports using the center of gravity as x°.

PROPERTY 6. lim._.x* =Y, wa/Y, w,.

3. CONVERGENCE PROOF

Verdini (1976) has proven convergence forp =1l orp=2and K = 1.
The present proof is inspired by Kuhn (1973) whose work corrected
Weiszfeld’s original proof. One possible difficulty noted by Kuhn is that
iterations may “overshoot.” The following descent property guarantees
that this will not happen.

LEMMA 1. If T(x") # x", then CL,"(T(x")) < CL,®(x") for 1 <= p < 2,
0<K=p.
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Proof. Let g(x) = Y, w[Ly(x))?, where w, = w,[L,,(x")]*?. Then
g(x) = 21 wy Zt[(xt - ajt)2 + e]p/Z = Zt 2] wj[(xt - ajt)2 + €]p/2 = Et gt(xt)s
say. Further, let fi(x) = ¥, v,[(x. — @,)® + €], where v, = [ (x/ — @;)® +
€]?/*!. Since each v, > 0, ; is strictly convex. The unique minimum occurs
at the center of gravity given by Y, v,a,,/Y.; v;, which is x{** by (5). So if
T(x7) # x", we have f(xi*") < fdx!) = g(x/), and filxi™") < f(x.) for at
least one value of ¢.

On the other hand,

i) = 35 ol = a)® + el Y P[0 = a,)” + €]PYP
23, {1 = 2/p)[(* — @) + ] + 2/p)[(xi*! — a,)* + €)%}
= (1 - 2/p) gx) + (2/p) glxi™).

Equality holds for p = 2. The inequality holds for 1 < p < 2 by the
fundamental inequality a'”'*/? = a/p’ + b/q’ which holds for 1/p’ +
1/¢’ =1,a,b>0,p <1 and p’ # 0. See Beckenbach and Bellman
(1967), Equation 14.7. We have a = [(x{*' — @,)® + €]”%, b = [(x/ — @,2)°
+ €]”%, p’ = p/2 and ¢’ = p/(p — 2). Putting these results together,
(1 - 2/p) g(x) + (2/p) g{xi*") = gx/), which means g,(x;*') =< gi(x.")
and the strict inequality holds for at least one value of ¢. This in turn
means g(T(x")) = Y. g(xi*") < T, gx.) = g(x") = CL,(x"). Whereas,

g(T(x") = T, wy[Lpy(x") P [Lpy(T(x"))}
=3, wlLE )] PELE (T(x")1P%
= (K — p)/K)CLX(x") + (p/K)CL,*(T(x")), for K<p,

K # 0, by the aforementioned fundamental inequality. Equality holds for
K = p. Combining these results

(K — p)/K)CL,*(x") + (p/K)CL,"(T(x")) < CL,"(x")

and the assertion CL,X(T(x")) < CL,®(x") is proven under the given
conditions.

The second possible convergence difficulty noted by Kuhn is that the
sequence x” of generated points might remain at a nonoptimal fixed point.
By design CL,%(x) is differentiable and for K = 1 is strictly convex. Since
VCL%(x) # 0 at a nonoptimal fixed point a,, say, Equation (7) shows
that T(x") # x" should x™ = a,. For 0 < K < 1, the fixed points are local
minima of CL,X(x)—which is approximated by CL,*(x). Though conver-
gence is still guaranteed, the convergence point is only guaranteed to be
a stationary point of CL,*(x).

LEMMA 2. The algorithmic map defined by (7) is continuous.

Proof. From (6) we may write (7) in the form x/*' = x,/ — (1/m,)
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V.CL,*(x"), t = 1, --- , N. The lemma holds since both 1/m; and
V,CL,,K(x) are continuous functions.

LEMMA 3. x"=x* if and only if T(x") = x’, where x* minimizes CL,"(x)
for K =1 and x* is a stationary point of CL,*(x) for 0 < K < 1.

LEMMA 4. T(x") lies in a compact set.

Proof. The algorithmic map can be expressed x/*'=Y, aya,,

t=1, ..., N, with the obvious definition (see (5)) of a,. Clearly, all
a;>0and Y, ar=1,t=1, -.-, N and the assertion is proved.
THEOREM 1. Given any x°, define x" as T"(x°) forr=1,2, --. . Then for

l=p=2and0<K=p,lim_.x"=x* where x* minimizes CL,"(x) for
K =1 and x* is a stationary point of CL,®(x) for 0 < K < 1.

Proof. By Lemma 4 we can invoke the Bolzano-Weierstrass Theorem
which assures the existence of at least one point &, say, and a convergent
subsequence x” such that lim;.. x" = . We must show that ¥ = x* in all
cases.

If T(x") = x" for some r, the sequence repeats thereafter and ¥ = x".
But then ¥ = x* by Lemma 3.

Otherwise, by Lemma 1, CL,*(x°) > CL,*(x") > ... > CL,X(x") >
-+« > CL,®(x*). Hence

lim,..(CL,*(x") — CL,X(T(x"))) = 0,
and since the algorithmic map is continuous by Lemma 2, we have
lim,.T(x") = T(x), which implies CL,* (%) — CLX(T(x)) = 0.

By Lemma 1, £ = T(%) and X = x* by Lemma 3 which establishes the
theorem.

Approximating CI,%(x) by CL,*(x) is an expedient to prevent quotients
from being undefined. € should only be large enough to serve this purpose,
according to the computing accuracy and the scale of the problem data.
This is because the minimizer of CL,%(x) is not likely the minimizer of
CLX(x), as discussed by Verdini, and numerical evidence (see Eyster et
al., Love and Morris (1975), and Morris and Verdini) for K = 1 indicates
that as € is reduced, the solution produced for the original problem is
improved. If T(x") is defined, the proof of Lemma 1 remains valid with
€ = 0. Therefore once iterations are terminated with € > 0, continued
improvement in C1,%(x) is likely after setting ¢ = 0 and continuing the
iterations. A test for division by zero would then contribute to a stopping
rule. The impediment to global convergence with € = 0, is that some
quotient may be undefined prematurely. Indeed, Kuhn proved that for a
denumerable number of x° Weiszfeld’s original algorithm fails to converge
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to the minimizer of Cly'. The quantitative question of how large or small
to make € is answered by the following property.

PROPERTY 7. For 1 <= p < 2 and 0 < K < p, | CL,*(x) - CLE(x)|
< 8(e) = N¥PeR2 Y0 w,.

Proof. The inequality (g1 + ¢2)° < ¢, + g° for 0 < b < 1 and ¢,
g» = 0 is used twice. Using ¢ = ¥ [(xc — @,)® + €]?* = T [(x — a,)*F"?
=0 and gz = ¥ [(x. — @,)*P’?> = 0 with 0 < b = K/p < 1 produces
[LE(x) — E@)] = |5 [ — @) + e ~ % [ ~ a)’P?|*” =
| D(x, €)|¥/?, say. Second, g1 = (x: — @;)* = 0 and g, = € > 0 with % =<
b = p/2 < 1 produces D(x, ¢) = Ne”?, which means |L5(x) — I} (x)| =
N¥/P X2 and the conclusion follows directly.

Property 7 implies CL,*(x) is uniformly convergent to Cl,*(x) as € —
0. Furthermore, assume % and x* are global minimizers of C,*(x) and
CL,*(x) respectively, but problem (4) is solved and x*is produced. Then
CLX(x*) — CLX(%) = CL, (x*) — CLX(%) = CL,X(£) — CLX(x) = &8(e),
using the construction in Love and Yeong, and the suboptimality of x* in
problem (3) is bounded & priori.

Cooper (1968) performed computational experiments for the special
case p =2, ¢ =0, N=2 and 0 < K < 1. The algorithm frequently
converged to the global optimum, even when diverse starting points were
used. Viewing Figure 2 and the local minima for decreasing K values, it
may be hypothesized that the algorithm will more likely become en-
trapped at a nonoptimal local minimum as K — 0. The following numer-
ical results support this hypothesis.

Let n =3 witha; = (0,0), as = (1,0), az = (0, 1), w1 = 1, wy = 10,
ws =1, p =2 and K = 05. Using x° = (0.001, 0.001) the algorithm
converged to x7 = (0, 0), a local minimum. However, with K = 0.9 and
the same x°, the global minimizer was obtained as x'* = (1, 0). With
K = 0.5 using the center of gravity as x° the convergence point was x° =
(1, 0), emphasizing the need to try different starting points when K < 1.
Results were obtained with € = 0.

Results in Table I are for the eight configurations of fixed points given
by Cooper (1963), where N = 2, n = 7, using p = 1.5, w, = j and three
different values of K. Column triples are CIXs (%), (&1, £2) followed by
CIS(T (x%)), T"(x?), r and then CI&S(T(x)), T7(x°), r where x* = (0, 0)
and x° is the center of gravity. X is the global minimizer found by
searching a rectangular grid (which included the fixed points) of grid-
width 0.1. ANl results were obtained with € = 0. When the algorithm
terminated due to division by zero the convergence point was verified by
repeating with a small positive value for . (In each such case a somewhat
inferior solution was produced with € > 0.) Iterations were terminated
when CIs(x™Y) — CIs(x) < 107% The unlikely starting point of x°
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frequently led to the global minimizer, as did x°. Suboptimal results for
K = 0.15 were the rule.

4. MULTIFACILITY LOCATION

The extension to locating m interrelated facilities, with L, approximat-
ing ,, is given by

minimize GL,*(x)

= :';1 27=1 wl]L[IZ([ (xl) + Zin=_11 EZ[=L+1 UtngK(xn xg)

(10)

TABLE 1
NuMERICAL REsULTs FOR 0 < K < 1
Case K=015 K =050 K =085
1 31.91, (22, 29) 8541, (22, 29) 217.28, (22.3, 22.7)

39.94, (15, 15), 16*
31.91, (22, 29), 19
2 33.75, (36, 32)

91.89, (22.62, 23.26), 58*
91.89, (22.62, 23.26), 29*
102.79, (20, 20)

217.28, (22.29, 22.68), 49
217.28, (22.29, 22.68), 39
287.72, (20, 20)

37.05, (20, 20), 8*
37.05, (20, 20), 8*
3 31.62, (35, 31)
39.54, (5, 26), 16*
32.26, (35, 26), 7*
4 32.90, (16, 12)
36.78, (15, 23), 12*
34.13, (26, 23), 12*
5 31.11, (24, 17)
32.65, (17, 22), 27*
31.11, (24,17), 11
6 32.53, (27, 17)
33.33, (20, 17), 11*
33.33, (20, 17), 6*
7 32.60, (11, 33)
33.26, (18, 23), 6*
33.28, (18, 23), 5*
8 35.64, (39, 33)
35.85, (6, 10), 9*
38.13, (33, 17), 8*

102.79, (20, 20), 11
102.79, (20, 20), 13
84.00, (35, 26)
84.00, (35, 26), 14
84.00, (35, 26), 10
85.98, (26, 23)
85.98, (26, 23), 37
85.98, (26, 23), 27
70.55, (24, 17)
77.66, (17.88, 19.05), 23*
70.55, (24, 17), 18
80.73, (20, 17)
80.73, (20, 17), 13
80.73, (20, 17), 9
79.82, (18, 23)
79.82, (18, 23), 7
79.82, (18, 23), 7
103.23, (33, 23)
104.05, (33, 17), 13*
104.05, (33, 17), 12*

287.87, (21.26, 20.53), 72*
287.87, (21.27, 20.54), 122*
238.07, (35, 26)

238.07, (35, 26), 28

238.07, (35, 26), 24

213.99, (21.1, 23.8)

213.99, (21.07, 23.83), 26
213.99, (21.08, 23.83), 29
162.63, (24, 17)

163.94, (20.90, 18.42), 186*
163.94, (20.84, 18.44), 112*
200.62, (20, 17)

200.62, (20, 17), 26

200.62, (20, 17), 23

195.55, (18, 23)

195.55, (18, 23), 12

195.55, (18, 23), 13
291.79, (33, 17)

291.79, (33, 17), 23

291.79, (33, 17), 24

* Denotes a suboptimal point was found.

where L,*(x,, x¢) = {31 [(x: — xg)® + €]7/*}%/P and the constants w, and
v, are nonnegative. The argument x of GL,* is now an m - N-vector. For
a well stated problem we will assume the facilities are chained, as defined
by Francis and Cabot (1972). Facilities i and g are said to have an
exchange whenever v, > 0 or v, > 0. Facility i is said to be chained if
there exists a sequence of distinct facilities i, #;, -- -, i;, such that there
is an exchange between i and i, i, and i, -- -, ;-1 and i,, and there is
some value of j,j = 1, -- -, n for whichw, , > 0.
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GL,"(x) is convex when K = 1. The counterpart of (5) is
x;?'l (Z] Agzt (xgr)aﬂ + Ztség Bgtt(xg ’ t+8 )xr+8 /(21 g/t(xg

+ ZL#g Bglt(xgr; x{+8')), t= 1, MR N;g = 1’ e, M,

(11)

where
Age(x) = we Ly (x) "Lk — @) + €],
Buelxg, 277 = valLp(xg, 7)) P[(xe — @) + €]777,

l,i<g

Y denotes YZi.., and 8, = { 0.i=g.

The algorithmic map is the following. For a given value of g, (11) is
applied for ¢ =1, --- , N. Then x;" replaces x4, i.e., ; changes from 0 to
1. This is done in order forg=1, ..., m. When x’+1 is determined the
process begins anew, unless a terminatlon condition is satisfied. Ostresh
(1977) also suggested this realization of the multifacility algorithm and
proved a descent algorithm in studying the Euclidean distance, K = 1
case. Using a process similar to that used to derive (6) yields

r+1

X' = Xp— (K[Y, Age(xg)
+ S Bae (s £ )7 VarGLE (5, <o | xiom)
and
X = x = (M e 1] T VGLA (Y, e x).
The algorithm can be characterized as the repeated application of
Toixg— Telxg) = xg — [M(x1, « -+, Xm)] 7" VeGL, (x1, <+, ).

Now convergence of the algorithm in the single facility case implies
convergence of the algorithm suggested here for the multifacility case.
This is because applying T is equivalent to applying T since all facilities
except the gth may temporarily be considered fixed points. This means
T, shares the descent property of T (defined by Lemma 1). The gth
facility location is updated accordingly, then g is incremented by one and
the process is repeated; but the descent property holds at each step. Since
GL,X is reduced at each step a lemma analogous to Lemma 1 could be
stated for each cycle of updating all facility locations. Then arguments
entirely analogous to those used to prove convergence of the algorithm
in the single facility case can be drawn up to imply sufficiency of the
descent property in the multifacility case.

As done by Morris and Verdini for K = 1 an analog of Property 6 can

! Whenever r > i, ws- is to be evaluated as wa.r.
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be developed as a starting point for minimizing GL,”. The analog of
Property 7 has

8(6) = NK/pGKﬂ(Z’L'L] 2;;1 wlj + Z;{l—-‘ll Z:,tn=z+1 Ulj)-
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