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While the geometric optimization problems considered here are known to be NP-hard, polynomial-time approximation algorithms have been known previously that get within a constant factor ofoptimal. Further, polynomial-time approximation schemes were discovered last year, by Arora [1]and by Mitchell [9, 10].This paper represents a continuation of our previous work on guillotine subdivisions ([9, 10, 11]),which in turn is based on the concept of \division trees" introduced by Blum, Chalasani, andVempala [3, 11], and the guillotine rectangular subdivision methods of Mata and Mitchell [8]. Here,we obtain substantially better bounds than before, and we generalize our previous results to applyto a much broader class of problem instances that include those weighted graphs whose edge lengthscorrespond to shortest path lengths among obstacles in the plane.2 Grid-Rounded m-Guillotine SubdivisionsDe�nitionsWe follow most of the notation of [9, 10]. We consider a polygonal subdivision (\planar straight-linegraph") S that has n edges (and hence O(n) vertices and facets). Let E denote the union of theedge segments of S, and let V denote the vertices of S. We can assume (without loss of generality)that S is restricted to the unit square, B (i.e., E � int(B)). Then, each facet (2-face) is a boundedpolygon, possibly with holes. The length of S is the sum of the lengths of the edges of S. Assume,without loss of generality, that no two vertices of S have a common x- or y-coordinate.A closed, axis-aligned rectangle W is a window if W � B. In the following de�nitions, we �xattention on a given window, W . We let EW denote the subset of E consisting of the union ofsegments of E having at least one endpoint inside (or on the boundary of) W . The combinatorialtype (with respect to E) of a window W is an ordered listing, for each of the four sides of W , of theidentities of the line segments of EW that intersect it. We say that W is minimal (with respect toE) if there does not exist a W 0 � W , strictly contained in W , having the same combinatorial typeas W . By standard critical placement arguments, we see that, since it has four degrees of freedom,a minimal window is determined by four contact pairs, de�ned by a vertex v 2 V in contact witha side of W or by a corner of W in contact with a segment of EW . (Thus, there are at most O(n4)minimal windows.) For any window W containing at least one vertex of E, we let W denote aminimal window, contained within W , having the same combinatorial type as W . (At least onesuch W must exist.)A line ` is a cut for E (with respect toW ) if `\ int(W ) 6= ;. The intersection, `\ (E\ int(W )),of a cut ` with E \ int(W ) (the restriction of E to the window W ) consists of a discrete (possiblyempty) set of subsegments of `. (Some of these \segments" may be single points, where ` crossesan edge.) The endpoints of these subsegments are called the endpoints along ` (with respect toW ). (The two points where ` crosses the boundary of W are not considered to be endpoints along`.) Let � be the number of endpoints along `, and let the points be denoted by p1; : : : ; p�, in orderalong `.For a positive integer m, we de�ne the m-span, �m(`), of ` (with respect to W ) as follows.If � � 2(m � 1), then �m(`) = ;; otherwise, �m(`) is de�ned to be the (possibly zero-length) linesegment, pmp��m+1, joining themth endpoint, pm, with themth-from-the-last endpoints, p��m+1.Given a line segment � = pq (p 6= q) and a positive integer M , consider the set of subsegmentsobtained by cutting pq into M equal-length segments; we de�ne the M -grid of � = pq to be theset of M + 1 endpoints of these subsegments. (In particular, the M -grid contains the two points pand q.)A line ` is an (m;M)-perfect cut with respect to W if �m(`) � E, and each connected componentof ` \ E contains an M -grid point of the 1-span, �1(`). In particular, if � � 2(m � 1), then ` is2



trivially an (m;M)-perfect cut (since �m(`) = ;). Similarly, if � = 2m � 1, then ` is m-perfect(since �m(`) is a single point). Otherwise, if ` is m-perfect, and � � 2m, then � = 2m.In the remainder of this paper, we �x M = m(m� 1) and assume that m � 2.Finally, we say that S is a grid-rounded m-guillotine subdivision with respect to window W ifeither (1) V \ int(W ) = ;; or (2) there exists an (m;M)-perfect cut, `, with respect to a minimalwindow, W � W , such that S is grid-rounded m-guillotine with respect to windows W \H+ andW \H�, where H+, H� are the closed halfplanes induced by `. (Note that, since W is minimal,necessarily windows W \H+ and W \H� will each have a combinatorial type di�erent from thatof W .) We say that S is a grid-rounded m-guillotine subdivision if S is grid-rounded m-guillotinewith respect to the unit square, B.The Approximation TheoremThe theorem below shows that grid-rounded m-guillotine subdivisions can approximate arbitrarysubdivisions arbitrarily closely (as a function of m). Its proof directly follows that of [9, 10],with relatively minor changes to incorporate the concept of (m;M)-perfect cuts, which allow us tostrengthen the requirements from that of m-perfect cuts to include the e�ect of rounding to theM -grid of the 1-span.Theorem 1 Let S be a polygonal subdivision, with edge set E, of length L. Then, for any positiveinteger m, there exists a grid-rounded m-guillotine subdivision, SG, of length at most (1 + 2p2m )Lwhose edge set, EG, contains E.Proof. We will convert S into a grid-rounded m-guillotine subdivision SG by adding to E a newset of horizontal/vertical edges whose total length is at most 2p2m L. The construction is recursive:at each stage, we show that there exists a cut, `, with respect to the current window W (whichinitially is the box B), such that we can a�ord to add the following set of segments to E:� (\red" segment) the m-span, �m(`); and� (\blue" segments) a line segment on ` connecting each of the endpoints of `\ (E [ �m(`)) toa point of the M -grid of �1(`).By construction, once we add these segments to E, ` becomes an (m;M)-perfect cut with respectto W . The sense in which we can \a�ord" to add these segments is that we can charge o� thelengths of the constructed segments to a portion of the length of the original edge set, E.First, note that if an (m;M)-perfect cut (with respect to W ) exists, then we can simply useit, and proceed, recursively, on each side of the cut. Thus, we assume that no (m;M)-perfect cutexists with respect to a given window, W .We say that a point p on a cut ` is m-dark with respect to ` and W if, along `? \ int(W ),there are at least m endpoints (strictly) on each side of p, where `? is the line through p andperpendicular to `.1 We say that a subsegment of ` is m-dark (with respect to W ) if all points ofthe segment are m-dark with respect to ` and W .The important property of m-dark points along ` is the following: Assume, without loss ofgenerality, that ` is horizontal. Then, if all points on subsegment pq of ` are m-dark, then we cancharge the length of pq o� to the bottoms of the �rst m subsegments, E+ � E, of edges that lieabove pq, and the tops of the �rst m subsegments, E� � E, of edges that lie below pq (since weknow that there are at least m edges \blocking" pq from the top/bottom of W ). We charge pq'slength half to E+ (charging each of the m levels of E+ from below, with 12m units of charge) and1We can think of the edges E as being \walls" that are not very e�ective at blocking light | light can go throughm� 1 walls, but is stopped when it hits the mth wall; then, p on a line ` is m-dark if p is not illuminated when lightis shone in from the boundary of W , along the direction of `?.3



half to E� (charging each of the m levels of E� from above, with 12m units of charge). We refer tothis type of charge as the \red" charge.In addition to charging o� the length of them-dark portion of `, in order to round to theM -gridof �1(`), we are also going to charge o� (1=m)th of the 1-dark portion of `: If pq is 1-dark, then wecharge (1=m)th of pq's length, by charging half of this length (i.e., (1=2m)th of the length of pq)o� to the level of E that lies above pq, and half of it to the level of E that lies below pq. We referto this type of charge as \blue" charge.The chargeable length of a cut ` is de�ned to be the length of the m-dark portion of `, plus(1=m) times the length of the 1-dark portion of `.The cost of a cut, `, is de�ned to be the length of the segments we must add to make thecut (m;M)-perfect. Thus, the cost of a cut ` is at most the length, j�m(`)j, of the m-span \red"segment, �m(`), plus the lengths of the \blue" segments on ` connecting each of the endpointsof ` \ (E [ �m(`)) to a point of the M -grid of �1(`). Since there are at most 2m endpoints of`\ (E[�m(`)), and two of these (the endpoints of �1(`)) are already at M -grid points of �1(`), thetotal number of blue segments is at most 2m� 2. Further, each blue segment is at most one halfof j�1(`)jM , where j�1(`)j is the length of the 1-span of `. Thus, the overall cost of a cut ` is at mostj�m(`)j+ (2m� 2) � 12 � j�1(`)jM = j�m(`)j+ 1m j�1(`)j;where we have used our choice o M = m(m� 1).We call a cut ` favorable if the chargeable length of ` \W is at least as long as the cost of thecut.The lemma below shows that a favorable cut always exists. For a favorable cut `, we add itsm-span to the edge set (charging o� its length, as above), and recurse on each side of the cut, inthe two new windows. After a portion of E has been charged red on one side, due to a cut `, it willbe within m levels of the boundary of the windows on either side of `, and, hence, within m levelsof the boundary of any future windows, found deeper in the recursion, that contain the portion.Thus, no portion of E will ever be charged red more than once from each side, in each of the twodirections (horizontal/vertical), so no portion of E will ever pay more than twice its total length,times 1=m, in red charge ( 12m from each side, for each of the two directions). Similarly, no portion ofE will ever be charged blue more than once from each side, in each of the two directions, and whenit is charged blue, it is charged at the rate of only 1=2m per unit length (per side, per direction);thus, no portion of E will ever pay more than its total length, times 2=m, in blue charge.So far, this charging scheme gives rise to a total charge of at most 4mL. This factor can beimproved slightly by noting that each side of an inclined segment of E may be charged red (resp.,blue) twice, once vertically and once horizontally, so the red (resp., blue) charge assigned to asegment is at most 1m times the sum of the lengths of its x- and y-projections, i.e., at most p2m timesits length. This gives the overall charge of 2p2m L, as claimed.It is also important to note that we are always charging portions of the original edges set E: Thenew edges added are never themselves charged, since they lie on window boundaries and cannottherefore serve to make a portion of some future cut m-dark or 1-dark.(Note too that, in order for a cut ` to be favorable, but not (m;M)-perfect, there must be atleast one vertex of V in each of the two open halfplanes induced by `; thus, the recursion mustterminate in a �nite number of steps.) utWe now prove the lemma that guarantees the existence of a favorable cut. The proof of thelemma uses a particularly simple argument, based on elementary calculus (reversing the order ofintegration). It is based on the similar lemma that appears already in [9, 10], but we include itsdetails here for completeness:Lemma 1 For any subdivision S, and any window W , there is a favorable cut.4



Proof. We show that there must be a favorable cut that is either horizontal or vertical.Let f(x) denote the cost of the vertical line, `x, through x; then,f(x) = j�m(`x)j+ 1m j�1(`x)j:Then, Ax = R 10 f(x)dx is simply the area, A(m)x = R 10 j�m(`x)jdx, of the (x-monotone) regionR(m)x of points of B that are m-dark with respect to horizontal cuts, plus (1=m) times the area,A(1)x = R 10 j�1(`x)jdx, of the (x-monotone) region R(1)x of points of B that are 1-dark with respectto horizontal cuts. Similarly, de�ne g(y) to be the cost of the horizontal line through y, and letAy = R 10 g(y)dy.Assume, without loss of generality, that Ax � Ay . We claim that there exists a horizontalfavorable cut; i.e., we claim that there exists a horizontal cut, `, such that its chargeable length(i.e., length of its m-dark portion, plus (1=m) times the length of its 1-dark portion) is at least aslarge as the cost of ` (j�m(`)j+ 1m j�1(`)j). To see this, note that Ax can be computed by switchingthe order of integration, \slicing" the regions R(m)x and R(1)x horizontally, rather than vertically; i.e.,Ax = R 10 h(y)dy = R 10 hm(y)dy+ 1m R 10 h1(y)dy, where h(y) is the chargeable length of the horizontalline through y, and h(i)(y) is the length of the intersection of R(i)x with a horizontal line throughy. (i.e., h(m)(y) (resp., h(1)(y)) is the length of the m-dark (resp., 1-dark) portion of the horizontalline through y.) Thus, since Ax � Ay, we get that R 10 h(y)dy � R 10 g(y)dy � 0. Thus, it cannotbe that for all values of y 2 [0; 1], h(y) < g(y), so there exists a y = y� for which h(y�) � g(y�).The horizontal line through this y� is a cut satisfying the claim of the lemma. (If, instead, we hadAx � Ay, then we would get a vertical cut satisfying the claim.) utAlgorithmsThe dynamic programming algorithms of Mitchell [9, 10] carry over almost verbatim to the newsetting of grid-rounded m-guillotine subdivisions. The main di�erence is in the complexity analysis.A subproblem in the dynamic programming recursion is speci�ed now by a rectangle (O(n4)choices), and, on each of the four sides, a segment corresponding to the 1-span (O(n2) choices perside), and a set of up to 2m M -grid points within each segment that specify the attachment pointsbetween this subproblem and neighboring subproblems. (Depending on the problem instance, otherinformation, of constant size for �xed m, is also speci�ed for a subproblem; see [10].) The key tothe improvement given in this paper is that there are now only �M2m� = O(m4m) choices for thesegrid points on any one side, and this number is constant for �xed m. (Compare this to the O(n2m)choices of crossing points in [10].) Thus, there are overall O(n12) subproblems. We then optimizeover all O(n) choices of cuts, O(n2) choices of 1-spans along the cut, and O(m4m) choices of gridpoints on the cut. The overall complexity of the dynamic programming algorithm is thereforeO(n15). By rounding the 1-span intervals up to be intervals of lengths that are power-of-twofactors smaller than the dimensions of the window, it is not hard to improve this complexity toO(n10 log5 n), without signi�cantly changing the approximation factor.Corollary 1 Given any �xed positive integer m, and any set of n points in the plane, there isan O(nO(1)) algorithm to compute a Steiner spanning tree (or Steiner k-MST), or a travelingsalesperson tour, whose length is within a factor (1 + cm) of minimum, for constant c.AcknowledgementsI thank Avrim Blum and Santosh Vempala for useful discussions on the subject of this paper.5
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