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The aim of this paper is to reconstruct the historical evolution of the so-called 
Measurement Theory (MT). MT has two clearly different periods, the formation 
period and the mature theory, whose borderline coincides with the publication in 
1951 of Suppes’ foundational work, ‘A set of independent axioms for extensive 
quantities’. In this paper two previous research traditions on the foundations of 
measurement, developed during the formation period, come together in the 
appropriate way. These traditions correspond, on the one hand, to Helmholtz’s, 
Campbell’s and Holder’s studies on axiomatics and real morphisms and, on the 
other, to the work undertaken by Stevens and his school on scale types and 
transformations. These two lines of research are complementary in the sense that 
neither of them is enough taken alone, but together they contain all that is 
necessary to develop the theory, and it is in Suppes (1951) that these complemen- 

tary approaches converge and all the elements of the theory are appropriately 
integrated for the first time. With Suppes’ work, then, begins what may be called 
the ‘mature’ theory, which was to develop rapidly later on, especially during the 
1960s. Our historical reconstruction is divided into two parts, each part devoted 
to one of the periods mentioned. Part I also contains a conceptual introduction 
which aims to establish the use of some notions, specifically those of measurement 

and metrbation. Although the reconstruction is not exhaustive, it intends to be 
quite complete and up to date compared to what is available in measurement 
literature; in this sense the aim of this paper is mainly historical but, although 
secondarily, it also attempts to make some conceptual and metascientific 
clarifications on the subject of the theory. Copyright 0 1997 Elsevier Science Ltd. 
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Introduction: Measurement, Metrization and MT 

I have (let us suppose) a diamond in front of me. It is small, sparkling, light, 

hard, beautiful and expensive. If I am asked to be more precise, I could say that 

it is very small, quite light, very, very hard and extremely expensive. I could 

carry on, but however much I refine my adjectives, it seems that I shall always 

be able to do so a little more (in almost all cases). It is noteworthy that as soon 

as I give the measures of the diamond for the properties involved I shall no 

longer be required to be more precise. Nevertheless, as we know, this is not 

possible for all its properties. I can say that its volume is x, its mass y, and even 

that its hardness is Z, but not (up to now) that its beauty is IV. Why not? I also 

have a piece of chalk in front of me. It is small, dull, light, soft, ugly and cheap. 

Both pieces are small and light, although the chalk not so much. Now I can also 

be more precise and even give (when possible) its measures and I may also be 

interested in comparing them with diamond’s measures. So I can say that the 

mass of the chalk is 100 times that of the diamond while its hardness is only 

one-tenth. But it is also noteworthy that, while the former means something, the 

latter does not. Or, being more precise, that both things mean something but 

only what is meant by the former depends exclusively on facts related to the 

objects. Both express a numerical fact (the quotient of masses is 100, the 

quotient of hardness is 0.1) but only what is expressed by the former is 

exclusively dependent on the objects, not on our conventions. Why? 

What we shall call ‘fundamental metrization’, a theoretical activity in the 

broad sense of the term, attempts to respond to these questions. This theoretical 

activity investigates the facts and conditions which make it possible to measure 

a property and the extent to which we can use the measures obtained to make 

objective statements about objects. In order to clarify the concept of metrication 

and the object of our historical reconstruction, i.e. the theory which results 

from this activity, we must carefully distinguish it from that of measurement. 

Measurement is the assignment of numbers to objects in order to represent 

their properties, not any property but only those specific properties called 

magnitudes or quarztities,’ which are capable of ‘more or less’ instantiation, i.e. 

of instantiation in degree. Measurement can be derived or fundamental. In 

derived measurement, by far the most common in scientific practice, we obtain 

the desired value of a magnitude for an object with the help of other values we 

already have which are linked to the first one in a certain way; these known 

values that we use can be of the same magnitude for other objects or of other 

magnitudes for the same object. For example, we can measure the mass of a 

‘Terminological note. The words ‘magnitude’ and ‘quantity’ are ambiguous. Sometimes they are 
used to refer to the property we are measuring in the object. at other times to refer to the specific 
‘quantity‘ of the property the object has, i.e. the value of the measurement. There is no standard 
usage in measurement literature to be followed. I use them as synonymous, but when it is necessary 
to refer to both meanings, I tend to use ‘magnitude’ for the first. i.e. the property itself, and 
‘quantity’ for the second. 
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heavenly body using the mass of a rocket, its change in trajectory when it 
travels near the body and certain mechanical laws which relate all these values. 
But measurement cannot always be derived, because derived measurement 
makes use of already known, i.e. measured, values and we must begin 
somewhere. This place is provided by fundamental measurement, not as 
common in practice but absolutely essential because it is ‘where everything 
begins’. In fundamental, or direct, measurement we obtain the desired values 
with no previous values at all, directly from qualitative empirical data. 

Measurement procedures, derived or fundamental, are possible because 
in the system where we assign a value to an object certain facts are 
obtained, because the system satisfies certain empirical conditions, certain ‘laws 
of nature’. These empirical facts or laws are the possibility conditions of 
measurement practice and they are the object of theoretical investigation. We 
shall call ‘metrization’2 this theoretical activity which studies the mensurability 
conditions, i.e. the possibility conditions for measurement. 

In derived measurement these conditions are quantitative laws of nature. But 
because these laws are (some) of the laws studied by common empirical 
quantitative theories, the theory of derived mensurability, properly speaking, 
has no autonomous subject; its task is already done by (one part or another of 
some of) those common quantitative theories. This is the reason why there is no 
autonomous theory devoted to the foundations of derived measurement.3 

In fundamental measurement the systems and the conditions or laws are 
qualitative (remember that numerical values ‘begin’ only after it). But these 
qualitative conditions are not the subject of any particular empirical qualitative 
theory devoted to the study of (the qualitative aspects of) a speczjic magnitude, 
for the same set of qualitative mensurability conditions may correspond to 
qualitative systems of a very different physical nature, i.e. may provide the same 
foundations for the fundamental measurement of very different quantities. 
The possibility conditions of fundamental measurement are the subject of a 
specific (and somehow special) empirical qualitative theory. This theory, which 
provides the foundations for fundamental measurement, studies the (different 

2Terminological note. When the term ‘metrization’ (and ‘to metrize’) is used in measurement 
literature, and it is used very rarely, it usually means the introduction or constifution of a new 
quantitative, metric concept (cf. Hempel, 1952, 912, Berka, 1983, chap. 6, $3; cf. also Stegmtiller, 
1970, chap. 1, $4). In the case offindamentul metrization, this consists in the specification of a 
procedure which enables a qualitative order to be represented numerically. This task has two parts. 
The first one is the theoretical investigation on the conditions that a qualitative empirical system 
must satisfy for the representation to be possible. The second one is to determine a concrete 
empirical procedure for qualitative comparison of the specific property involved, and to choose the 
standard with which the assignment begins. These tasks are essentially different. The way we use 
‘(fundamental) metrization’ only corresponds to the first, since the second is part of what we call 
‘(fundamental) measuring procedures’. It is essential to distinguish both things, once we do so, the 
words we use for each one are not so important. 

‘An autonomous theoretical activity difTerent from a mere ‘theory of definitions’, which provides 
the theoretical foundations for a very special kind of derived measurement, that in which the 
quantity we measure is introduced by de$zition in terms of others. Cf. Suppes and Zinnes (1963). 
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groups of) qualitative laws that make an empirical system, of whatever physical 

nature, mensurable, i.e. numerically representable. This theory is the theory of 
fundamental mensurability, or fundamental metrization, and is usually called 
‘Theory of Fundamental Measurement’ or, in short (and because of the absence 
of a specific theory of derived mensurability), ‘Measurement Theory’ (MT).4 

To sum up, Measurement Theory, which is the result not of the practical 
activity of measuring, but of a theoretical investigation that we call (fundamen- 
tal) metrization, establishes the conditions that a certain domain of objects 
exhibiting a magnitude-property must satisfy for it to be possible to assign, 
without the help of other previous assignments, numbers to the objects in such 
a way that certain (common) mathematical facts concerning the numbers 
assigned appropriately represent certain qualitative empirical facts that occur 
because the objects exhibit the property. Note that if, in this characterization, 
we make reference only to ‘the analysis of the conditions which make it possible 
to assign numbers to objects which display a property’, there would obviously 
be nothing to analyze, since numbers can be assigned to any domain of objects 
under any conditions. So, though vague, the addendum ‘in such a way that...’ 
is essential. 

Not every assignment can be regarded as measurement, and MT should 
make this additional restriction precise. Objects are involved in facts, some of 
which will be due to the property which is to be measured. The numerical 
assignment must represent these facts expressing them numerically. This is still 
not enough as a restriction, for the assignment can always be made with the 
only condition that there are at least as many numbers as objects: I have a 
particular fact made up of objects, I assign one number to each object and then 
I arbitrarily de$ne mathematical properties and relations between numbers 
which replicate the ones for the objects. In this way I obtain ‘numerical facts’ 
which ‘express’ the state of affairs between objects. It is obvious that this is not 
what we want, for we have merely ‘re-named’ the objects. The representative 
numerical facts must be ‘mathematically common’ and, in some way, ‘natural’; 
otherwise the so-called measurement has no sense. This restriction, though 
vague, works, for not every state of affairs among objects can be represented in 
this way. In order to be represented in such a way there are conditions that 
systems must satisfy and metrization then becomes an interesting task. Never- 
theless, these conditions may be very weak and give rise to ‘not very useful’ 
representations. This now raises the other side of the question. Once we have an 

4Terminological note. Although, to be coherent in the use of the words, i.e. to be coherent with 
our use of ‘metrization’ for the theoretical activity which gives rise to the theory, I would prefer 
‘mensurability’ or ‘metrization’ instead of ‘measurement’ for labelling the theory, when I do not use 
the abbreviation ‘MT’ I shall use the standard ‘Measurement Theory’ in order to agree with the 
common practice in measurement literature (the main references for MT are Narens (1985) and the 
summa Foundations of Measurement, Vol. I Krantz rt al. (1971) Vol. 11 Suppes et al. (1989) and 
Vol. III Lute et al. (1990). 
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appropriate numerical representation, certain mathematical statements are true 
about the numbers assigned. But not all of these statements can be regarded as 
being meanin~ul for our objects, in the sense that not every numerical fact 
represents a state of affairs dependent only on the objects and the property. 
And this is essential because, the more meaningful numerical statements there 
are, the more useful the measurement will be. And this is in fact the other side 
of the coin since, the stricter the representational possibility conditions are, the 
greater the meaningfulness is. So, it is certainly possible to find appropriate 
representations with very weak conditions, but then meaningfulness is very 
limited and, consequently, so is the utility of the measurement. 

Of course these comments would need further clarification, but in the present 
context they will suffice as a conceptual introduction to our historical task. Let 
us begin with the beginning of the story. 

Helmholtz on alikeness and additivity 

Helmoltz’s essay ‘Zlhlen und Messen erkenntnistheoretisch betrachtet’,s 
published in 1887, is generally regarded as being the first theoretical contri- 
bution to questions related to measurement. And indeed, as far as we are 
concerned, it is in this essay that the question of the conditions which make 
measurement possible is explicitly formulated for the first time.6 

Helmholtz calls ‘magnitude’ the ‘attributes of objects which when compared 
with similar ones allow the distinction greater, alike or smaller’.’ If we express 
attributes with numbers, these will be the values of the magnitude, and the 
procedure by which we find the values is the measurement of the magnitude. He 
then goes on to state the question which concerns us here: ‘we shall have to 
investigate in which circumstances we can express magnitudes through (...) 
numbers’.8 In my opinion, it is this question which is the starting point of what 
was later to be known as (Fundamental) Measurement Theory. 

Helmholtz states that this investigation should begin with the concept of 
alikeness.9 Alikeness, ‘(the) special relationship which may exist between the 
attributes of two objects’, is characterized by two properties, those we know 

‘The references made will be from the English version if it is not otherwise stated (cf. Helmholtz 
(1921); also Helmholtz (1930)). 

6The attention we are going to pay to Helmholtz’s essay would be a little bit excessive if we only 
take into account the technical results compared with other authors, but we think it is justified 
because of the wealth of conceptual questions he raises. 

‘Op. cit., p. 89. English translators render the German original ‘vergleichen’ and ‘Vergleich’ by 
‘(to) liken’ and ‘likening’. I prefer, and I shall use, the more common translations ‘(to) compare’ and 
‘comparison’. 

*Op. cir., p. 89. I omit here a qualification that Helmholtz makes (and which is maintained in the 
English translation) of the numbers in this context. In the German original, these numbers are 
known as ‘benannte Zahlen translated as ‘denominate numbers’ although the translator points out 
that it would be more natural to use ‘concrete numbers’, even though this does not fully fit 
Helmholtz’s characterization of them (cf. p. 84 of the German original). 

“Gleichheit’ in the German original. 
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today as symmetry and transitivity (pp. 88-89). The alikeness between two 

objects of comparable attributes is reached by observing certain factual results 

of the interaction of the objects in appropriate conditions and the procedure by 

which the objects are put into the appropriate conditions so as to be able to 

observe the result is known as the comparison method. So, the magnitudes that 

the two objects display are alike if: (1) the result observed on applying the 

comparison method to the two objects does not change when the order of the 

objects is inverted; and (2) both objects always give the same result when they 

are compared with the same third object. The concept of magnitude alikeness 

here seems to be a theoretical concept used to explain certain properties 

observed in the results of a comparison method.iO Viewed in this way it is 

obvious that two alike magnitudes (properly speaking, two objects with alike 

magnitudes) are interchangeable as far as the comparison procedure is con- 

cerned, i.e. one can be substituted for the other without modifying the results 

of the comparison procedure, for it is precisely substitutivity which allows us to 

determine alikeness (p. 90). More interesting is the fact that they are also 

interchangeable in other respects, in other phenomena. These other phenomena 

which are preserved when substituting alike magnitudes are regarded, then, as 

being effects of the attribute in question: ‘(we) characterize the further effects in 

which alikeness is preserved as effects of that attribute, or as empirically 

dependent upon that attribute alone’ (p. 91). 

With the concept of alikeness and non-alikeness to hand, the concept of 

magnitudes of the same type, or homogeneous magnitudes, can be explicated: 

‘Magnitudes whose alikeness or non-alikeness is to be decided by the same 

comparison method are termed by us “alike in kind”” ’ (p. 91). Understood in 

this way, magnitude kind is what today is known simply as magnitude, the 

attribute itself which is capable of being measured (e.g. mass). Helmholtz goes 

on to give some examples of such attributes (weight, length, duration and 

others) and of well known comparison procedures to determine alikeness for 

them (equilibrium, congruence, simultaneity...). 

The comparison of magnitudes discussed so far only enables us to say if they 

are alike or not but, if they are not alike, it does not give any measure of their 

difference. If magnitudes have to be completely spec$iable by numbers, ‘the 

greater of the two numbers must be portrayable as the sum of the smaller and 

their difference’ (p. 94). For this to be so, there must be some physical 

conjunction ‘between magnitudes alike in kind [expressible] as an addition’ 

(p. 94). It is curious that Helmholtz poses the problem of additivity without 

examining the question of order first, because if the procedure does not give rise 

to a certain order on the magnitudes one cannot speak of the highest and the 

“‘The properties of symmetry and transitivity ‘determine which physical relations we are allowed 
to recognize as alikeness’ (p, 94). 

“‘Gleichartig’ in the German original, that is to say, homogeneous. 
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lowest of two dissimilar ones and pose the problem of additivity in the way he 
does. The existence of an order does not follow from his conditions,‘* for the 
conditions he requires for alikeness do not preclude, for example, the same fact 
being observed for two dissimilar magnitudes when they are exchanged. That is 
to say, they do not imply the existence of an asymmetrical relationship between 
dissimilar magnitudes. We shall see how he analyzes ‘greater than’ after dealing 
with conjunction. 

For the physical conjunction of magnitudes (i.e. of objects with a magnitude) 
to be similar to addition, three conditions must be satisfied. First, the magni- 
tudes have to be of the same kind (i.e. of the same attribute).13 Helmholtz thinks 
that it is obvious that substitutivity follows from this condition: the result of the 
conjunction does not change (i.e. it is alike) when one magnitude is exchanged 
for another alike one. But actually it is difficult to see why this follows, unless a 
previous relationship is established between conjunction and alikeness. We shall 
consider, then, the intended consequence as the first condition. If we use the 
standard notations ‘ - ’ and ‘*’ for alikeness and conjunction, respectively, this 
condition, called - -monotonicity of 0, has the following form: (1) a-b iff 
(a-c) -(b*c).“J The second condition is that the conjunction must be -- 
commutative: (2) (a*b) -(boa). The third condition is that l must be what he calls 
‘associative’ (sic. p. 95): the result of the conjunction does not change, i.e. it is 
alike, when some ‘compound’ magnitude is substituted by another ‘undivided’ 
alike one. This use of the term ‘associative’ differs from normal usage, since the 
condition he refers to is: (3) if (a*b) - c then ((a-b)@ - (~*d).~~ Helmholtz points 
out that (3) follows from the previous ones, and is in fact redundant because it 
is of course a special case of (1) as it has been understood here. 

It is at this point that Helmholtz refers to an order relation: once we have 
found a ‘method of connecting the magnitudes (...) it now also follows which 
are greater and which are smaller (...), the whole is greater than the parts of 
which it is composed’;‘h a-6 is greater than a and than b. Of course this cannot 
be considered as a definition of ‘greater than’ for any two magnitudes, since it 
is not defined for non-compound objects. But in the spirit of what he says, it is 
easy to suggest a proper definition. Although it is not explicitly mentioned by 

“‘The comparison method tells us only whether the magnitudes are alike or unalike’ (p. 96). 
“Because of the way the kind of a magnitude has been characterized, this condition is only of 

interest if the conjunction involves three or more objects, since what this condition requires is that 
the procedure which establishes the alikeness or not between any two of them is the same in all 
cases, and this is only restrictive if more than two are combined. 

14This condition is a little bit stronger than mere substitutivity. which is only the ‘if part of this 
biconditional. 

“‘The result of connexion should therefore not alter if I introduce, instead of some magnitudes 
to be connected, others which are alike with the sum of these’ (p. 95). 

16p. 96. And he adds, with respect to the abovementioned examples of magnitudes, that ‘we have 
never doubted about what was greater and what smaller, hecause we have indeed known additive 
methods of connecting them’ (my italics). 
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Helmholtz, we can take the following as an improvement of his original idea 

(‘M’ abbreviates ‘greater than’): (D) aA4b iffdef there exists c such that a - b.c.17 

Thus defined, it does follow from previous axioms that relation M is 

transitive and --conservative (i.e. if aMb and a-c then cA4b). However it does 

not follow that M is asymmetric, nor that it is --connected (i.e. either aMb or 

a-b or bMa). And according to Helmholtz’s aims it should follow, for he 

wants relation M to work in the domain of objects in the same way (with the 

same properties) as relation >in the domain of numbers assigned to the objects. 

If we do not add new axioms about - and l ,I8 it will be necessary, contrary to 

Helmholtz’s intentions, to take an asymmetrical, transitive, --connected and 

--conservative relation M as primitively determined by the comparison 

procedure. Then we can add as a new condition the fact which he mentions and 

from which he attempted to ‘infer’ the order relation. This new condition is 

what we know as positivity of l : (4) a*bMa and a*bMb. Now we have all 

the conditions that characterize additive physical conjunction or ‘physical 

addition’.r9 Whether or not a physical conjunction is additive can only be found 

out empirically; it will be additive if the conjunction satisfies the empirical 

‘definitional’ conditions imposed. 

We close this review of Helmholtz with some comments on three additional 

remarks he makes which are of interest for fundamental metrization. The first 

is that there are cases in which it is possible to find two different additive 

conjunctions (which suggests that there are two-types of-magnitudes), and 

for which, however, the comparison method that determines the alikeness of 

each of them is the same: ‘by exactly the same method of comparison we 

determine both whether two wires are of like electrical resistance and whether 

they are of like conductance’ (p. 96) but ‘we add resistance by joining the wires 

in succession [i.e. in series] [...I and conductance by placing them side by side 

and joining them all up together at the one end and at the other [i.e. in parallel]’ 

“Note that this definition only defines ‘(strictly) greater than’ if there is no null element for 
operation 0, i.e. if there is no c such that PC-a. If there were to be such an element, the definition 
should be ‘._. ilf there exists c such that u-be and not U-PC’. 

“Even this strategy only works properly for asymmetry. It can be shown that we obtain the 
asymmetry of M thus defined if we add ‘common’ (not ‘Helmholtzian’) associativity of l to previous 
axioms. But there is no ‘natural’ condition about l and - from which, adding other axioms and the 
suggested definition of M. - connectedness for A4 follows. Of course there is one condition: either 
(i) there is c such that cr-be; or (ii) cl-h; or (iii) there is c such that ~-PC; but of course this is 
only a trick for it is merely connectedness ‘written without M’. 

“‘Although I said that definition (D) can be viewed as suggested by Helmholtz’s work, I do not 
think we can take (D) as a new axiom suggested by Helmholtz if finally, as we did, take relation M 
as primitive and not defined by (D). As a new condition (taking M, with its properties, as primitive) 
the ‘only if part of(D) follows from the other conditions, but the ‘if part does not, and it is really 
a strong new condition, what we now call solvahilif~~: if ahlb then there exists c such that a -by. 
I do not think there is textual support for supposing that Helmholtz has anything like this in mind. 
On the other hand, although we have interpreted him as explicitly requiring the - -monotonicity of 
0, I do not find textual support for doing the same with A4-monotonicity: aMb iff u*cMb*c, even 
though this condition is not strong and probably he would have accepted it if he had considered the 
issue. 
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(pp. 96-97); and the same happens with condensers for their capacity and 
voltage. The strange thing is that the characterization that he has made of the 
type of magnitude seems to imply that they are of the same type (the same 
attribute), since the alikeness of each of them is determined by the same 
procedure. If the procedure were required, as we saw it was reasonable, also to 
determine the ‘greater than’ order there would be no problem since the orders 
are inverse. 

Secondly, Helmholtz mentions measurement ‘by components’, or vectorial 
measurement, as a peculiar type of measurement which assumes that it is 
possible to additively compose magnitudes of different types (each one of the 
components) by means of a single physical operation on the objects; he 
mentions as examples the cases of velocity, acceleration, force and others 
(among which he includes colour, according to the theory of the three 
components). Helmholtz entitles this paragraph ‘Adding magnitudes of differ- 
ent types’ (p. 99), but it is clear that he is not attempting to suggest that 
magnitudes of one type can be composed with magnitudes of a different 
type. This section deals only with simultaneously adding different magnitudes, 
each one with others of the same type, using the same mode of physical 
combination. The type of representation involved here is what below will be 
called multidimensional representation.20 

Finally, although at no time does he formally treat the question of whether 
his conditions are necessary and/or sufficient for the magnitudes to be 
‘completely specifiable’ by numbers, he does explicitly mention the fact that the 
numbers thus obtained ‘only have a proportional value’ (p. 89). That is to say, 
they have no absolute representational value, they have representational value 
only as far as we express proportions or ratios with them. Nevertheless, they 
can be used absolutely when they are relativized to the value of the magnitude 
for an arbitrarily chosen standard object (unit). 

HSlder on Axionatics and Real Morphisms 

Hiilder was the first to formally study the conditions that are necessary 
and/or sufficient for the numerical ‘expression’, or representation, of the facts 
occurring in a domain of objects because the objects displays certain property- 
magnitude.21 These facts are understood here as being those that correspond to 
a certain order relation and a certain operation of combination on the elements. 
The numerical objects assigned to the objects are positive reals. The ‘numerical 
facts’ which express or represent the qualitative facts about the objects are those 

*“It is not clear, however, that the examples mentioned by Helmholtz deal with the simultaneous 
combination of different magnitudes. 

*‘Cf. Hiilder (1901). At about the same time, Huntington proposed a similar task (Huntington, 
1902), but it was Hiilder’s work that was to be the guideline of subsequent research. Much later 
Wiener (1921) was also heading in the same direction. 
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which use the relation >and the operation + over the reals. And the 

‘expression’, or representation, consists of a complete translation, that is to say, 

of an isomorphism. HGlder gives seven conditions or axioms that the domain, 

the relation and the operation must satisfy for there to be an isomorphism onto 

(not only into) the positive reals with >and +; this result is what is known as 

HGlder’s Theorem. Among these conditions, he explicitly presents those of 

solvability> (if an object is smaller than another, there is a third one that 

concatenated with the first is equivalent to the second) and archimedianity, or 

the Archimedean axiom (if an object is smaller than another, concatenating it 

with itself a finite number of times we can exceed the second one, that is to say, 

no element exceeds another ‘infinitely’). Hiilder’s Theorem is purely mathemati- 

cal and its empirical importance is slight, for the conditions that it imposes are 

excessive from an empirical point of view’2 (especially one condition similar to 

Dedekind completeness). In measurement, it is not essential, quite the contrary, 

for every real number to correspond to the magnitude of some object. Nor, on 

the other hand, does it seem reasonable to preclude two objects from having the 

same magnitude, but this exclusion follows from the fact that the assignment is 

an isomorphism, i.e. biunivocal. This last point is not so important, however, 

since the conditions can be regarded as referring to equivalence classes. 

HGlder’s results, suitably modified so that they can be used in empirical 

situations, make up the nucleus of most of the subsequent analyses of the 

conditions that make additive measurement possible. In the spirit of HGlder’s 

work, an essential part of future standard analysis will be the search for axioms 

that an empirical system must satisfy for there to be a morphism (not 

necessarily isomorphism, in general it will be sufficient for it to be homo- 

morphism) of such a system into (not necessarily onto) the reals. Because 

additive measurement is the paradigm of measurement, the analysis of its 

conditions will be the paradigm of metrization. In this sense, the ‘spirit’ of 

Hiilder’s work, the search for conditions for a real morphism, was to inspire the 

analysis of other types of measurement. It is hardly surprising, then, that 

research in metrization often seems to be a purely mathematical task. 

Campbell on Order and Additivity 

It is strange that N. Campbell, universally recognized as the father of MT, 

does not mention Hiilder’s results, even in his most important and monumental 

work, Foundations of Science, written almost 20 years later.23 The reason may 

be the preferentially philosophical, not mathematical, orientation of his work. 

Campbell devotes the whole of the second part of his book, which originally 

should have had four parts but of which only two were finished, to the study of 

221ts axioms constitute what nowadays is called, in model theory, a categorical theory: all its 
realizations are isomorphic, and then isomorphic to the additive semigroup of the positive reals. 

?Zampbell (1920), re-edited as Campbell (1957), from which I quote (cf. also Campbell (1928)). 
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measurement. In his work we find for the first time a systematic study of 

practically all the questions related to measurement and, among these, the 
conditions which make fundamental measurement possible. This is what 
concerns us here. 

Campbell characterizes measurement as ‘the process of assigning numbers to 
represent qualities’ (1920, p. 267)24 and the question that concerns us here is 
explicitly stated: ‘Why can and do we measure some properties of bodies while 
we do not measure others?’ (1920, p. 268; cf. also 1921, p. 111). The answer 
basically is that the measurable properties of bodies must in some special way 
be similar to the properties of numbers (1921, p. 112). What has to be clearly 
specified is what this way is. 

The first condition for measurement is that the property generates an (1) 
asymmetrical and (2) transitive relation, i.e. an order relation, between the 
objects which display it. This relation, adds Campbell, must be such that if it 
does not connect two objects, these objects must be related with the others in 
the same way: (using the above conventions) (3) if not aMb and not bA4u then 
aA4c iff bMc. The objects which are not connected by the relation are regarded 
as being ‘equal in respect of the property’ (1920, p. 273; cf. also 1921, p. 5). A 
relation that satisfies these three conditions enables us to define another relation 
- of alikeness or indifference: a-b it& not akfb and not bA4u. It is easy to see 
that, thus defined, - is an equivalence relation and M is --conservative and 
- -connected. 

The fulfillment of these conditions allows a certain ‘empirically informative’ 
numerical representation. Such is the case of hardness and density (if the latter 
is measured without the aid of other magnitudes). This type of representation 
is, however, not very informative since the difference between the numbers 
assigned ‘does not represent the physical difference’ (1920, p. 274). For this 
difference to be represented, addition must have a physical interpretation, there 
must be a way of combining with characteristics ‘analogous’ to those of 
numerical addition. Should there be such a way, the property may be measured 
‘perfectly and definitively’.25 

Campbell is not always uniform about the conditions that physical combi- 
nation must satisfy for resembling addition, but we can take the following from 

“‘Cf. also Campbell (1921, p. 110): ‘(measurement) can be defined, in general, as the assignment 
of numbers to represent properties’. 

“s‘The difference between those properties which can be measured perfectly and definitively, like 
weight, and those which cannot arises in the possibility or impossibility of finding in connection 
with these properties a physical significance for the process of addition’ (1920, pp. 277-278). 
Whether or not it is appropriate to speak of measurement in nonadditive cases we are not going to 
discuss here, since it is, partly. a verbal question. As a member of a committee of the British 
Association for the Advancement of Science responsible for analyzing the possibility of measurement 
in psychology, Campbell rejected such a possibility because of the absence of additivity (Ferguson 
et ul., 1940, p. 340; see the next section below). We have already seen, though, that in other places 
he speaks of measurement for mere orders (as in the case of hardness). 
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several places in which he deals with them (I again use ‘0’ for the operation): (1) 

positivity: a*bMa and a*bMb;z6 (2) - -commutativity and - -associativity; (3) 

- -monotonicity and M-monotonicity; and (4) ‘By adding objects successively 

we must be able to make a standard series (of standard objects, i.e. a 

consecutive combination of objects which are alike) one member of which will 

be the same in respect of the property as any other object we want to measure’ 

(1921, p. 117).27 This last condition, which is extremely strong, implies the 

weaker ones of solvability and archimedianity, which are empirically more 

reasonable and enough to carry out the function for which Campbell introduces 

(4). 
Again, as in Helmholtz, whether or not a physical combination l and a 

comparison relation M fulfil these conditions is a question that only experience 

can decide. One could think, says Campbell, that some of these conditions (for 

instance in the case of the measurement of weight using balances) can be 

deduced without experiment from known laws or principles (e.g. the laws of 

statics). But, he continues, research shows that our belief in the truth of these 

laws is based on our knowledge that the measurement of weight is possible, and 

so assumes that these conditions are fulfilled (1920, p. 286 and note). Campbell 

also raises the question of how arbitrary or univocal numerical assignment is, 

for a property which satisfies the conditions seen. If we consider a single mode 

of combination, he (informally) demonstrates that, given two different assign- 

ments such that in both cases the numbers assigned satisfy with respect to Band 

+ the conditions satisfied by the objects with respect to M and 0, one is a 

multiple of, proportional to, the other. So, the values assigned are only 

arbitrary in the choice of the unit, i.e. the ratio of values is constant for any 

assignment. 

It may happen, however, that there is more than one mode of combination 

that satisfies the conditions. The additional arbitrariness involved here, con- 

cerning which procedure is chosen, may only be apparent, since the order M, in 

relation to which the modes of combination satisfy the conditions, may be 

different. Campbell mentions the case already seen in Helmholtz of the 

combination of wires in series and in parallel. Both fulfil the conditions, but 

while one does so with respect to an order M, the other does so with respect to 

another M’, the converse of the former. The properties that both procedures 

make it possible to measure are different, resistance and conductance as we saw. 

If two different combination procedures make it possible to measure the same 

property, it must happen that the order in relation to which they satisfy the 

conditions is the same in both cases. Although Campbell does not mention any 

cases, from what he says it follows that if there were to be one such a case, 

we would find ourselves faced with a new and uneliminable element of 

‘“Another condition which he mentions is a special case of this one: if u-h then not P/I-U 
“In Campbell (I 920) this condition is not r.xplici~ly required, but see p. 280. 
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arbitrariness: by which method of combination is ‘the’ property measured? If 
the question is well-posed (and it) will be depending on whether it makes sense 
to speak of ‘the’ property independently of one particular mode of combina- 
tion), it is also crucial, since different procedures may give rise to non- 
proportional assignments. We shall see below that Ellis (1966) presents such a 
case. 

Stevens on Scales, Transformations and Invariance 

Between the works of Campbell and the publication in 1946 (over 20 years 
later, although most of the material is from the end of the 1930s) of ‘On the 
Theory of Scales of Measurement’, by S. S. Stevens, there is nothing of special 
relevance on the subject of metrization. 2x This article and later ones by the same 
author and his collaborators are a turning point in research on metrization and 
have a decisive influence on subsequent studies. 

Stevens came from the field of psychology and his article is, in principle, a 
reply to the rejection by a committee of the British Association fir the 

Advancement of Science, of which Campbell was a member, of the validity of 
certain scales for psychological magnitudes, such as the intensity of hearing 
sensations, on which Stevens himself had been working.29 The rejection was 
based on the non-existence of an additive operation of concatenation for 
sensations. In the final report, Campbell states that, for measurement to be 
meaningful, the number assigned to the object must be able to be seen as the 
number of standards that when concatenated are alike to the object with respect 
to the property in question (cf. Ferguson et al., p. 140) and another member 
concludes that ‘any law purporting to express a quantitative relation between 
sensation intensity and stimulus intensity is not merely false but is in fact 
meaningless unless and until a meaning can be given to the concept of addition 
as applied to sensation’ (Ferguson et al., p. 145). It is not clear whether Stevens’ 
work on sensorial scales should be interpreted as derived measurement of 
certain psychological magnitudes or as the establishment of psychophysical 
laws between independently measured magnitudes.30 In any case, and even 
though Stevens’ theory about scales is applied both to fundamental and derived 
measurement, it is essential to our discussion of the former. 

Stevens, who does not want to argue about names, proposes to consider as 
measurement, in the broad sense, any assignment of numbers to objects or 
events following a rule. A scale is one of these assignments. Although he 
considers that scales are possible ‘only because there is a certain isomorphism 
between what we can do with the aspects of the objects and the properties of the 

‘*The work of Nagel in the 193Os, alone and in collaboration with Cohen, does not present 
anything new worthy of mention (cf. Nagel (1932), the second chapter of his doctoral dissertation 
Nagel (1930); and chapter XV, ‘Measurement’, of Nagel and Cohen (1934)). 

29Cf. Stevens and Davis (1938). 
%ee, for instance, Roberts (1979, p. 142). 
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numerical series’ (Stevens, 1946, p. 142) and that empirical operations that 

determine certain relations between the aspects of the objects are involved in the 

scales, he does not analyze either these empirical operations or the conditions 

they must satisfy; he only mentions ‘what’ the empirical operations should 

determine (alikeness, order, compared differences, . ..). If despite all this his 

work is crucial for metrization, it is because what most concerns him and what 

he deals with, scale types, is essential for establishing the extent to which 

assignments (made possible by certain empirical conditions such as the ones 

studied by Helmholtz and Campbell) are unique or arbitrary. 

The type of a scale is characterized by its transformation group, that is, by 

the transformations admissible for it. For each type of scale there are: (1) 

associated empirical operations which should determine certain facts, facts 

which must be preserved under the transformations; and (2) a permissible 

statistics (function), a measure of location. The well known classification is the 

following. Variables denote the values of the scale, the numbers assigned to the 

objects;f(x) is the admissible transformation, a function of the numerical set, 

which contains the counterdomain of the scale, into itself;” and ~(x,, . . . . x,) is 

the numerical fact that empirical operations must determine, that is, the 

strongest formula 9(x,, . . . . x,) for which it is true that ‘~(x,, . . . . x,) iff @i(x,), 

. . . . ,Jx,J)‘.~* The classification is cumulative, progressively stronger conditions 

being expressed.33 

Nominal scale 

f(x) is any one-to-one function. v, is ‘xi =x2’. Statistical measure: mode. 

Example: any numeration. e.g. ‘numbering’ football players. Given the value of 

an object, the value of another is absolutely arbitrary. In this case we are not 

really measuring, we are merely renaming the objects. 

Ordinal Scale 

j(x) is any increasing monotonous function. v, is ‘xi >x2’. Statistical measure: 

median. Example: hardness. Given the assignment of one object, the assign- 

ment of another is arbitrary as long as the order is preserved. 

“The term ‘transformation’ will be used here with a certain ambiguity. Sometimes, as in this case, 
it will denote a function, with numerical domain and counterdomain, which is applied to another 
function with an empirical domain and a numerical counterdomain (i.e. to a scale); in this sense a 
transformation is the transformer function. Other times, when we state that a particular assignment 
of numbers to objects is a transformation of a previous assignment, it will denote the result of the 
composition, i.e. denote a new scale, with empirical domain and numerical counterdomain; in this 
sense a transformation is the result of applying the transformer function to a given scale. The 
context will make the intended sense clear. 

?oombs (1950) gives a classification for scales similar to Stevens’ and takes as primitives, not 
the admissible transformations, but certain equations that roughly coincide with these vs. So, for 
example, an ordinal scale is one such that the equations for which it can be used are of the type 
X2?‘. 

“Cf.. for example, Stevens (1946, 1951, 1968, 1968b). Stevens (1959, p. 24 ff). 
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Intervals, or DifSerences, Scale 

f(x)=ax+b (a>O, i.e. positive linear transformations). v, is ‘x,-x2=x3 -x4’ (or 

‘xl -x2 is constant’). Statistical measure: arithmetic mean. Example: thermo- 

metric temperature, calendar time .34 Assignment to one object determines 

the assignment of any other, once the origin or zero and the unit are 

arbitrarily chosen. The ratio of intervals of values does not change: 

(x1 - xJ(x3 - x4) = vlx,) -f(xz)YMx3) -&4)). 

Proportional, or Ratio, Scale 

f(x)=ax (a>O, i.e. positive similar transformations). v, is ‘x,/x,=x3/x4’ (or 

‘x,/x, is constant’). Statistical measure: geometric mean. Example: length, mass, 

duration, thermodynamic temperature. 35 Assignment to one object determines 

the assignation of any other, once the unit is arbitrarily chosen (zero is 

absolute). The ratio of values does not change: x1/x, = f(x,)/f(xJ_ 

In some places Stevens adds another scale type which he locates, like the 

intervals scale, between the ordinal and the proportional: 

Logarithmic Interval Scales 

f(x)=axn (a>O, n>O, i.e. exponential transformations). 0, is ‘log 

x, - logx,=logx, - logx,’ (or ‘logx, - logx, is constant’). He says that he does 

not know any statistical measure specific to it and that there are no cases of the 

same in physics, although there are in psychology.36 It is easy to see that 

here the ratios of logarithmic intervals do not change: (logx, - logx,)l 

(logx, - 1%X4) = mw,) -f(lw,)Ycf(logx,) -.m% -x44)). 

This classification can be completed in a natural way by introducing other 

types of transformation close to the ones seen. Each type of transformationf(x) 

characterizes a scale type. Figure 1 summarizes the situation. The function, if 

any, that is beneath the name of the scale does not change; it is invariant up to 

the transformation fix), i.e. it is a function g(x,, . . . . x,J such that g(x,, . . . . 

x,J=g(,!(x,), .__, f(xJ). Lines connect transformations; lower transformations 

are special cases of higher ones with which they are connected, i.e. if a function 

g is invariant up to transformation Ax) it will also be so under lower 

transformations connected tofix). When the sign ‘??? scale’ appears in the place 

of the name of the scale, it is because the type added has no standard name. 

This is Stevens’ classification, with its natural extensions. To conclude this 

first part, we shall make some final remarks about the significance of Stevens’ 

work for the previous research in metrization that we have already surveyed. 

‘%Jalendars arc. strictly speaking, scales of a subtype of this one, absolute intervals scale (see 
Fig. 1). 

“Now it does not concern us whether thermodynamic temperature is sensitive to fundamental 
metrization. 

?t is not clear if what he wants to say is that there are psychological magnitudes for which 
exponential transformations are admissible or that there are laws of the form s=qP where s is a 
psychological magnitude and ,u the magnitude of the physical stimulus (see, for example, Stevens 
(1959 p. 36)). 



f(x) is one-to-one 

Nominal scale 

f(x) is increasing monotone 

Ordinal scale 

f(x) is increasing polynominal 

??‘? scale 

f(x) = ax”+b (a, n>O) 

‘??? scale 

f(x) = ax+b (a>O) f(x) = ax” (a, 00) 

Interval scale Logarithmic interval scale 
x,&x3-x4 log~x,~-log~x2~llog~x~~-log~x~~ 
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f(x) = x+b f(x) = ax (a>O) 

Absolute interval scale Proportional scale 

x,-x2 xI’x2 

f(x) = x” (n>O) 

Logarithmic proportional scale 
log(x,Ylogfx*) 

f(x) = x 

Absolute scale 

And the best way to show this significance is to point out, first, that Stevens’ 

general approach is unsatisfactory in an essential way or, less crudely, it is in 

essential need of supplementation. For, although Stevens does a great deal of 

work on transformations and scale types, in the end the precise sense in which 

a specific scale is of a certain type remains unclear. A scale, he says, is of type, 

say, A if its admissible transform&ions are of type, say, a. But, when (and why) 

is a transformation admissible for a scale? When it leaves invariant something 

relative to the scale. But, what is it? Saying that it is the scale form or structure, 

with no further clarification, is to say nothing. It cannot be what he calls its 

permissible statistics measure, for they are not always invariant.37 What is it 

“For instance, for arithmetic mean and positive linear transformations the following is obtained: 
((u~,+b)+(ax~+b))R=a((x,+x~)/2)+b, that is, glf(x,), . . . . j(x,))=flg(x,, . . . . x,)). So Stevens dis- 
tinguishes two senses of invariance for CI statistics: (a) that it does not change its numerical value; 
and (b) that it changes the value but not the designated item (cf. Stevens, 1959, pp. 27728). 
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then? We have seen that most transformations leave invariant some relatively 
simple function. But even if this were so for all transformation types, it would 
not provide a satisfactory answer. For, what do these functions have to do with 

the scale before knowing that the scale is of a certain type? That some functions 
are invariant under some transformations is a purely mathematical fact. So, if 
we characterize a particular scale type by associating to it a particular group of 
transformations, it follows by purely (and relatively simple) mathematical 
considerations that certain numerical functions are invariant. But what we are 
then doing is simply defining the scale type by what we call (with no further 
explanation) ‘the type of admissible transformation’ for the scale, and it 
remains entirely obscure what makes a transformation admissible for a scale, 
i.e. why some transformations of a certain scale of magnitude m are also scales 

of the very same magnitude m and some other transformations are not. If we 
proceed in this way, and this seems to be the way in which Stevens proceeds, we 
cannot know, for example, why a non-positive linear transformation of the 
Celsius scale does not measure temperature, or why a (non-similar) monotone 
transformation of the MKS scale does not measure mass.38 

To sum up, if we deJine the scale type by a type of transformation (or what 
is tantamount, by a representative invariant function), then we do not know, in 
the epistemologically relevant sense, what makes a transformation admissible 
for a scale, why some transformations of a scale are measures of the magnitude 
and others are not. But this is just what we want of a clarification of a scale 
type. And if we try to clarify the notion of admissible transformation by 
appealing to the invariance of certain numerical functions, we still want to 
know what these numerical functions have to do with scale types. And this is 
just what we require of a clarification of an admissible transformation. To get 
out of this circle it is necessary, in the definition of admissible transformation, 
to get away from purely mathematical invariances and appeal to the properties 
of the objects, to their empirical relations. For this reason, perhaps, Stevens 
states that in each scale type empirical operations must determine certain 
numerical facts that remain invariant under transformations of the type 
corresponding to the scale, but he says nothing about these empirical opera- 
tions and the empirical facts which determine those other numerical facts that 
remain invariant. Once this task, which is precisely the task begun by 
Helmholtz, Hiilder and Campbell, has been done, Stevens’ results will be 
essential to see the extent to which the numerical representation is unique and, 
therefore, what is the use we can make of it. 

Helmholtz, H6lder and Campbell analyzed the qualitative conditions that an 
empirical system must satisfy in order to be numerically representable, but they 

“Mundy (1986, p. 403 IT.) characterizes Stevens’ approach as dealing with what he calls 
‘unstructured representation’. As far as I understand Mundy’s criticisms of unstructured 
representation, my criticisms to Stevens are along the same line (cf. esp. op. cit., p. 406). 
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did not say anything about the relations between the different possible 

representations of the same empirical system. Stevens formally studies the 

different formal relations there are between different representation-scales of a 

magnitude (i.e. of an empirical system), but he does not say anything about why 

the representations which show this relation are representations of the same 

magnitude. The answer cannot be that certain functions are invariant, since this 

is simply another way of characterizing the relation between transformations. 

To give an appropriate answer to this question it is necessary to make reference 

to the empirical conditions the system satisfies. If a transformation of a scale for 

magnitude m is admissible, it is because the function which results from the 

transformation is also a representation-morphism of the empirical system. This 

is the link that is lacking between the two approaches, the bridge which unifies 

these two lines of research of the formation period of our theory. 
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