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INAPPROXIMABILITY RESULTS FOR MAXIMUM EDGE
BICLIQUE, MINIMUM LINEAR ARRANGEMENT, AND SPARSEST

CUT∗
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Abstract. We consider the Minimum Linear Arrangement problem and the (Uniform) Sparsest
Cut problem. So far, these two notorious NP-hard graph problems have resisted all attempts to
prove inapproximability results. We show that they have no polynomial time approximation scheme,
unless NP-complete problems can be solved in randomized subexponential time. Furthermore, we
show that the same techniques can be used for the Maximum Edge Biclique problem, for which we
obtain a hardness factor similar to previous results but under a more standard assumption.
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1. Introduction. Maximum Edge Biclique, Sparsest Cut, and Minimum Lin-
ear Arrangement are fundamental combinatorial problems. They have a rich number
of applications in areas such as computational biology, circuit design, manufacturing
optimization, and graph drawing (see, e.g., [11, 12, 15, 30]). Moreover, as they of-
ten appear as subproblems in more complex settings, it is important to understand
whether we can efficiently find “good” solutions to these problems. For example,
suppose we have a “good” algorithm for the Sparsest Cut problem. Then we can par-
tition a graph into large pieces while minimizing the size of the “interface” between
them, a property that is very useful when designing graph theoretic algorithms via
the divide-and-conquer paradigm (see [30] for a comprehensive discussion).

Since the addressed optimization problems are NP-hard [19, 25, 26], one is forced
to settle for approximation algorithms. Unfortunately, there is no known approxi-
mation algorithm for the Maximum Edge Biclique problem that achieves an approxi-
mation guarantee significantly better than the inverse of the number of edges in the
bipartite graph. The situation for the Sparsest Cut problem and the Minimum Lin-
ear Arrangement problem is more hopeful. Leighton and Rao [24] showed that the
Sparsest Cut problem can be approximated within a factor O(log n) by using a linear
programming relaxation. The approximation guarantee is tight in the sense that it
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matches the lower bound on the integrality gap of the corresponding relaxation up to
constant factors [24]. Recently, Arora, Rao, and Vazirani [5] used semidefinite pro-
gramming to obtain the best known approximation algorithm for Uniform Sparsest
Cut with performance guarantee O(

√
logn).1 Subsequently, these techniques were

also used to obtain the best known approximation algorithm for the non-Uniform
Sparsest Cut problem [9], which is a generalization of the Uniform Sparsest Cut prob-
lem.

The situation is similar for Minimum Linear Arrangement. Feige and Lee [18] and
Charikar et al. [8] independently showed that combining the techniques in [5] with the
rounding algorithm of Rao and Richa [29] yields an O(

√
logn log logn)-approximation

algorithm for the Minimum Linear Arrangement problem. This improves over the
O(log n)-approximation algorithm of Rao and Richa [29]. The semidefinite program-
ming relaxations used for Sparsest Cut and Minimum Linear Arrangement were re-
cently shown to have integrality gap Ω(log logn) by Devanur et al. [13]. This result
suggests that we cannot use those relaxations to obtain a constant factor approxima-
tion algorithm for the Sparsest Cut problem or the Minimum Linear Arrangement
problem.

Despite substantial efforts, it seems difficult to obtain “good” (constant factor)
approximation algorithms for the considered problems. Instead, one can hope for
negative results, i.e., results that indeed show the problems to be hard to approx-
imate. For Sparsest Cut and Minimum Linear Arrangement, the only previously
known hardness results are based on the unique games conjecture [21] and say that
the non-Uniform Sparsest Cut problem has no constant factor approximation algo-
rithm [10, 23]. Feige and Kogan [17] showed that the Maximum Edge Biclique problem

is hard to approximate within a factor of 2(logn)δ for some δ > 0 under the plausible

assumption that 3-SAT �∈ DTIME(2n
3/4

). The hardness factor was later improved
by Feige [16], who showed that Maximum Edge Biclique is hard to approximate within
O(nε), for some ε > 0, by assuming a hypothesis about average-case hardness of Ran-
dom 3-SAT. (The formal definition of the used hypothesis is as follows. For every
fixed ε > 0, for Δ a sufficiently large constant independent of n, there is no polynomial
time algorithm that on most 3CNF formulas with n variables and m = Δn clauses
outputs “typical” but never outputs “typical” on 3CNF formulas with (1 − ε)m sat-
isfiable clauses. The word “typical” comes from the fact that for a large enough Δ,
every assignment to the variables of a random 3CNF formula with n variables and
m = Δn clauses satisfies roughly 7m/8 clauses.)

In summary, no “good” approximation algorithms are known for Maximum Edge
Biclique, Sparsest Cut, and Minimum Linear Arrangement. At the same time, the
only known hardness of approximation results use nonstandard assumptions and ap-
ply to non-Uniform Sparsest Cut (a more general and thus possibly harder problem
than Uniform Sparsest Cut) and Maximum Edge Biclique. Improving our understand-
ing of the approximability of these problems is considered a major open problem in
complexity theory (see, e.g., [13, 31, 32]).

Here, we address this problem by giving the first inapproximability results for
Sparsest Cut and Minimum Linear Arrangement. We also obtain hardness of approx-
imation results for Maximum Edge Biclique that are comparable to Feige’s results [16]
but use a more standard assumption. Our results use the recent Quasi-random PCP
construction of Khot [22], who proved important inapproximability results for Graph

1The same approximation guarantee was later obtained without solving the semidefinite program,
and this approach has better running time [2].
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Min-Bisection, Densest Subgraph, and Balanced Bipartite Clique. These inapprox-
imability results were obtained under the standard assumption that SAT has no prob-
abilistic algorithm that runs in time 2n

ε

, where n is the instance size and ε > 0 can
be made arbitrarily close to 0. Prior to Khot’s results, Graph Min-Bisection, Densest
Subgraph, and Balanced Bipartite Clique had a status similar to Maximum Edge Bi-
clique, i.e., no “good” approximation guarantees, and the only hardness results were
obtained by using nonstandard assumptions [16]. However, the results in [22] and the
hypothesis used by Feige in [16] were not known to imply inapproximability results
for Sparsest Cut and Minimum Linear Arrangement (see, e.g., [13, 31]). The main
contribution of this paper is to show that the Quasi-random PCP [22] and carefully
designed reductions indeed suffice to rule out the existence of a polynomial time ap-
proximation scheme (PTAS) for Sparsest Cut, Minimum Linear Arrangement, and
Maximum Edge Biclique. The hardness factor of Maximum Edge Biclique can then
be boosted by using standard techniques (see Theorem 1.4).

1.1. Preliminaries. We start with the definitions of the addressed problems
followed by a brief explanation and statement of the Quasi-random PCP.

Maximum Edge Biclique
Input: An n-by-n bipartite graph G.
Output: A k1-by-k2 complete bipartite subgraph of G.
Objective function: Maximize k1 · k2.
(Uniform) Sparsest Cut
Input: A graph G = (V,E).
Output: A cut, i.e., a partition of V into two disjoint sets S and S̄.
Objective function: Minimize the sparsity E(S, S̄)/

(|S||S̄|), where E(S, S̄) denotes
the number of edges crossing the cut.

Minimum Linear Arrangement
Input: A graph G = (V,E).
Output: A permutation of the vertices, i.e., a one-to-one function π : V → {1, 2, . . . ,

|V |}.
Objective function: Minimize

∑
{u,v}∈E |π(v) − π(u)|.

The famous PCP theorem, by Arora and Safra [6] and Arora et al. [4], can be
stated as follows.

Theorem 1.1. Given a SAT formula φ of size n we can in time polynomial in
n construct a set of M tests satisfying the following:

1. Each test queries a constant number d of bits from a proof, and based on the
outcome of the queries it either accepts or rejects φ.

2. (YES Case/Completeness) If φ is satisfiable, then there exists a proof so that
all tests accept φ.

3. (NO Case/Soundness) If φ is not satisfiable, then no proof will cause more
than M/2 tests to accept φ.

Note that by picking one test at random, one can look at only a constant number
of bits of a given proof and then with good probability know whether the given
proof is correct or not. Therefore, such proofs are called probabilistically checkable
proofs (PCPs). The algorithm that constructs a set of such tests with the goal of
distinguishing between correct and incorrect proofs will be referred to as a PCP
verifier.
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Khot [22] introduced the notion of Quasi-random PCPs. The idea is to focus on
the distribution (as opposed to the outcome) of queries made by the verifier. The
distribution is required to depend on whether the input to the PCP verifier is a
YES or a NO instance. In the NO case, the queries are required to be distributed
randomly over the proof; i.e., given any set B of half the bits, if each test queries d
bits from the proof, then only a fraction (1/2)d of the tests is expected to query bits
only from B. In the YES case, the distribution is required to be far from random.
Since the verifier does not know whether the input is a YES or NO instance, it seems
quite counterintuitive at first sight that he can make his query pattern depend on the
YES/NO case. However, consider the PCP verifier by Holmerin and Khot [20]: each
test of their verifier queries three bits from a balanced proof, i.e., a proof with an
equal number of 1-bits and 0-bits, and accepts if and only if the exclusive-or of the
three queried bits is zero. Suppose the tests of this verifier query the same bits of the
proof regardless of whether it is a YES or NO instance; then the tests that accept
in the YES case will also accept in the NO case (given the same proof). It is thus
necessary that the query pattern depend on the YES/NO case, without the verifier
knowing which case it is.

The following Quasi-random PCP construction by Khot [22] will be the starting
point for our reductions and can be stated as follows.

Theorem 1.2 (see [22]). For every ε > 0, given a SAT formula φ of size n, we
can in time 2O(nε) probabilistically construct a set of M = 2O(nε) tests satisfying the
following with high probability:

1. Each test queries d = O
(
1
ε log

1
ε

)
bits from a proof of length N = 2O(nε).

2. Each bit of the proof is queried by dM/N tests (queries are uniformly dis-
tributed over the proof).

3. (YES Case/Completeness) If φ is satisfiable, then there exists a set of half the
bits (corresponding to the 0-bits in a correct proof) so that βM tests query
bits only from this set, where β = (1−O(1/d)) 1

2d−1 .
4. (NO Case/Soundness) For p > 0, let B be any subset of bits of size (1/2+p)N .

If φ is not satisfiable, then at most (α+ pd)M tests query bits only from B,
where α = 1

2d + 1
220d .

2

1.2. Results and proof ideas. The main results of this paper are summarized
in the following theorem.

Theorem 1.3. Let ε > 0 be an arbitrarily small constant. If there is a PTAS for
Sparsest Cut, Minimum Linear Arrangement, or Maximum Edge Biclique, then there
is a (probabilistic) algorithm that decides whether a given SAT instance of size n is
satisfiable in time 2n

ε

.
Proof overview. The hardness of approximation follows by presenting reductions

from the Quasi-random PCP [22]. The reductions to Maximum Edge Biclique, Spars-
est Cut, and Minimum Linear Arrangement are presented in sections 2, 3, and 4,
respectively. They all follow a general pattern that is sketched below. We start by
building a graph instance of the addressed problem with vertices corresponding to
proof bits and tests of the Quasi-random PCP. The graph is created in such a way
that the vertices corresponding to tests (“test-vertices”) have a relatively low impact
on the total solution cost. This is achieved by having a relatively small number of
test-vertices. Moreover, when test-vertices are disregarded, then any optimal solution

2We note that in [22] the soundness says that for any set of half the bits, at most αM tests query
bits only from this set. The soundness here follows easily by using that each bit is queried by dM/N
tests.
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is balanced; that is, bit-vertices are evenly partitioned into two parts in the solution.
Since test-vertices have low impact on the total cost, one can prove that any “good”
solution must be quasi-balanced; i.e., bit-vertices are roughly evenly partitioned into
two parts in the solution. By the construction of the graph, test-vertices that cor-
respond to tests that query bits only on one side of the partition have a lower cost
(referred to as good test-vertices). The gap then follows by noting that, by Theorem
1.2, it is hard to decide whether there are “many” or “few” good test-vertices.

We remark that since the gaps obtained by using Theorem 1.2 are very small, we
have not optimized our reductions in favor of simplicity.

The hardness factor for Maximum Edge Biclique can be boosted, as was done for
Balanced Bipartite Clique in [22].

Theorem 1.4. Let ε > 0 be an arbitrarily small constant. Assume that SAT does
not have a probabilistic algorithm that decides whether a given instance of size n is
satisfiable in time 2n

ε

. Then there is no polynomial (possibly randomized) algorithm
for Maximum Edge Biclique that achieves an approximation ratio of 1/N ε′ on graphs
of size N , where ε′ depends only on ε.

The proof of this theorem is omitted, as it is identical to the one given for boost-
ing the hardness for Balanced Bipartite Clique [22], which in turn is based on the
techniques used by Berman and Schnitger [7] for the Clique problem.

2. Maximum Edge Biclique. In this section we present a reduction from the
Quasi-random PCP construction given by Theorem 1.2 to the Maximum Edge Bi-
clique problem so that in the completeness case the graph has an edge biclique with
“large” value, whereas in the soundness case all edge bicliques have “small” value (see
section 2.5 for details on the achieved gap). We first present the construction (sec-
tion 2.1) followed by an important property of the constructed graph (section 2.2).
We then present the completeness and soundness analyses (sections 2.3 and 2.4).

Since the reduction and analysis are relatively easy, this section serves as a good
starting point before continuing to the more complex reductions (which follow the
same general pattern) in sections 3 and 4.

2.1. Construction. Let N be the proof size, and let M be the total number of
tests of the PCP verifier in Theorem 1.2. BothN andM are bounded by 2O(nε), where
n is the size of the original SAT formula. Let d be the integer as in Theorem 1.2. Select
w to be (β−α

12·d )
2 (very small), where β and α are the bounds given by the completeness

and soundness of Theorem 1.2. Hence, β = (1 −O(1/d)) 1
2d−1 and α = 1

2d + 1
220d .

Construct a bipartite graph G(V,W,E) with |V | = |W | as follows (for an overview
of the construction see Figure 2.1). The right-hand side (RHS) consists of N bit-
vertices corresponding to the bits in the PCP proof and M test-vertices corresponding
to the tests of the PCP verifier. The left-hand side (LHS) consists of N bit-vertices
corresponding to the bits in the PCP proof and M slack-vertices to keep the bipartite
graph balanced. (The slack-vertices are not adjacent to any vertices and are thus not
included in any bipartite clique.) Connect an LHS bit-vertex to all RHS bit-vertices
except the one corresponding to the same bit of the proof. Furthermore, connect it to
an RHS test-vertex if and only if the bit is not queried by the test. Finally, assume
that wN

2 = M . (This can be achieved by simply copying vertices: every bit-vertex is
replaced by cN copies of itself, and every test-vertex is replaced by cM copies of itself,
such that now wN/2 = M holds. Copies are connected if and only if the original
vertices were. Any maximal biclique must take none or all the copies of a vertex on
either side of G.)
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LHS RHSA LHS bit-vertex is adjacent to
all RHS bit-vertices except the one
corresponding to the same bit

A LHS bit-vertex is adjacent to
a RHS test-vertex if and only if
the bit is not accessed by the test

N bit-vertices N bit-vertices

M slack-vertices M test-vertices

Fig. 2.1. An example of the construction. Only the edges incident to the dark gray bit-vertex
are depicted.

The intuition behind the construction is the following. As there are many more
bit-vertices than test-vertices, any Maximum Edge Biclique must include approxi-
mately half of the bit-vertices of the LHS and the remaining bit-vertices of the RHS
(see section 2.2). We then use Theorem 1.2 together with the fact that bit-vertices
are partitioned into two sets of approximately equal size to analyze the completeness
and soundness (see sections 2.3 and 2.4, respectively).

2.2. An optimal edge biclique is quasi-balanced. Given a biclique, let L
and R denote the number of bit-vertices of the LHS and bit-vertices of the RHS that
are included in the biclique, respectively. Note that in any maximal edge biclique
L+R = N . We say that a biclique is quasi-balanced if |L−R| ≤ β−α

6d N .
The following lemma follows in a straightforward manner from the fact that we

have many more bit-vertices than test-vertices in our constructed biclique instance.
Lemma 2.1. Any optimal edge biclique is quasi-balanced.
Proof. Any balanced biclique of G, i.e., a biclique with L = R = N/2, has value

at least
(
N
2

)2
, which serves as a lower bound on the optimal solution. Now consider

a biclique with L = 1+b
2 N and R = 1−b

2 N , where |b| > β−α
6d . Taking all test-vertices

in the biclique gives us the upper bound:

(2.1) L(R+M) =
1 + b

2
N

(
1− b

2
N +M

)
= (1− b2 + bw + w)

1

4
N2.

The statement follows by recalling w = (β−α
12·d )

2 and observing the following:

1. The maximum of f(x) = −x2 + xw + w is achieved when x = w
2 < β−α

6d .

2. f(b) = −b2 + bw + w ≤ −(β−α
6d )2 + β−α

6d (β−α
12d )2 + (β−α

12d )2 < 0.

We thus have that the value of f(b) is always less than 0 when |b| > β−α
6d .

2.3. Completeness. Here, we assume a YES instance for the Quasi-random
PCP; i.e., the given SAT formula φ in Theorem 1.2 is satisfiable. We will see that
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there is an edge biclique of size at least

(2.2) (1 + βw)

(
N

2

)2

.

This will be achieved by constructing a “balanced” solution, that is, a biclique where
the bit-vertices are partitioned into two equal sized sets. By Theorem 1.2, half the
bits in the proof, namely the 1-bits in a correct proof, are such that a fraction β of
tests does not query any of them. Let Γ denote the set of all such tests with |Γ| =
βM = βwN

2 . Now consider the biclique, where the LHS consists of the bit-vertices
corresponding to the 1-bits in the proof and the RHS consists of the remaining bit-
vertices (corresponding to the 0-bits in the proof) and the test-vertices corresponding
to the tests in Γ. This gives an edge biclique of size N

2 ·(N2 +βM
)
= N

2 ·(N2 +βwN
2

)
=

(1 + βw)
(
N
2

)2
.

2.4. Soundness. Here, we assume a NO instance for the Quasi-random PCP;
i.e., the given SAT formula φ in Theorem 1.2 is not satisfiable. We will see that there
is no edge biclique of size

(2.3)

(
1 +

α+ β

2
w

)(
N

2

)2

.

By Lemma 2.1, it is enough to bound the value of quasi-balanced edge bicliques.
Consider such a quasi-balanced biclique, and let L, R, and T denote, respectively, the
number of bit-vertices of LHS, bit-vertices of RHS, and test-vertices of RHS that are
included in the biclique.

Note that a test-vertex can be included in a biclique only if it is adjacent to all
bit-vertices in the LHS of the biclique. In other words, a test-vertex can be included
in a biclique only if the corresponding test queries only bits that correspond to bit-
vertices included in the RHS of the biclique. The soundness of Theorem 1.2 says that,
for any given set of a fraction 1/2 + p of the bits, at most a fraction α + p · d of the
tests queries only those bits. Hence, any edge biclique with L = 1−b

2 N and R = 1+b
2 N

has T ≤ (α+ |b|
2 d)M ≤ (α+ |b|d)wN

2 .

Assuming |b| ≤ β−α
6d (Lemma 2.1), we have the following (rough) bound on the

value of any edge biclique of G:

L(R+ T ) ≤ 1− b

2
N

(
1 + b

2
N + (α+ |b|d)wN

2

)

≤ (1 + (1 + |b|)(α+ |b|d)w)
(
N

2

)2

≤ (1 + (α+ |b|(2d+ α))w)

(
N

2

)2

<

(
1 +

α+ β

2
w

)(
N

2

)2

.

The last inequality holds because

α+ |b|(2d+ α) <
α+ β

2
⇔ 2|b|(2d+ α) < β − α,

which is easily seen to be true by recalling that |b| ≤ β−α
6d and α < d.
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2.5. Inapproximability gap. Here, we put everything together to obtain the
claimed hardness of approximation result, i.e., that a PTAS for Maximum Edge Bi-
clique implies a (probabilistic) algorithm for SAT that runs in time 2O(nε), where n is
the instance size. By using Theorem 1.2, we have provided a probabilistic reduction
Γ from SAT to Maximum Edge Biclique. For any fixed ε > 0, given an instance φ of
SAT of size n, Γ produces an edge biclique instance G in time 2O(nε) satisfying the
following with high probability:

• (Completeness) If φ is satisfiable, then G has an edge biclique of value

(2.4) (1 + βw)

(
N

2

)2

.

• (Soundness) If φ is not satisfiable, then all edge bicliques of G have value at
most

(2.5)

(
1 +

α+ β

2
w

)(
N

2

)2

.

As α, β, and w are all functions of the parameter d of Theorem 1.2, which in turn

is a function of ε, and since α < β, the quotient (2.5)
(2.4) is less than 1 − ζ(ε) for some

ζ(ε) > 0.
Now assume that the Maximum Edge Biclique problem admits a PTAS. Then,

by definition, it has a polynomial time (1 − ζ(ε))-approximation algorithm Aζ(ε) for
any fixed ε > 0. Moreover, the following (probabilistic) algorithm solves SAT in time
2O(nε) for any fixed ε > 0.

Decide SAT instance φ.
1. Run Γ to obtain a Maximum Edge Biclique instanceG from φ (in time 2O(nε)).
2. Run Aζ(ε) on G to obtain a solution with value val (in time polynomial in

the size of G, which is 2O(nε)).
3. If val ≥ (1− ζ(ε)) · (2.4), then φ is satisfiable; else φ is not satisfiable.

3. Sparsest Cut. We present a reduction from the Quasi-random PCP con-
struction given by Theorem 1.2 to Uniform Sparsest Cut so that in the completeness
case the constructed graph has a cut with “small” sparsity, whereas in the soundness
case all cuts have “large” sparsity (see section 3.5 for details on the achieved gap).
We first present the construction (section 3.1) followed by an important property of
the constructed graph (section 3.2). We then present the completeness and soundness
analyses (sections 3.3 and 3.4).

3.1. Construction. Let N be the proof size, and let M be the total number
of tests of the PCP verifier in Theorem 1.2. Both N and M are bounded by 2O(nε),
where n is the size of the original SAT formula. Let d be the number of bits each test
queries as in Theorem 1.2. Select k = ( 10d

β−α)
8 and h = k (k2 + k + 1

4 ), where β and
α are the bounds given by the completeness and soundness of Theorem 1.2. Hence,
β = (1 − O(1/d)) 1

2d−1 and α = 1
2d + 1

220d . Note that h 	 k 	 1. We now describe
the construction (for an overview see Figure 3.1). The graph G = (V,E) consists of a
bipartite graph Gb and two “huge” cliques of size kMN called C� and Cr. The graph
Gb is a bipartite graph where the LHS consists of M test-vertices corresponding to
the tests of the PCP verifier. The RHS consists of N clusters, one for each bit in
the PCP proof, where each cluster consists of M bit-vertices. Place edges between
a test-vertex to all vertices of a cluster if and only if the bit corresponding to that
cluster is queried by the test.
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M test-vertices

C� Cr

N bit-clusters
with M vertices each

A test-vertex is adjacent to all vertices
of a cluster if the corresponding
bit is queried by the test.

A test-vertex
has

(
d − β−α

5d

)
M

edges to Cr

A bit-vertex has
hM

N edges to C� and
hM

N edges to Cr

Clique of
size kMN

Clique of
size kMN

Fig. 3.1. The graph G for Sparsest Cut. Cliques, bit-vertices, and test-vertices are depicted by
polygons, squares, and circles, respectively. For simplicity, only edges incident to dark gray vertices
are depicted.

Finally, we complete the construction of the graph G by connecting the bipartite
graph Gb to C� and Cr as follows. Each bit-vertex has hM

N edges to C� and hM
N edges

to Cr , and each test-vertex has (d− β−α
5d )M edges to Cr.

3 Furthermore, we distribute
the edges incident to the cliques so that the difference of the degree between any two
vertices in a clique is at most one.

The intuition behind the construction is the following. For a cut to have low
sparsity it is good to divide the vertices into two sets of approximately the same size.
As our construction has relatively few test-vertices compared to the number of bit-
vertices and the size of the cliques, a cut of small sparsity must place the cliques on
different sides and partition the bit-vertices into two sets of approximately the same
size (see section 3.2). We then use Theorem 1.2, together with the fact that in any
good cut the bit-vertices are partitioned into two sets of approximately equal size, to
analyze the completeness and soundness (see sections 3.3 and 3.4, respectively).

3.2. An optimal cut is quasi-balanced. We say that a cut (S, S̄) is quasi-
balanced if it satisfies the following properties:

1. The cliques C� and Cr are placed on different sides of the cut. Assume,
without loss of generality, that the vertices of C� are included in S and the
vertices of Cr are included in S̄.

2. Let L and R be the number of bit-vertices in S and S̄, respectively. Then
|L−R| < (β−α

10d )2 NM .

3Note that no parallel edges are needed since hM
N

and (d− β−α
5d

)M are both less than kMN for
a sufficiently large N .
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The goal of this section is to prove that any optimal sparsest cut must be quasi-
balanced. Indeed, if we consider the subgraph induced by all but the test-vertices,
then it is easy to see that any sparsest cut is balanced, that is, quasi-balanced with
|L−R| = 0. The intuition is now that the test-vertices have a relatively small impact
on the cost and, hence, any optimal sparsest cut must be close to being balanced,
i.e., quasi-balanced. For the formal proof, we will need some useful properties of the
constructed graph G.

Observation 3.1.

1. The number of edges from bit-vertices and test-vertices to a clique is less than
hM

N · MN + dM2 = (h + d)M2. By the distribution of edges, a vertex v of

C� or Cr is thus adjacent to at most 
 (h+d)M2

kMN � = 
 (h+d)M
kN � < 3hM

N vertices
outside the clique.

2. A bit-vertex is adjacent to 2hM
N vertices of the cliques. As queries are uni-

formly distributed (see Theorem 1.2), a bit-vertex is adjacent to at most dM
N

test-vertices. It follows that a bit-vertex is adjacent to at most 2hM
N + dM

N ≤
3hM

N vertices.
Lemma 3.2. The graph G has a cut (S, S̄) with sparsity

(3.1)
E(S, S̄)

|S||S̄| ≤ 1

N2

(
k +

d
2

k2 + k + 1
4

)
.

Moreover, E(S, S̄) = O(M2) in any optimal sparsest cut of G.
Proof. Consider the cut (S, S̄), where S contains all vertices of C� and the bit-

vertices corresponding to half the bits (S̄ contains the remaining vertices).
Since the cliques are on different sides of the cut and the solution is “balanced,”

i.e., the bit-vertices are partitioned into two sets of equal size, we have that |S||S̄| ≥(
kMN + MN

2

) (
kMN + MN

2

)
= M2N2(k2 + k + 1

4 ).
We continue by calculating E(S, S̄). Since all vertices of C� are in S and all

vertices of Cr are in S̄, we have that the number of edges between bit-vertices and
the cliques that cross the cut is MN · hM

N = hM2. Consider the edges incident to
test-vertices. Note that, as each test queries d bits and in G there is a cluster of M
bits for each bit, the total number of edges incident to test- and bit-vertices is dM2.
By Theorem 1.2, the queries are uniformly distributed, and thus the total number of
edges between the test-vertices and the bit-vertices in S that corresponds to half the

bits is dM2

2 . Summing up the above observations, we get E(S, S̄) = M2
(
h + d

2

)
. It

follows that the sparsity of the cut is

E(S, S̄)

|S||S̄| ≤ M2
(
h+ d

2

)
M2N2(k2 + k + 1

4 )
,

which, by recalling that h = k
(
k2 + k + 1

4

)
, can be written as

1

N2

(
k +

d
2

k2 + k + 1
4

)
,

which is the RHS of (3.1).
Finally, to see that any optimal sparsest cut (S, S̄) has E(S, S̄) = O(M2), note

that the total number of vertices of G is 2kNM+NM+M . Hence |S||S̄| ≤ (|V |/2)2 =(
kNM+ NM

2 + M
2

)2 ≤ ((k+1)NM)2 = O
(
(NM)2

)
for any cut. Now suppose toward
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contradiction that there exists an optimal sparsest cut with E(S, S̄) = ω(M2). Then
E(S,S̄)

|S||S̄| = ω(1/N2), which contradicts its optimality since we proved that there exists

a cut with sparsity O(1/N2).
We are now ready to prove the main result of this section.
Lemma 3.3. Any optimal cut is quasi-balanced.
Proof. We show that an optimal cut is quasi-balanced by first proving that the

cliques are placed on different sides of the cut (Claims 3.4 and 3.5) and then that
bit-vertices are partitioned into two sets of almost equal size (Claim 3.6).

We say that a clique is divided in a cut (S, S̄) if both sets S and S̄ contain vertices
of the clique. The intuition behind the following claim is that the cliques are so huge
that any cut dividing a clique will have a large number of edges crossing the cut.

Claim 3.4. The cliques C� and Cr are not divided in any optimal sparsest cut.
Proof of claim. Given an optimal sparsest cut (S, S̄), we prove that all vertices of

Cr are placed in either S or S̄. (The proof that C� is not divided is similar and left
to the reader.) Let l and r be the number of vertices of Cr in S and S̄, respectively.
Suppose toward contradiction that l > 0 and r > 0.

If both l and r are big, say at least kNM
4 , then we have E(S, S̄) ≥ (kNM

4

)2
, which

contradicts the optimality of the cut since an optimal cut has E(S, S̄) = O(M2) (see
Lemma 3.2).

Now consider case 1: 0 < l < kNM
4 (case 2: 0 < r < kNM

4 is symmetric). Let
v be a vertex of Cr that is placed in S. We complete the proof by considering the
following two subcases.

Case 1.a. Suppose there exists a bit-vertex vb in S̄, and consider what happens
with the sparsity if we swap places of v and vb. As the bit-vertex vb is adjacent to
at most 3hM

N vertices in total and v is adjacent to at most 3hM
N + kNM

4 vertices in

S (see Observation 3.1) and to at least 3kNM
4 vertices in S̄ (that belong to Cr), the

number of edges that cross the cut will decrease by at least

3kNM

4
− kNM

4
− 3h

M

N
− 3h

M

N
>

kNM

4

(for big enough N). The sizes of the two partitions S and S̄ remain unchanged. It
follows that the sparsity of the cut will decrease, which contradicts its optimality.

Case 1.b. Suppose there are no bit-vertices in S̄. Then all bit-vertices are in S,
and we have |S| ≥ NM , and since r > 3kNM/4, we have |S̄| ≥ 3kNM/4. Consider
what happens if we move v to S̄. Similar to the case above, the number of edges that
cross the cut will decrease by at least kNM

4 . The new value of the sparsest cut will
thus be at most

E(S, S̄)− kNM
4

(|S| − 1)(|S̄|+ 1)
=

E(S, S̄)− kNM
4

|S||S̄|(1− 1
|S| +

1
|S̄| − 1

|S||S̄| )
.

By using that both |S| and |S̄| are at least NM , we have that the sparsity is at most

E(S, S̄)− kNM
4

|S||S̄|(1− 2
NM )

,

which is strictly smaller than E(S,S̄)
|S||S̄| because (using that we have E(S, S̄) = O(M2)

in an optimal cut)

E(S, S̄)

(
1− 2

NM

)
≥ E(S, S̄)−O

(
M

N

)
≥ E(S, S̄)− kNM

4
,
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again contradicting the optimality of the cut.
Given that the cliques are not divided in an optimal sparsest cut, we now prove

that they are placed on different sides. The intuition is that the cliques are so huge
that a cut that places them on the same side is very unbalanced, i.e., the product
|S||S̄| is small, which in turn will cause the cut to have large sparsity.

Claim 3.5. The cliques C� and Cr are placed on different sides in any optimal
sparsest cut.

Proof of claim. Suppose toward contradiction that both cliques are placed in, say,
S in an optimal sparsest cut (S, S̄). Recall that each bit-vertex has 2hM

N edges to the

cliques and each test-vertex has (d− β−α
5d )M edges to the clique Cr. It follows that

each vertex in S̄ has at least 2hM
N edges that cross the cut (for big enough N), and

the cut has sparsity

E(S, S̄)

|S||S̄| ≥ 2hM
N · |S̄|
|S||S̄| ≥ 2hM

N

4kMN
=

k2 + k + 1
4

2N2
.

This contradicts the optimality of the cut by recalling that G has a cut with sparsity
(3.1).

By the above claim we can assume that the cliques C� and Cr are placed on differ-
ent sides of the cut. We continue by proving that the bit-vertices are partitioned into
two sets of almost equal size. The following claim completes the proof of Lemma 3.3.

Claim 3.6. Given an optimal cut (S, S̄), let L and R be the number of bit-vertices
in S and S̄, respectively. Then

|L−R| ≤
(
β − α

10d

)2

NM.

Proof of claim. Since the cliques are placed on different sides of the cut, each
bit-vertex has at least hM

N incident edges that cross the cut. It follows that E(S, S̄) ≥
hM

N ·MN = hM2. Suppose toward contradiction that L = 1+p
2 NM and R = 1−p

2 NM

with |p| > (β−α
10d )2. Then the calculations below show that the sparsity of such a cut

is greater than (3.1), which contradicts its optimality:

E(S, S̄)

|S||S̄| ≥ hM2(
kMN + 1+p

2 MN +M
) (

kMN + 1−p
2 MN +M

)
=

h

N2
(
k2 + k + 1−p2

4 +O( 1
N )
)

≥ 1

N2

(
h+ d

k2 + k + 1
4

)
(for a big enough N)

=
1

N2

(
k +

d

k2 + k + 1
4

)
(recall h = k(k2 + k + 1

4 )).

The last inequality holds because we assumed |p| > (β−α
10d )2 and we have

h ·
(
k2 + k +

1

4

)
≥ (h+ d) ·

(
k2 + k +

1− p2

4
+O

(
1

N

))

⇔ h ·
(
p2

4
−O

(
1

N

))
≥ d ·

(
k2 + k +

1− p2

4
+O

(
1

N

))
,
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which can easily be seen to be true by recalling that h = k(k2 + k + 1/4) and k =
( 10d
β−α )

8.

The proof of the above claim concludes the proof of Lemma 3.3.

3.3. Completeness. Here, we assume a YES instance for the Quasi-random
PCP; i.e., the given SAT formula φ in Theorem 1.2 is satisfiable. We will see that
there is a cut with sparsity at most

(3.2)
1

N2

(
k +

d
2 − β β−α

5d

k2 + k + 1
4

)
.

By Theorem 1.2, half the bits in the proof, namely the 0-bits in a correct proof,
are such that a fraction β of the tests accesses only these bits in its queries. Let Γ
denote the set of all such tests with |Γ| = βM . We now partition the vertices of G
as follows (for an overview see Figure 3.2): S contain the vertices of C�, the vertices
of the clusters corresponding to the 0-bits, and the test-vertices of Γ (S̄ contains the
remaining vertices).

C� Cr

clusters corresponding to 0-bits clusters corresponding to 1-bits

tests that only query 0-bits (βM many) remaining test-vertices

S S̄

Fig. 3.2. The cut (S, S̄) in the completeness case. For simplicity, no edges are depicted.

Since the cliques are on different sides of the cut and the solution is “balanced,”
i.e., the bit-vertices are partitioned into two sets of equal size, we have that |S||S̄| ≥(
kMN + MN

2

) (
kMN + MN

2

)
= M2N2(k2 + k + 1

4 ).

We continue by calculating E(S, S̄). Since all vertices of C� are in S and all
vertices of Cr are in S̄, we have that the number of edges between bit-vertices and
the cliques that cross the cut is MN · hM

N = hM2. Consider the edges incident to
test-vertices. Note that, as each test queries d bits and G has a cluster of M bits
for each bit of the proof, the total number of edges incident to test- and bit-vertices
is dM2. By Theorem 1.2, the queries are uniformly distributed, and thus the total
number of edges between the test-vertices and the bit-vertices corresponding to the
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0-bits is dM2

2 . By observing that the test-vertices of Γ have βdM2 edges to those

bit-vertices and β (d − β−α
5d )M2 edges to Cr, the total number of edges incident to

test-vertices that cross the cut is

dM2

2
− βdM2 + β

(
d− β − α

5d

)
M2 = M2

(
d

2
− β

β − α

5d

)
.

Summing up the above observations, we get E(S, S̄) = M2 (h + d
2 − β β−α

5d ), and it
follows that the sparsity of the cut is at most

M2
(
h+ d

2 − β β−α
5d

)
M2N2(k2 + k + 1

4 )
,

which, by recalling that h = k
(
k2 + k + 1

4

)
, can be written as

1

N2

(
k +

d
2 − β β−α

5d

k2 + k + 1
4

)
= (3.2).

3.4. Soundness. Here, we assume a NO instance for the Quasi-random PCP;
i.e., the given SAT formula φ in Theorem 1.2 is not satisfiable. We will see that all
cuts have sparsity at least

(3.3)
1

N2

(
k +

d
2 − α+β

2
β−α
5d

k2 + k + 1
4

)
.

We start by proving a useful property, which is later used to bound the number
of “good” test-vertices. Since the construction of G does not necessarily enforce that
all bit-vertices of a bit-cluster are placed on the same side of the cut, we cannot apply
Theorem 1.2 in a straightforward way. The following lemma is a property of graph
Gb (the same bipartite construction and property will be used for Minimum Linear
Arrangement in section 4).

Lemma 3.7. Consider the bipartite graph Gb, let B be a set of bit-vertices with
|B| ≤ 1+q

2 NM , where q = (β−α
10d )2, and let T be the set of test-vertices each having

at least (d− β−α
10d )M edges to the bit-vertices of B. Then for a NO instance we have

that |T | < 2α+β
3 M .

Proof. Note that each bit that is accessed by the test-vertices of T must have
at least (1 − β−α

10d )M bit-vertices in B. Since |B| ≤ (1 + q)NM/2, we have that the
number of bits in the proof accessed by the tests in T is at most

1 + q

1− β−α
10d

· N
2

≤
(
1 + q +

β − α

5d

)
· N
2
.

The inequality holds because
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1 + q ≤
(
1− β − α

10d

)(
1 + q +

β − α

5d

)

⇔ β − α

10d

(
1 + q +

β − α

5d

)
≤ β − α

5d
,

which is true since q + β−α
5d is less than one.

The soundness of Theorem 1.2 says that, for any given set of a fraction (1 + q +
β−α
5d )/2 of the bits, at most a fraction α + (q + β−α

5d ) · d/2 of the tests queries only
those bits. It follows that

|T | ≤
(
α+

(
q +

β − α

5d

)
· d
2

)
M,

which is less than 2α+β
3 M , because

α+

(
q +

β − α

5d

)
· d
2
<

2α+ β

3

⇔
(
q +

β − α

5d

)
· 3d
2

< β − α,

which can be seen to be true by recalling that q = (β−α
10d )2.

By Lemma 3.3 we need only consider quasi-balanced cuts. (For an overview of
the structure of an optimal cut in the soundness case see Figure 3.3.) We continue by
proving that for quasi-balanced cuts the value of E(S, S̄)/(|V |/2)2, which is a lower
bound on the sparsity of a cut (S, S̄), is bounded from below by (3.3).

This is achieved by bounding E(S, S̄) as follows. Consider a quasi-balanced cut
(S, S̄). Let L and R be the bit-vertices in S and S̄, respectively. Let Γ be the set
of test-vertices each having at least (d − β−α

10d )M edges to the bit-vertices of L. By

the fact that the cut is quasi-balanced we have that 1−q
2 NM ≤ |L| ≤ 1+q

2 NM , where

q = (β−α
10d )2, which is sufficient for applying Lemma 3.7, and we get that |Γ| ≤ 2α+β

3 M .
Since, by Theorem 1.2, the queries are uniformly distributed, the total number of

edges between the test-vertices and the bit-vertices of L is at least (1−q)dM2

2 . If all
test-vertices are placed in S̄, all of these edges would cross the cut. The only way to
decrease their number is to move test-vertices to S. But since every test-vertex has
(d − β−α

5d )M edges to Cr, this is profitable only for test-vertices which have fewer

than β−α
10d M edges to the bit-vertices of R, i.e., test-vertices that are in Γ. By the

above argument we can assume, when calculating a lower bound of E(S, S̄), that the
only test-vertices placed in S are those in Γ, and it is easy to see that assuming they
are not adjacent to any bit-vertices of R might only decrease E(S, S̄).

As in the completeness case, we have that the number of edges between bit-vertices
and the cliques that cross the cut is MN · hM

N = hM2.

To summarize we have the following:

• The number of edges incident to test-vertices that cross the cut is at least
(1−q)dM2

2 −|Γ|dM + |Γ| (d− β−α
5d )M = (1−q)dM2

2 −|Γ|β−α
5d M , which, by using

that |Γ| ≤ 2α+β
3 M , can be bounded from below by M2 ( (1−q)d

2 − 2α+β
3

β−α
5d ).

• The number of edges between bit-vertices and the cliques that cross the cut
is hM2.
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C� Cr

≈ half the bit-vertices

test-vertices that are adjacent to
at most β−α

10d · M bit-vertices in S̄

(at most 2α+β
3 M many test-vertices) remaining test-vertices

S S̄

≈ half the bit-vertices

Fig. 3.3. Structure of an optimal (S, S̄) cut in the soundness case. (The edges are not depicted.)

Since |S||S̄| ≤ (|V |/2)2 we have that the sparsity of any cut of G is

E(S, S̄)

|S||S̄| ≥
M2

(
h+ (1−q)d

2 − 2α+β
3

β−α
5d

)
(
kMN + MN

2 +M
)2

=
1

N2

(
h+ (1−q)d

2 − 2α+β
3

β−α
5d

k2 + k + 1
4 +O( 1

N )

)

≥ 1

N2

(
k +

d
2 − α+β

2
β−α
5d

k2 + k + 1
4

)
= (3.3).

The last inequality holds because h = k(k2 + k + 1/4) and

(1− q)d

2
− 2α+ β

3

β − α

5d
>

d

2
− α+ β

2

β − α

5d

⇔
(
α+ β

2
− 2α+ β

3

)
β − α

5d
>

qd

2

⇔ β − α

6

β − α

5d
>

qd

2
,

which is true since q = (β−α
10d )2.

3.5. Inapproximability gap. Here, we put everything together to obtain the
claimed hardness of approximation result, i.e., that a PTAS for (Uniform) Sparsest
Cut implies a (probabilistic) algorithm for SAT that runs in time 2O(nε), where n is
the instance size. By using Theorem 1.2, we have provided a probabilistic reduction
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Γ from SAT to (Uniform) Sparsest Cut. For any fixed ε > 0, given an instance φ
of SAT of size n, Γ produces a sparsest cut instance G in time 2O(nε) satisfying the
following with high probability:

• (Completeness) If φ is satisfiable, then G has a cut of sparsity at most

(3.4)
1

N2

(
k +

d
2 − β β−α

5d

k2 + k + 1
4

)
.

• (Soundness) If φ is not satisfiable, then all cuts have sparsity at least

(3.5)
1

N2

(
k +

d
2 − α+β

2
β−α
5d

k2 + k + 1
4

)
.

As α, β, and k are all functions of parameter d of Theorem 1.2, which in turn is a

function of ε, and since α < β, the quotient (3.5)
(3.4) is greater than 1 + ζ(ε) for some

ζ(ε) > 0. The claimed hardness of approximation result now follows from the same
arguments as given in section 2.5.

Finally, we mention that the reduction presented in this section is also valid, with
almost the same analysis, for the related problem of finding a cut that minimizes the

flux E(S,S̄)

min(|S|,|S̄|) (see, e.g., [5]).

4. Minimum Linear Arrangement. For simplicity, we first consider the
weighted version of the Minimum Linear Arrangement problem. That is, an edge
{u, v} ∈ E has weight wuv, and the objective is to find a permutation π of the ver-
tices that minimizes

∑
{u,v}∈E wuv |π(u) − π(v)|. We present a reduction from the

Quasi-random PCP construction given by Theorem 1.2 to weighted Minimum Linear
Arrangement so that in the completeness case the constructed graph has a linear ar-
rangement with “small” cost, whereas in the soundness case all linear arrangements
have “large” cost (see section 4.5 for details on the achieved gap). We first present
the construction (section 4.1) followed by an important property of the constructed
graph (section 4.2). We then present the completeness and soundness analyses (sec-
tions 4.3 and 4.4). Finally, we note in section 4.6 that the arguments generalize in a
straightforward manner to the unweighted case.

4.1. Construction. Let N be the proof size and M be the total number of
tests of the PCP verifier in Theorem 1.2. Both N and M are bounded by 2O(nε),
where n is the size of the original SAT formula. Let d be the number of bits each
test queries in the Quasi-random PCP construction. Select k to be ( 10d

β−α )
8, where

β and α are the bounds given by the completeness and soundness of Theorem 1.2.
Hence, β = (1−O(1/d)) 1

2d−1 and α = 1
2d

+ 1
220d

. Note that k 	 1. We now describe
the construction (for an overview see Figure 4.1). The final graph G consists of the
graphs Gb, G�, and Gr and is constructed as follows:

• The graph Gb is a bipartite graph where the LHS consists of M test-vertices
corresponding to the tests of the PCP verifier. The RHS consists ofN clusters,
one for each bit in the PCP proof, where each cluster consists of M bit-
vertices. Place edges, weighted by 1, between a test-vertex to all vertices of
a cluster if and only if the bit corresponding to that cluster is queried by the
test. (Note that Gb is the same bipartite graph as in section 3.)

• The graph G� consists of a vertex C� and 2kMN additional slack-vertices.
We place an edge from each slack-vertex to C� and weight these edges by
k4M

N .
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M test-vertices

C�

N bit-clusters
with M vertices each

A test-vertex is adjacent to all vertices
of a cluster if the corresponding
bit is queried by the test.

Cr

kMN slack-verticeskMN slack-vertices kMN slack-verticeskMN slack-vertices

A test-vertex has edges to C�

and Cr of weights β−α
10d M

and
(
d − β−α

10d

)
M , respectively

A bit-vertex has an edge
to Cr of weight k2 M

N

Edges between slack-
vertices and C� or Cr

have weight k4 M
N

Fig. 4.1. The graph G for Minimum Linear Arrangement. Slack-vertices, bit-vertices, and
test-vertices are depicted by diamonds, squares, and circles, respectively. For simplicity only some
edges are depicted and the thickness of an edge is relative to its weight.

• The graph Gr is constructed as G�, where instead of C� we have Cr.

Finally, we construct the graph G by connecting the bipartite graph Gb to G� and
Gr as follows. Each test-vertex has edges to C� and Cr, weighted by β−α

10d M and

(d− β−α
10d )M , respectively. Each bit-vertex has an edge to Cr of weight k2M

N .

The intuition behind the construction is the following. As slack-vertices and bit-
vertices have edges to C� and Cr of very large weight, any good linear arrangement will
locate these vertices evenly before and after the vertices of C� and Cr (see Figure 4.2).
With this intuition in mind, we prove the important property that any good linear
arrangement will partition the bit-vertices into two sets of approximately the same
size (see section 4.2). We then use Theorem 1.2 to analyze the completeness and
soundness (see sections 4.3 and 4.4, respectively).

Throughout the analyses, we restrict ourselves without loss of generality to linear
arrangements where C� is placed to the left of Cr. The case when Cl is to the right of
Cr is symmetric. Moreover, we use the following convention to simplify notation. Let
π be a linear arrangement of G. For sets A,B of vertices we write A <π B (subscript
omitted when π is clear from the context) whenever ∀u ∈ A, ∀v ∈ B : π(u) < π(v).

4.2. An optimal linear arrangement is quasi-balanced. Select q = (β−α
10d )2,

i.e., a “small” number. We say that a linear arrangement π of G is quasi-balanced if
(see also Figure 4.2) the following hold:

• The slack-vertices of Gi can be partitioned into two sets Si
L, S

i
R with ||Si

L| −
|Si

R|| ≤ qkNM for i ∈ {l, r}.
• The bit-vertices can be partitioned into two sets BL and BR with ||BL| −
|BR|| ≤ qNM so that

S�
L < {C�} < S�

R < BL < Sr
L < {Cr} < Sr

R < BR.
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C� Cr

≈ kMN
slack-vertices

≈ kMN
slack-vertices

≈ kMN
slack-vertices

≈ kMN
slack-vertices

≈ MN/2
bit-vertices

≈ MN/2
bit-vertices

S�
L S�

R Sr
RSr

LBL BR

Fig. 4.2. A quasi-balanced linear arrangement. (The test-vertices are not depicted.)

The goal of this section is to prove that any optimal linear arrangement is quasi-
balanced. Indeed, if we consider the subgraph induced on all but the test-vertices,
then it is easy to see that any optimal linear arrangement is balanced, that is, quasi-
balanced with |Si

L| − |Si
R| = 0 for i ∈ {
, r} and |BL| − |BR| = 0. The intuition

is that the test-vertices have a relatively small impact on the cost and, hence, any
optimal linear arrangement must be close to being balanced, i.e., quasi-balanced. For
the formal proof, we will need the following upper bound on the cost of an optimal
linear arrangement.

Lemma 4.1. The graph G has a linear arrangement with cost at most

(4.1) M3N

(
2k6 + k3 +

k2

4
+ 2dk

)
.

Proof. Partition the slack-vertices of Gi into two sets Si
L and Si

R with |Si
L| =

|Si
R| = kNM for i ∈ {
, r}. Let BL be the set of bit-vertices corresponding to a set

of half the bits, and let BR be the remaining bit-vertices. Note that |BL| = |BR| =
NM/2. We also let Γ with |Γ| = M be all the test-vertices. Now consider a linear
arrangement π of G so that (see Figure 4.2)

S�
L < {C�} < S�

R < BL < Sr
L < Γ < {Cr} < Sr

R < BR.

We proceed by bounding the cost of π by considering the different edges:
• The edges incident to slack-vertices have cost at most

4 · k4M
N

kNM∑
i=1

(i+M) = 4 · k4M
N

(
kNM(kNM + 1)

2
+ kNM2

)
,

which is bounded from above by 2k6M3N + o(M3N).
• The edges between the bit-vertices and Cr have cost at most

2 · k2M
N

NM/2∑
i=1

(i + kNM +M).

Since
(i)
∑NM/2

i=1 i = (NM/2)(NM/2 + 1)/2 = (NM)2

8 + o
(
(NM)2

)
,

(ii)
∑NM/2

i=1 kNM = k(NM)2/2,

(iii)
∑NM/2

i=1 M = o
(
(MN)2

)
,

the cost of the edges between bit-vertices and Cr is bounded from above by

M3N(k
2

4 + k3) + o(M3N).
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• Now consider the edges incident to test-vertices. As an edge from a test-
vertex to Cr has weight (d − β−α

10d )M and the length of such an edge is

at most M in π, the cost of such an edge is at most (d − β−α
10d )M2. As

there are M test-vertices, the cost of all edges from test-vertices to Cr is at
most (d− β−α

10d )M3 = o(M3N). Each test-vertex also has an edge of weight
β−α
10d M to C�, and such an edge has length at most (2kMN + MN/2 +M)
in π. Hence, the cost of all edges from the M test-vertices to C� is at most
M3N β−α

10d

(
2k + 1

2

)
+ o(M3N) ≤ M3Nk + o(M3N). Finally, a test-vertex

has at most dM edges to the bit-vertices, each of length at most (kMN +
MN/2 + M) in π. Thus the cost of all edges from the M test-vertices to
bit-vertices is at most M3N

(
dk+ d

2

)
+ o(M3N) ≤ M3N(d+1)k+ o(M3N).

In summary, the total cost of the edges incident to test-vertices is at most
M3Nk +M3N(d+ 1)k + o(M3N) = M3N(d+ 2)k + o(M3N).

Summing up the above observations gives us that the cost of π is at most

M3N

(
2k6 + k3 +

k2

4
+ (d+ 2)k

)
+ o(M3N),

which is (for large enough N and M) less than

M3N

(
2k6 + k3 +

k2

4
+ 2dk

)
= (4.1).

We are now ready to prove the main result of this section.
Lemma 4.2. Any optimal linear arrangement of G is quasi-balanced.
Proof. We first prove (Claim 4.3) that in any optimal linear arrangement of G,

Gi’s slack-vertices can be partitioned into two sets Si
L, S

i
R for i ∈ {l, r}; and bit-

vertices can be partitioned into two sets BL and BR so that

(4.2) S�
L < {C�} < S�

R < BL < Sr
L < {Cr} < Sr

R < BR.

Second (Claim 4.4), we will see that the sets must be almost “balanced” in an
optimal linear arrangement, that is, ||Si

L| − |Si
R|| ≤ qkNM for i ∈ {l, r} and ||BL| −

|BR|| ≤ qNM .
Claim 4.3. In any optimal linear arrangement π of G, vertices must be ordered

as in (4.2).
Proof of claim. Since we consider only linear arrangements with C� to the left of

Cr, it is easy to see that

S�
L <π {C�} <π S�

R <π Sr
L <π {Cr} <π Sr

R.

Let vb be a bit-vertex and vs be a slack-vertex of Gr. Suppose, toward contradiction,
that vb are placed between vs and Cr, for example, π(vs) < π(vb) < π(Cr) (the
remaining cases are symmetric and omitted). Consider what happens with the cost if
we swap the places of vb and vs:

• Vertex vs is adjacent only to Cr, and this edge has weight k4M
N .

• Vertex vb has one edge to Cr of weight k2M
N . Since queries are uniformly dis-

tributed (see Theorem 1.2), vb has d
M
N edges to test-vertices, each of weight 1.

Thus, the total weight of the edges incident to vb is dM
N + k2M

N .
It follows that by swapping vb and vs we decrease the cost by at least (π(vb) −
π(vs))

(
k4M

N − (dM
N + k2M

N

))
> 0, contradicting the optimality of π.
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By the above arguments there are no bit-vertices placed in between slack-vertices
and the corresponding vertex Cr (or C�). We can thus partition the bit-vertices into
three sets B1, BL, BR so that

B1 < S�
L < {C�} < S�

R < BL < Sr
L < {Cr} < Sr

R < BR.

We complete the proof of this claim by proving that B1 = ∅ in an optimal linear
arrangement π of G. Suppose, toward contradiction, that B1 �= ∅ in π. Recall that
a bit-vertex has an edge of weight k2M

N to Cr and the total weight of its remaining

edges (to test-vertices) is dM
N . Furthermore, the total weight of the edges incident to

test-vertices is 2dM2 (the cost of the edges that are incident to test-vertices and not
to the bit-vertices in B1 might also increase since their length can increase when the
bit-vertices in B1 are moved). Let π′ be the linear arrangement

S�
L < {C�} < S�

R < B1 < BL < Sr
L < {Cr} < Sr

R < BR.

As |S�
L|+ |S�

R| = 2kNM , the cost of π′ is smaller than the cost of π by at least

|B1|
(
2kMN

(
k2

M

N
− d

M

N

)
− 2dM2

)
,

which is positive whenever B1 �= ∅.
The following claim completes the proof of Lemma 4.2.
Claim 4.4. In any optimal linear arrangement π of G we have the following:
• ||Si

L| − |Si
R|| ≤ qkNM for i ∈ {l, r}.

• ||BL| − |BR|| ≤ qNM .
Proof of claim. Let |S�

L| = (1 + s�)kMN , |S�
R| = (1 − s�)kMN , |Sr

L| = (1 +
sr)kMN , |Sr

R| = (1 − sr)kMN , |BL| = (1 + b)MN/2, and |BR| = (1 − b)MN/2,
where s�, sr, and b may assume negative values.

We proceed by calculating a lower bound on the cost of π by considering the
different types of edges:

• The cost of the edges incident to slack-vertices is at least

k4
M

N

⎛
⎝(1+s�)kMN∑

i=1

i+

(1−s�)kMN∑
i=1

i+

(1+sr)kMN∑
i=1

i+

(1−sr)kMN∑
i=1

i

⎞
⎠

≥ k6M3N
(
(1 + s�)

2/2 + (1 − s�)
2/2 + (1 + sr)

2/2 + (1− sr)
2/2
)
,

which is equal to k6M3N(2 + s2� + s2r).
• The cost of the edges incident to bit-vertices is at least

k2
M

N

⎛
⎝(1+b)MN/2∑

i=1

(i+ (1 + sr)kNM) +

(1−b)MN/2∑
i=1

(i+ (1− sr)kNM)

⎞
⎠ .

Since
(i)
∑(1+b)NM/2

i=1 i+
∑(1−b)NM/2

i=1 i ≥ (NM)2

4

(
(1+b)2

2 + (1−b)2

2

)
= (NM)2 1+b2

4 ,

(ii)
∑(1+b)NM/2

i=1 (1 + sr)kNM +
∑(1−b)NM/2

i=1 (1 − sr)kNM ≥ (NM)2(1 −
|sr|)k,

the cost of the edges incident to bit-vertices is then bounded from below by

M3N((1− |sr|)k3 + 1+b2

4 k2).
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Summing up the above observations we have that the cost of π is at least

M3N

(
(2 + s2� + s2r)k

6 + (1− |sr|)k3 + 1 + b2

4
k2
)
.

As k = ( 10d
β−α)

8 (a huge number) and q = (β−α
10d )2 = ( 1k )

1/4, the cost of π is greater

than the upper bound on an optimal linear arrangement (4.1) whenever |s�| > q/2,
|sr| > q/2, or |b| > q, and the statement follows.

The proof of Claim 4.4 concludes the proof of Lemma 4.2.

4.3. Completeness. We will see that there is a linear arrangement with value
at most

(4.3) M3N

[
2k6 + k3 +

k2

4
+

(
d+

(
1− 2β + α

3

)
β − α

5d

)
k

]
.

This will be achieved by constructing a “balanced” linear arrangement. Partition the
slack-vertices of Gi into two sets Si

L and Si
R with |Si

L| = |Si
R| = kNM for i ∈ {
, r}.

Let BL be the bit-vertices corresponding to the 0-bits in a correct proof, and let BR

be the remaining bit-vertices. Note that |BL| = |BR| = NM/2. By the completeness
of Theorem 1.2, half the bits in the proof, namely the 0-bits in a correct proof, are
such that a fraction β of tests accesses only them in their queries. Let Γ denote the
set of all such test-vertices with |Γ| = βM , and let Γ̄ be the set of the remaining
test-vertices.

Now consider the balanced linear arrangement π of G (see Figure 4.3):

S�
L<{C�}<S�

R<BL<Γ<Sr
L< Γ̄<{Cr}<Sr

R<BR.

C� Cr

kMN
slack-vertices

kMN
slack-vertices

kMN
slack-vertices

kMN
slack-vertices

MN/2
bit-vertices

MN/2
bit-vertices

bit-vertices
corresponding
to 0-bits

tests that only
query 0-bits remaining tests

Fig. 4.3. The linear arrangement π in the completeness case.

The following lemma concludes the completeness analysis.
Lemma 4.5. The cost of π is at most (4.3) (for big enough M and N).
Proof. We need to bound the cost of each edge in the linear arrangement π:
1. As in the proof of Lemma 4.1, both the cost of edges incident to slack-vertices

and the cost of edges between the bit-vertices and Cr can be seen to be at

most M3N(2k6 + k3 + k2

4 ) + o(M3N).

2. Consider a test-vertex t ∈ Γ. As the weight of the edge {t, Cr} is (d− β−α
10d )M

and its length in π is at most kMN +M , the cost of edge {t, Cr} is at most
(d − β−α

10d ) kM2N + o(M2N). Similarly, as edge {t, C�} has weight β−α
10d M
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and its length in π is at most (kMN +MN/2 +M), the cost of {t, C�} is at
most M2N β−α

10d (k + 1/2) + o(M2N). Finally t has dM edges of weight 1 to
bit-vertices in BL. Since these edges have length at most (MN/2+M) in π,
their cost is at most M2Nd/2 + o(M2N).
By the above arguments, the cost of the edges incident to the test-vertices in
Γ is at most

|Γ|M2N

((
d− β − α

10d

)
k +

β − α

10d

(
k +

1

2

)
+

d

2

)
+ |Γ|o(M2N),

which is less than |Γ|M2N (dk + d) + |Γ|o(M2N). Using |Γ| = βM , we
have that the edges incident to the test-vertices in Γ have cost at most
βM3N (dk + d) + o(M3N).

3. Similarly to the above calculations for test-vertices in Γ, the cost of edges
incident to test-vertices in Γ̄ can be seen to be at most

(1 − β)M

⎡
⎢⎢⎢⎢⎣
β − α

10d
M

(
2kMN +

MN

2

)
︸ ︷︷ ︸

edges to C�

+ dM

(
kMN +

MN

2

)
︸ ︷︷ ︸
edges to bit-vertices

⎤
⎥⎥⎥⎥⎦+ o(M3N)

= (1− β)M

[(
d+

β − α

5d

)
kM2N +

(
β − α

20d
+

d

2

)
M2N

]
+ o(M3N),

which is less than (1− β)M3N ((d+ β−α
5d ) k + d) + o(M3N).

We have considered all types of edges of G, and by summing up the above costs we
get that the total cost of π is at most

M3N

[
2k6 + k3 +

k2

4
+

(
d+ (1 − β)

β − α

5d

)
k + d

]
+ o(M3N)

< M3N

[
2k6 + k3 +

k2

4
+

(
d+

(
1− 2β + α

3

)
β − α

5d

)
k

]
= (4.3).

The last inequality holds because(
d+ (1− β)

β − α

5d

)
k + d <

(
d+

(
1− 2β + α

3

)
β − α

5d

)
k

⇔ d <

(
β − 2β + α

3

)
β − α

5d
k

⇔ d <
β − α

3
· β − α

5d
k,

which is easily seen to be true by recalling that k = ( 10d
β−α )

8.

4.4. Soundness. We will see that all linear arrangements of G have value at
least

(4.4) M3N

[
2k6 + k3 +

k2

4
+

(
d+

(
1− α+ β

2

)
β − α

5d

)
k

]
.

By Lemma 4.2 we need only consider quasi-balanced linear arrangements. We
proceed by bounding the cost of such linear arrangements from below by (4.4). Given
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C� Cr

≈ kMN
slack-vertices

≈ kMN
slack-vertices

≈ kMN
slack-vertices

≈ kMN
slack-vertices

≈ MN/2
bit-vertices

≈ MN/2
bit-vertices

bit-vertices
in BL

test-vertices that are adjacent
to at least

(
d − β−α

10d

)
M bit-vertices

in BL (at most 2α+β
3 M many)

remaining tests

Fig. 4.4. The structure of an optimal linear arrangement π in the soundness case.

a quasi-balanced linear arrangement π of G (see Figure 4.4), let Γ be the set of test-
vertices that have at least (d− β−α

10d )M edges to BL in π. Since |BL| ≤ 1+q
2 NM , we

can apply Lemma 3.7 and get |Γ| < 2α+β
3 M .

The following lemma follows from an easy case analysis, and its proof is given in
the next subsection.

Lemma 4.6. In any quasi-balanced linear arrangement π of G, the cost of the
edges incident to a test-vertex t is at least{

(1 − q)M2Ndk if t ∈ Γ,

(1 − q)M2N
(
d+ β−α

5d

)
k if t �∈ Γ.

The above lemma, together with |Γ| < 2α+β
3 M , implies that the total cost of the

edges incident to the M test-vertices is at least

(4.5) (1− q)M3N

(
d+

(
1− 2α+ β

3

)
β − α

5d

)
k.

As noted in section 4.2, the cost of the edges not incident to test-vertices is
minimized by a balanced linear arrangement (see Figure 4.2) and is thus bounded
from below by

(4.6) 4k4
M

N

kMN∑
i=1

i+ 2k2
M

N

MN/2∑
i=1

(i+ kMN),

which is greater than M3N(2k6 + k3 + k2

4 ).
Summing up (4.5) and (4.6), we have that the total cost of a quasi-balanced linear

arrangement is at least

M3N

[
2k6 + k3 +

k2

4
+ (1− q)

(
d+

(
1− 2α+ β

3

)
β − α

5d

)
k

]

> M3N

[
2k6 + k3 +

k2

4
+

(
d+

(
1− α+ β

2

)
β − α

5d

)
k

]
= (4.4).
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The last inequality holds because

(1 − q)

(
d+

(
1− 2α+ β

3

)
β − α

5d

)
>

(
d+

(
1− α+ β

2

)
β − α

5d

)

⇔
(
α+ β

2
− 2α+ β

3

)
β − α

5d
> q

(
d+

(
1− 2α+ β

3

)
β − α

5d

)

⇔ β − α

6
· β − α

5d
> q

(
d+

(
1− 2α+ β

3

)
β − α

5d

)
,

which is true since (1− 2α+β
3 ) β−α

5d < 1 and q = (β−α
10d )2.

4.4.1. Proof of Lemma 4.6. We will repeatedly use the fact that, in any quasi-
balanced linear arrangement, S�

L, S
�
R, S

r
L, and Sr

R all have size at least (1− q)kNM ,

where q = (β−α
10d )2.

C� Cr

≥ (1 − q)kMN
slack-vertices

≥ (1 − q)kMN
slack-vertices

≥ (1 − q)kMN
slack-vertices

≥ (1 − q)kMN
slack-vertices

Case 1. test-vertex is
placed to the right of Cr

Case 2. test-vertex with at
least β−α

10d M edges to BR is
placed to the left of Cr

Case 3. test-vertex with
no edges to BR is
placed to the left of Cr

S�
L S�

R Sr
RSr

LBL BR

Fig. 4.5. Overview of the cases considered in the proof of Lemma 4.6.

We start by proving that any test-vertex that is placed to the right of Cr (Case 1
in Figure 4.5) will have edges of total value at least (1−q)M2N (d+ β−α

5d ) k. Let p > 0,
and suppose that test-vertex t is placed to the right of p(1− q)kMN slack-vertices of
Cr. Since t is placed to the right of Cr, we might only decrease the cost by assuming
that all bit-vertices adjacent to t are in BR. Then the cost of the edges incident to t
is at least

dM(1− p)(1 − q)kNM︸ ︷︷ ︸
edges to bit-vertices

+

(
d− β − α

10d

)
Mp(1− q)kNM︸ ︷︷ ︸

edge to Cr

+
β − α

10d
M(2 + p)(1− q)kNM︸ ︷︷ ︸

edge to C�

= M2N(1− q)k

(
d(1 − p) +

(
d− β − α

10d

)
p+

β − α

10d
(2 + p)

)

= M2N(1− q)k

(
d+

β − α

5d

)
.
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Recall that Γ is the set of test-vertices with at least (d − β−α
10d )M edges to BL.

Now let p > 0, and suppose that t is placed to the left of p(1− q)kMN slack-vertices
that are to the left of Cr. On the one hand, if t is not in Γ, then it has at least β−α

10d M
edges to BR (Case 2 in Figure 4.5) and the cost of the edges incident to t is at least(

d− β − α

10d

)
M max[1− p, 0](1− q)kNM︸ ︷︷ ︸
edges to BL

+

(
β − α

10d

)
M(1 + p)(1 − q)kNM︸ ︷︷ ︸
edges to BR

+

(
d− β − α

10d

)
Mp(1− q)kNM︸ ︷︷ ︸

edge to Cr

+
β − α

10d
M(2− p)(1− q)kNM︸ ︷︷ ︸

edge to C�

,

which can be written as

M2N(1− q)k

((
d− β − α

10d

)
max[1− p, 0] +

β − α

10d
(1 + p)

)

+M2N(1− q)k

((
d− β − α

10d

)
p+

β − α

10d
(2− p)

)
,

which is easily seen to be at least

M2N(1− q)k

(
d+

β − α

5d

)
.

On the other hand, if t is in Γ (Case 3 in Figure 4.5), the cost of the edges incident
to t is at least(

d− β − α

10d

)
M max[1− p, 0](1− q)kNM︸ ︷︷ ︸
edges to BL

+

(
d− β − α

10d

)
Mp(1− q)kNM︸ ︷︷ ︸

edge to Cr

+
β − α

10d
M(2− p)(1 − q)kNM︸ ︷︷ ︸

edge to C�

,

which can be written as

M2N(1− q)k

((
d− β − α

10d

)
max[1− p, 0] +

(
d− β − α

10d

)
p+

β − α

10d
(2− p)

)
,

and this is easily seen to be at least (bound tight when p = 1)

M2N(1− q)kd.

The above case distinction concludes the proof of Lemma 4.6.

4.5. Inapproximability gap. Here, we put everything together to obtain the
hardness of approximation result that a PTAS for weighted Minimum Linear Arrange-
ment implies a (probabilistic) algorithm for SAT that runs in time 2O(nε), where n is
the instance size. By using Theorem 1.2, we have provided a probabilistic reduction
Γ from SAT to weighted Minimum Linear Arrangement. For any fixed ε > 0, given
an instance φ of SAT of size n, Γ produces a weighted Minimum Linear Arrangement
instance G in time 2O(nε) satisfying the following with high probability:
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• (Completeness) If φ is satisfiable, then G has a linear arrangement with cost
at most

(4.7) M3N

[
2k6 + k3 +

k2

4
+

(
d+

(
1− 2β + α

3

)
β − α

5d

)
k

]
.

• (Soundness) If φ is not satisfiable, then all linear arrangements have cost at
least

(4.8) M3N

[
2k6 + k3 +

k2

4
+

(
d+

(
1− α+ β

2

)
β − α

5d

)
k

]
.

As α, β, and k are all functions of parameter d of Theorem 1.2, which in turn is a

function of ε, and since α < β, the quotient (4.8)
(4.7) is greater than 1 + ζ(ε) for some

ζ(ε) > 0. The claimed hardness of approximation result now follows from the same
arguments as given in section 2.5.

4.6. Unweighted Minimum Linear Arrangement. In this section we will
show that the analysis for weighted Minimum Linear Arrangement can also be used
in the unweighted case. Let the graph G be defined as in the construction of weighted
Minimum Linear Arrangement (see section 4.1). Note that the edges with weight
other than 1 are incident to either Cr or C�. Recall that k = ( 10d

β−α)
8. Now consider

the graph GU obtained from G, where we do the following:
1. vertices Cr and C� are replaced by two “huge” cliques of size k6M , called C′

r

and C′
�, respectively;

2. each edge from a vertex v to Ci with weight w is replaced by w edges from v
to w different vertices of C′

i for i ∈ {c, l}; and
3. edges are distributed to a clique C′

i so that the difference in the degree of two
vertices of a clique is no bigger than one.

With this construction, there are at most 2kMN · k4M
N + MN · k2M

N + dM2 =
M2(2k5 + k2 + d) edges adjacent to C′

i for i = {c, l}. Since the edges adjacent to a
clique are evenly distributed among its vertices, we have that a vertex of C′

r or C′
�

has fewer than M edges to vertices not belonging to the cliques.
We will now see that the soundness and completeness analyses for GU do not

differ much from the analyses done for G.
Completeness. Let π′ be the linear arrangement ofGU obtained from the linear ar-

rangement π of G as defined in the completeness analysis of Minimum Linear Arrange-
ment (section 4.3), where the vertices of C′

� and C′
r are placed on the location of C� and

Cr, respectively. By noting that the number of vertices of the cliques is relatively small
(of orderM) and that the total number of edges is 4kMN ·k4M

N +NM ·k2M
N +M2dM =

O(M2), it follows that the value of π′ of GU is only o(M3N) greater than the value
of π of G and the same bound (4.3) holds (for big enough M and N).

Soundness. We say that a clique is divided in a linear arrangement π if there
exist a bit-, slack-, or test-vertex w and two vertices of the clique u and v such that
π(u) < π(w) < π(v). Note that if neither C′

� nor C
′
r is divided in an optimal solution

of GU , it follows, by treating the cliques as the vertices C� and Cr, respectively, that
the value of an optimal linear arrangement of GU must be at least as big as the
value of an optimal linear arrangement of G. Thus, the following lemma is enough to
complete the soundness analysis of GU .

Lemma 4.7. In any optimal linear arrangement π of GU , the cliques C′
r and C′

�

are not divided.
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Proof. We will present our arguments for the clique C′
r. Since the arguments are

the same for C′
�, we leave this case to the reader. Given an optimal linear arrangement

π of GU , let l and r denote the leftmost and rightmost vertices of C′
r in π, respectively,

and let S = {v is a slack-, test-, or bit-vertex : π(l) < π(v) < π(r)}. Suppose, toward
contradiction, that S is nonempty. Select

vL = argmin
v∈S

(π(v)) and vR = argmax
v∈S

(π(v))

(the leftmost vertex and rightmost vertex of S, respectively). Let A denote the set
of vertices of C′

r that are placed between l and vL, i.e., A = {v is a vertex of C′
r :

π(l) < π(v) < π(vL)}. Similarly, let B denote the set of vertices of C′
r that are placed

between vR and r.
Note that the selection of vL and vR implies that either |A| or |B| is less than

k6M/2. Suppose |A| ≤ k6M/2, and consider what happens with the cost if we swap
the places of l and vL:

1. Edges leaving l. The number of edges from l to vertices outside the clique is
at most M . The cost of these edges will thus increase by at most (π(vL) −
π(l))M . The cost of the edges from l to vertices in A will increase by∑

i∈A

(π(vL)− π(i))︸ ︷︷ ︸
new cost

− (π(i)− π(l))︸ ︷︷ ︸
old cost

≤
∑
i∈A

(π(vL)− π(l)) + π(l)− π(i),

which is bounded from above by

|A|∑
i=1

(π(vL)− π(l))− i ≤ (π(vL)− π(l))|A| − |A|2/2.

Finally, the cost of the edges from l to the vertices of C′
r that are not in A

will decrease by (π(vL)− π(l))(k6M − |A|) ≥ (π(vL)− π(l))k6M/2.
2. Edges leaving vL. Note that slack-, bit-, and test-vertices have degree at most

2dM (for large enough N). The cost of the edges incident to vL will thus
increase by at most (π(vL)− π(l))2dM .

Summing up the above observations we have that the increase of cost will be at most

(π(vL)− π(l))(M + 2dM + |A| − k6M/2)− |A|2/2 < 0,

i.e., the cost will decrease, which contradicts the optimality of the linear arrangement.
The last inequality follows easily by recalling that π(vL)− π(l) ≤ 2k6M (since by the
definition of vL there can be only vertices belonging to the cliques that are placed
between l and vL) and |A| ≤ k6M/2 (by assumption).

The remaining case when |B| ≤ k6M/2 is symmetric and is omitted.

5. Conclusions and discussion. We have proved the first hardness of approxi-
mation results for the classical Minimum Linear Arrangement and (Uniform) Sparsest
Cut graph problems. We also obtained hardness results for the Maximum Edge Bi-
clique problem by using a more standard assumption.

All our results are obtained by using the Quasi-random PCP construction by
Khot [22]. Hence, our results are under the assumption that SAT is not solvable in
probabilistic time 2n

ε

, where n is the instance size and ε > 0 can be made arbitrarily
close to 0. Moreover, the hardness factors obtained for Minimum Linear Arrangement
and Sparsest Cut by using our reductions from the Quasi-random PCP are tiny. This
raises two prominent open problems:
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1. Show that it is hard to approximate the addressed problems by using a weaker
assumption (ideally P �= NP ).

2. Provide a constant factor approximation algorithm for Minimum Linear Ar-
rangement and Uniform Sparsest Cut, or rule out this possibility.

A natural approach for proving that Uniform Sparsest Cut and Minimum Linear
Arrangement have no constant approximation algorithms would be to assume the
Unique Games Conjecture [21]. Results of this kind have been shown with the stronger
assumption that the Unique Games Conjecture is true on expanding graphs (see [3] for
Uniform Sparsest Cut and [14] for Minimum Linear Arrangement). However, Arora
et al. [3] showed that the Unique Games Conjecture on graphs with relatively high
expansion is false. A natural continuation of their work is to understand exactly what
kind of expansion is required to prove inapproximability of Sparsest Cut and Minimum
Linear Arrangement and whether one can expect Unique Games to be hard with the
required expansion. The relation between the Small Set Expansion problem and the
Unique Games Conjecture [27] has shed light on this issue, and it was proved [28] that
the Minimum Linear Arrangement problem is NP-hard to approximate within any
constant factor if the Unique Games Conjecture is true when restricted to instances
where all “small” subsets of vertices have high expansion.
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[1] C. Ambühl, M. Mastrolilli, and O. Svensson, Inapproximability results for sparsest cut,
optimal linear arrangement, and precedence constrained scheduling, in Proceedings of the
48th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2007, pp.
329–337.

[2] S. Arora, E. Hazan, and S. Kale, O(
√

logn))-approximation to sparsest cut in O(n2) time,
in Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), 2004, pp. 238–247.

[3] S. Arora, S. Khot, A. Kolla, D. Steurer, M. Tulsiani, and N. K. Vishnoi, Unique games
on expanding constraint graphs are easy: Extended abstract, in Proceedings of the 40th
Annual ACM Symposium on Theory of Computing (STOC), 2008, pp. 21–28.

[4] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and the
hardness of approximation problems, J. ACM, 45 (1998), pp. 501–555.

[5] S. Arora, S. Rao, and U. V. Vazirani, Expander flows, geometric embeddings and graph
partitioning, in Proceedings of the 36th Annual ACM Symposium on Theory of Computing
(STOC), 2004, pp. 222–231.

[6] S. Arora and S. Safra, Probabilistic checking of proofs: A new characterization of NP, J.
ACM, 45 (1998), pp. 70–122.

[7] P. Berman and G. Schnitger, On the complexity of approximating the independent set prob-
lem, Inform. and Comput., 96 (1992), pp. 77–94.

[8] M. Charikar, M. T. Hajiaghayi, H. Karloff, and S. Rao, l22 spreading metrics for vertex
ordering problems, in Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2006, pp. 1018–1027.
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