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AbstratIndexing shemes for grids based on spae-�lling urves (e.g., Hilbert index-ings) �nd appliations in numerous �elds, ranging from parallel proessingover data strutures to image proessing. Beause of an inreasing inter-est in disrete multi-dimensional spaes, indexing shemes for them havewon onsiderable interest. Hilbert urves are the most simple and popularspae-�lling indexing sheme. We extend the onept of urves with Hilbertproperty to arbitrary dimensions and present �rst results onerning theirstrutural analysis that also simplify their appliability.We de�ne and analyze in a preise mathematial way r-dimensionalHilbert indexings for arbitrary r � 2. Moreover, we generalize and sim-plify previous work and larify the onept of Hilbert urves for multi-dimensional grids. As we show, Hilbert indexings an be ompletely de-sribed and analyzed by \generating elements of order 1", thus, in om-parison with previous work, reduing their strutural omplexity deisively.Whereas there is basially one Hilbert urve in the 2D world, our analysisshows that there are 1536 struturally di�erent 3D Hilbert urves. Furtherresults inlude generalizations of loality results for multi-dimensional in-dexings and an easy reursive omputation sheme for multi-dimensionalHilbert indexings.
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1 IntrodutionDisrete multi-dimensional spaes are of inreasing importane in omputer si-ene. They appear in various settings suh as ombinatorial optimization, parallelproessing, image proessing, geographi information systems, data base systems,and data strutures. For many appliations it is neessary to number the pointsof a disrete multi-dimensional spae (whih, equivalently, an be seen as a grid)by an indexing sheme mapping eah point bijetively to a natural number in therange between 1 and the total number of points in the spae. Often it is desirablethat this indexing sheme preserves some kind of loality, that is, lose-by pointsin the spae are mapped to lose-by numbers or vie versa. For this purpose,indexing shemes based on spae-�lling urves have shown to be of high value[2, 4, 5, 6, 8, 7, 9, 11, 12, 13, 14, 15, 16, 19℄.In this paper, we study Hilbert indexings [10℄, perhaps the most popularspae-�lling indexing shemes. Properties of 2D and 3D Hilbert indexings havebeen extensively studied reently [5, 6, 7, 9, 12, 14, 15, 17℄. However, most ofthe work so far has foused on empirial studies. Up to now, little attention hasbeen paid to the theoretial study of strutural properties of multi-dimensionalHilbert urves, the fous of this paper. Whereas with \modulo symmetry" thereis only one 2D Hilbert urve, there are many possibilities to de�ne Hilbert urvesin the 3D setting [5, 15℄. The advantage of Hilbert urves is their (omparedto other urves) simple struture that may easily outweigh the asymptotiallyslightly better (onerning onstant fators) loality properties of other spae-�lling urves. Also note that in de�ning indexing shemes for multi-dimensionalgrids, desriptional simpliity as provided by \pure" Hilbert indexing is a desir-able property.Our results an shortly be skethed as follows. We generalize the notion ofHilbert indexings to arbitrary dimensions. We larify the onept of Hilberturves in multi-dimensional spaes by providing a natural and simple mathe-matial formalism that allows ombinatorial studies of multi-dimensional Hilbertindexings. For reasons of (geometrial) learness, we base our formalism on per-mutations instead of e.g. matries or other formalisms [3, 4, 5, 17℄. So we obtainthe following insight: Spae-�lling urves with Hilbert property an be ompletelydesribed by simple generating elements and permutations operating on them.Strutural questions for Hilbert urves in arbitrary dimensions an be deided byreduing them to basi generating elements. Putting it in athy terms, one mightsay that for Hilbert indexings what holds \in the large" (i.e., for large side-length),an already be deteted \in the small" (i.e., for side-length 2). In partiular, thisprovides a basis for mehanized proofs of loality of urves with Hilbert property(f. [15℄). In addition, this observation allows the identi�ation of seemingly dif-ferent 3D Hilbert indexings [5℄, the generalization of a loality result of Gotsmanand Lindenbaum [9℄ to a larger lass of multi-dimensional indexing shemes, andthe determination that there are exatly 6 � 28 = 1536 struturally di�erent 3D3
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Hilbert urves. The latter learly generalizes and answers Sagan's quest for de-sribing 3D Hilbert urves [17℄. Finally, we provide an easy reursive formula foromputing Hilbert indexings in arbitrary dimensions and sketh a reipe for howto onstrut an r-dimensional Hilbert urve for arbitrary r in an easy way fromtwo (r � 1)-dimensional ones.As a whole, our work lays foundations for future work dealing with om-binatorial properties of multi-dimensional Hilbert urves and, in partiular, amehanized analysis of loality properties of multi-dimensional Hilbert urves.The main fous of this paper, however, is to provide a theoretial study of nieombinatorial properties of Hilbert urves in arbitrary dimensions and it is not tostudy e.g. loality properties in great depth, whih may be the subjet of futurestudy.The paper is organized as follows. Setion 2 presents some basi fats onspae-�lling urves and grid indexings and, in partiular, gives the onstrutionsheme of 2D Hilbert urves. Setion 3 ontains our method to desribe multi-dimensional Hilbert indexings by \generators" and permutations operating on agiven orner-indexing of a ube. One of our main results shows that the stru-tural analysis of multi-dimensional Hilbert urves an be ompletely redued tothe analysis of their (small) generating elements. In Setion 4 we apply themethodology of Setion 3 to derive several results onerning the strutural anal-ysis and omputation of urves with Hilbert property. Finally, Setion 5 drawssome onlusions, outlines further generalizations, and gives some diretions forfuture work.2 PreliminariesWe fous our attention on ubi grids, where, in the r-dimensional ase, we havenr points arranged in an r-dimensional grid with side-length n. An r-dimensional(disrete) urve C is simply a bijetive mapping C : f1; : : : nrg ! f1; : : : ; ngr,thus providing a total ordering of the grid points. Note that, by de�nition, wedo not laim the ontinuity of a urve. A urve C is alled ontinuous if it formsa Hamilton path through the nr grid points. An r-dimensional ubi grid is saidto be of order k if it has side-length 2k. Analogously, a urve C has order k if itsrange is a ubi grid of order k.Fig. 1 shows the smallest 2D ontinuous urve indexing a grid of size 4. Thisurve an be found in Hilbert's original work [10, 18℄ as a onstruting unit for awhole family of urves. Fig. 2 shows the general onstrution priniple for theseso-alled Hilbert urves: For any k � 1 four Hilbert indexings of size 4k areombined into an indexing of size 4k+1 by rotating and reeting them in suh away that onatenating the indexings yields a Hamilton path through the grid.Note that the left and the right side of the urve are symmetri to eah other.Thus, as indiated in Fig. 2, we only need to keep trak of the orientation of the4
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Figure 1: The generator Hil21 and itsanonial orner-indexing gHil21.
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������Figure 2: Constrution sheme for the2D Hilbert indexing.edge whih ontains the start and end of the urve. As we will see later on, theabove rule uniquely de�nes the 2D Hilbert indexing up to global rotation andreetion.One of the main features of the Hilbert urve is its \self-similarity". Here\self-similar" shall simply mean that the urve an be generated by putting to-gether idential (basi onstrution) units, only applying rotation and reetionto these units. In a sense, the Hilbert urve is the \simplest" self-similar, reur-sive, loality-preserving indexing sheme for square meshes of size 2k � 2k.3 Formalizing Hilbert urves in r dimensionsIn this setion, we generalize the onstrution priniple of 2D Hilbert urvesto arbitrary dimensions in a rigorous, mathematially preise way. We restritattention to indexing shemes of ubes with side-lengths 2k for any natural num-ber k, although generalizations are straightforward (see Setion 5). We generatean r-dimensional urve �lling a ubi grid with side-length 2k with a sequene of2r suburves �lling grids with side-length 2k�1 eah. For the generating suburveswe laim a ertain similarity as given by the 2D Hilbert indexing. By \similar"we mean that the suburves an be transformed by a symmetry mapping (ree-tion or rotation) into eah other. We need a ertain formalism to express thesesymmetry mappings. This, for example, an be done by means of permutations.Fixing a ertain indexing of the orners in a multi-dimensional grid, suh a sym-metry transformation an be expressed by the ation of a permutation on thegiven indexing. This is one of the most intuitive approahes to desribe suhautomorphisms on the grid. Furthermore, there turns out to be a very simple re-lation between urves of the lowest order possible and suh orner-indexings. Westrongly believe that this at �rst sight maybe strange formalism used by us wasthe basis for deriving strutural results on e.g. 3D Hilbert indexings as presentedin Setion 4. So we an hardly imagine a omparatively simple presentation of allstruturally di�erent 3D Hilbert urves as given in Table 1 (see Subsetion 4.1)using other formalisms. 5
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3.1 Classes of Self-Similar Curves and their generatorsLet Vr := fx1x2 � � �xr�1xr j xi 2 f0; 1g g be the set of all 2r orners of an r-dimensional ube oded in binary. Moreover, let I : Vr �! f1; : : : ; 2rg denotean arbitrary indexing of these orners. To desribe the orientation of suburvesinside a urve of higher order, we want to use symmetry mappings, whih an beexpressed via suitable permutations operating on suh orner-indexings. Observethat any r-dimensional urve C1 of order 1 naturally indues an indexing ofthese orners (see Fig. 1 and Fig. 3). We all the obtained orner-indexing theanonial one and denote it by fC1 : Vr �! f1; : : : ; 2rg. Furthermore, let WI� � Sym(2r)� denote the group of all permutations (operating on I) that desriberotations and reetions of the r-dimensional ube. In other words, WI is the setof all permutations that preserve the neighborhood-relations n(i; j) of the ornerindexing I:WI := �� 2 Sym(2r) : n(i; j) = n(�(i); �(j)) 8i; j 2 f1; : : : ; 2rg	:For a given permutation � 2 WI, we sometimes write (� : I) in order to emphasizethat � is operating on a ube with orner-indexing I. The point here is that onewe have �xed a ertain orner-indexing I, the set WI will provide all neessarytransformations to desribe a onstrution priniple of how to generate urves ofhigher order by pieing together a suitable urve of lower order. Obviously eahpermutation (� : I) ating on a given orner-indexing I anonially indues abijetive mapping on a ubi grid of order k. In the following we do not distinguishbetween a permutation and the orresponding mapping on a grid.We partition an r-dimensional ubi grid of order k into 2r sububes of or-der k � 1. For eah x1 � � �xr 2 Vr we therefore setp(k)(x1���xr) := (x1 � 2k�1; : : : ; xr � 2k�1) 2 f0; : : : ; 2k � 1g � : : :� f0; : : : ; 2k � 1gto be the \lower-left orner" of suh a subube. Let Ck�1 be an r-dimensionalurve of order k � 1 (k � 2). Our goal is to de�ne a \self-similar" urve Ck oforder k by putting together 2r piees of type Ck�1. Let I : Vr �! f1; : : : ; 2rg bea orner-indexing. We intend to arrange the 2r suburves of type Ck�1 \along"I. The position of the i0-th (where i0 2 f1; : : : ; 2rg) suburve inside Ck an for-mally be desribed with the help of the grid-points p(k)(x1���xr). Bearing in mind thelassial onstrution priniple for the 2D Hilbert indexing, the orientation of theonstruting urve Ck�1 inside Ck an be expressed by using symmetri trans-formations (that is reetions and rotations). For any sequene of permutations�1; : : : ; �2r 2 WI we therefore de�neCk(i) := (�i0 : I) Æ Ck�1 �i mod (2k�1)r�+ p(k)I�1(i0); (1)where i 2 f1; : : : ; (2k)rg and i0 = (i � 1) div (2k�1)r + 1. The geometri in-tuition behind is that the urve Ck an be partitioned into 2r omponents of6
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the form Ck�1 (reeted or rotated in a suitable way). These suburves are ar-ranged inside Ck \along" the given orner-indexing I. The orientation of thei0-th suburve inside Ck is desribed by the e�et of �i0 operating on I.De�nition 1. Whenever two r-dimensional urves Ck�1 of order k�1 and Ck oforder k satisfy equation (1) for a given sequene of permutations �1; : : : ; �2r 2 WI(operating on the orner-indexing I : Vr �! f1; : : : ; 2rg), we writeCk�1 I(�1;::: ;�2r )� Ckand all Ck�1 the onstrutor of Ck.Our �nal goal is to iterate this proess starting with a urve C1 of order 1.It's only natural and in our opinion \preserves the spirit of Hilbert" to �x theorner-indexing aording to the struture of the de�ning urve C1. Hene, in thissituation we an speify our I to be the anonial orner-indexing fC1. By su-essively repeating the onstrution priniple in equation (1) k times, we obtaina urve of order k.De�nition 2. Let C = f Ck j k � 1 g be a family of r-dimensional urves oforder k. We all C a Class of Self-Similar Curves (CSSC) if there exists a sequeneof permutations �1; : : : ; �2r 2 WfC1 (operating on the anonial orner-indexingfC1) suh that for eah urve Ck it holds thatC1 fC1(�1;::: ;�2r ) � C2 fC1(�1;::: ;�2r ) � � � � fC1(�1;::: ;�2r ) � Ck�1 fC1(�1;::: ;�2r ) � Ck:In this ase, C1 is alled the generator of the CSSC C and we setH� C1; (�1; : : : ; �2r) � := f Ck j k � 1 gas the CSSC generated by C1 and �1; : : : ; �2r . A CSSC C = f Ck j k � 1 g isalled Class with Hilbert Property (CHP) if all urves Ck are ontinuous.Note that the CSSC H�C1; (�1; : : : ; �2r) � is well-de�ned, beause any CSSCis uniquely determined by its generator C1 and the hoie of the permutations�1; : : : ; �2r 2 WfC1 . The nomenlature \Curve with Hilbert Property" is due tothe fat that the onstruting priniple for a CHP grew out of the lassial onefor 2D Hilbert urves. Our onept for multi-dimensional CHPs only makes useof the very essential tools whih an be found in Hilbert's ontext (f. [10℄) asrotation and reetion. We deliberately avoid more ompliated strutures (e.g.,the use of di�erent sequenes of permutations in eah indutive step, or the use ofseveral generators for the onstruting priniple) in order to maintain oneptualsimpliity and ease of onstrution and analysis. However, the theory whih wedevelop in this paper doesn't neessarily restrit to the ontinuous ase. Thatis the reason why all our de�nitions and theorems in Subsetion 3.2 are held in7



Theory of Computing Systems, Vol. 33, pp. 295–312, 2000

the more general setting of non-ontinuous urves. In Subsetion 3.2 we pro-vide a neessary and suÆient ondition on the generating elements of a CSSC(generator and sequene of permutations) suh that the whole family onsists ofontinuous urves only, i.e., is a CHP. We end this subsetion with an example.Example. One easily heks that the lassial 2D Hilbert indexing an be de-sribed via H� Hil21; ((2 4); id; id; (1 3)) � = fHil2k j k � 1 g;where the generator Hil21 is given in Fig. 1.As Theorem 4 will show, this is the only CHP of dimension 2 \modulo sym-metry," whih, one again, justi�es the naming \Curve with Hilbert Property".3.2 Disturbing the generator of a CSSCIn this subsetion, we analyze the e�ets of disturbing the generator of a CSSCby a symmetri mapping. We will see that any disturbane of the generatorwill be hereditary to the whole CSSC in a very anonial way. And also theother way round: if two di�erent CSSCs show a ertain similarity in one of theirmembers, this similarity an already be found in the struture of the orrespond-ing generators. We illustrate this by the following diagram. Given two CSSCsH� C1; (�1; : : : ; �2r) � = fCk j k � 1g and H�D1; (�1; : : : ; �2r) � = fDk j k � 1g,respetively.1 Suppose there is a similarity at a ertain stage of the onstru-tion, i.e., for some k0 the urves Ck0 and Dk0 an be obtained from eah otherby a similarity transformation �. Can we onlude a vertial link between theurves of other orders? The investigations in this setion will show that the innerstruture of CSSCs are strong enough to yield the same behavior at the stageof any order. As a onsequene, it will be suÆient to analyze the generatingelements of a CSSC. Sine all the information is enoded in the generator and thede�ning permutations, questions like ontinuity of a CSSC, strutural similaritywith other CSSCs an be answered by onsidering the generating elements only.C1 fC1(�1;::: ;�2r ) � C2 fC1(�1;::: ;�2r ) � � � � fC1(�1;::: ;�2r ) � Ck????y� � ????y� � ????y� � ????y�D1 fD1(�1;::: ;�2r ) � D2 fD1(�1;::: ;�2r ) � � � � fD1(�1;::: ;�2r ) � Dk1Note that the � 's used in the de�nition of both CSSCs yield ompletely di�erent automor-phisms on the grid. Whereas in the �rst ase they refer to the orner-indexing fC1, in the seondase they at on the orner-indexing fD1, given by the generator D1.8
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We split the proof of the main theorem of this setion into several steps, sineeah of these already ontains some nie strutural behavior of CSSCs. As a �rststep, we make a simple observation onerning the behavior of the onstrutionpriniple of De�nition 1 under the \symmetri disturbane" of a onstrutor:Lemma 1. Let Ck�1 and Ck be urves of order k�1 and k, respetively. SupposeCk�1 is the onstrutor of Ck, i.e., Ck�1 I(�1 ;::: ;�2r )� Ck, for any sequene ofpermutations �1; : : : ; �2r 2 WI (ating on a given orner-indexing I). Then forarbitrary � 2 WI we have(� : I) Æ Ck�1 I(�1Æ��1;::: ;�2r Æ��1)� Ck:Proof. Sine Ck�1 is the onstrutor of Ck, by De�nition 1 we have:Ck(i) = (�i0 : I) Æ Ck�1 �i mod (2k�1)r�+ p(k)I�1(i0)= (�i0 : I) Æ (��1 : I) Æ (� : I) Æ Ck�1 �i mod (2k�1)r�+ p(k)I�1(i0)= (�i0 Æ ��1 : I) Æ �(� : I) Æ Ck�1� �i mod (2k�1)r�+ p(k)I�1(i0) ;where i 2 f1; : : : ; (2k)rg and i0 = (i � 1) div (2k�1)r + 1, proving the laim byDe�nition 1.Whereas, by Lemma 1, we investigated the inuene of disturbing the on-strutor, we now, in a seond step, analyze how transforming the underlyingorner-indexing inuenes the onstrution priniple. We will need suh a result,sine two di�erent CSSCs (by de�nition) ome up with two di�erent orner-indexings, eah of whih given by the underlying generator.Lemma 2. Given the assumptions of Lemma 1 (that is: Ck�1 I(�1 ;::: ;�2r ) � Ckfor two urves Ck�1 and Ck of suessive order), then for arbitrary � 2 WI andthe modi�ed orner-indexing K := ��1 Æ I with � = (� : I) = (� : K) we have2Ck�1 K(�1Æ�;::: ;�2rÆ�)� � Æ Ck :Proof. First we dedue a simple transformation-rule for permutations out of ourgiven relation K = ��1ÆI. The e�et of a given permutation � 2 WI ating on Iis equivalent to the e�et of the transformed permutation ��1 Æ � Æ � operatingon the transformed orner-indexing K, i.e. (� : I) = (��1 Æ � Æ � : K). Setting� = �, this partiularly shows (� : I) = (� : K) = �.By assumption, Ck�1 is the onstrutor of Ck whih for all i 2 f1; : : : ; (2k)rgand i0 = (i� 1) div (2k�1)r + 1 yieldsCk(i) = (�i0 : I) Æ Ck�1 �i mod (2k�1)r� + p(k)I�1(i0)) � Æ Ck(i) = � Æ �(�i0 : I) Æ Ck�1 �i mod (2k�1)r� + p(k)I�1(i0)�= � Æ (�i0 : I) Æ Ck�1 �i mod (2k�1)r� + p(k)I�1(�(i0))2The fat that the orner-indexing is disturbed by ��1 instead of � is due to tehnialreasons only. 9
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where the last equation is true, beause the e�et of the symmetry mapping �on a CSSC-urve Ck of order k an be split into its e�et on the 2r suburvesof order k � 1 and the e�et on the arrangement of these suburves inside Ck.Whereas the i0-th suburve of Ck lies next to the orner I�1(i0), the position ofthe i0-th suburve of � Æ Ck is transformed aording to �. Therefore its newposition is given by the orner I�1(�(i0)). Thus,� Æ Ck(i) = (� Æ �i0 : I) Æ Ck�1 �i mod (2k�1)r� + p(k)(I�1Æ�)(i0)= (�i0 Æ � : K) Æ Ck�1 �i mod (2k�1)r� + p(k)K�1(i0);by applying the transformation-rule treated at the beginning with � = �Æ �i0. ByDe�nition 1 the last equation proves our laim.Lemma 1 and 2 now allow the proof of the main result of this setion. Forits illustration we refer to the diagram at the beginning of this setion. Do alsoreall the point made in the footnote there.Theorem 3. Let C1 be the generator of the CSSC H�C1; (�1; : : : ; �2r) � = fCk jk � 1g and D1 the generator of the CSSC H�D1; (�1; : : : ; �2r) � = fDk j k � 1g.For an arbitrary permutation � 2 WfC1 and the orresponding symmetri mapping� = (� : fC1) = (� : fD1), the following statements are equivalent:(i) � Æ Ck0 = Dk0 for some k0 � 1.(ii) � Æ Ck = Dk for all k � 1.Proof. (ii)) (i) is trivial. For (i)) (ii) we �rst show that statement (ii) is truefor the generators C1 and D1: If k0 > 1 we an divide the ubi grid of order k0into 2r subgrids of order k0 � 1. By the onstrution priniple for CSSCs, theurves Ck0 andDk0 traverse these subgrids \along" the anonial orner-indexingsfC1 resp. fD1. Sine, by assumption, �ÆCk0 = Dk0, the orresponding relation alsoholds true for the orner-indexings fC1 and fD1, whih �nally yields the validity ofthe equation � Æ C1 = D1, beause of the isomorphisms C1 ' fC1 resp. D1 ' fD1.We proeed proving (ii) by indution on k. Assuming that Dk = � Æ Ckwe show this relation for k + 1 by applying Lemma 1 and Lemma 2. SinefCk j k � 1g is a CSSC, we getCk fC1(�1;::: ;�2r ) � Ck+1Lemma 1=) � Æ Ck| {z }=Dk fC1(�1Æ��1;::: ;�2r Æ��1) � Ck+1Lemma 2=) Dk fD1(�1;::: ;�2r ) � � Æ Ck+1 ;10
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where the last relation makes use of fD1 = ��1 ÆfC1, whih we immediately obtainfrom the given equation D1 = � ÆC1.3 This implies Dk+1 = � ÆCk+1 beause ofthe CSSC-property of fDk j k � 1g.In partiular, the result of Theorem 3 implies that any questions onerningthe strutural similarity of two CSSCs an be redued to the analysis of theirgenerators. Any symmetri orrespondene between two CSSCs in the large anbe deteted in the small, that is, in the struture of their generators. Thus, inorder to give a lassi�ation of CSSCs where two families of urves that are equalmodulo symmetry (rotation and reetion) are not distinguished, we need onlydistinguish between generators whih di�er modulo symmetry. We may thereforeexlusively restrit our attention to the analysis of di�erent types of generatorsand of suitable sequenes of permutations. So, our result greatly simpli�es theomplete lassi�ation and the onstrution of all struturally di�erent CSSCs.Moreover, it lays the foundations of a mehanized analysis of, for example, loalityproperties of multi-dimensional Hilbert indexings (f. [15℄).4 Appliations: omputing and analyzing CHPsFirst in this setion, we attak a lassi�ation of all struturally di�erent CHPsfor higher dimensions. Whereas we an provide onrete ombinatorial resultsfor the 2D and 3D ases, the high-dimensional ases appear to be muh morediÆult. The basi tool for suh an analysis, however, is given by Theorem 3. Inthe following subsetions we sketh how to onstrut Hilbert indexings in higherdimensions and thus larify the existene of suh objets in arbitrary dimensions.Also in this setion, we disuss omputational aspets of Hilbert indexings and�nally we onlude with loality properties of suh urves. The general struturalbehavior of CHPs is suÆient to extend some results provided in previous work,suh as Gotsman and Lindenbaum [9℄.4.1 Classi�ation Theorems for the two and three dimen-sional asesOur �rst theorem investigates the two-dimensional setting. The result givenbelow justi�es the naming \lass with Hilbert property" (CHP). Also, note thatthe subsequent proofs make deisive use of the geometri learness provided byour formalism.Theorem 4. The lassial 2D Hilbert indexing H� Hil21; ((2 4); id; id; (1 3)) � isthe only CHP of dimension 2 modulo symmetry.3A disturbane by � implies a transformation of the orner-indexings by ��1, whih an beheked.easily. 11
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generator Hil31.CFigure 3: Continuous 3D generators Hil31.x and their anonial orner-indexingsgHil31.x.Proof. Due to Theorem 3 it suÆes to show that Hil21 is the only ontinuous2D generator, whih is obvious. In addition, we have to hek whether there isanother sequene of permutations suh that 4 generators Hil21 an be arranged ina grid of order 2 along the anonial orner-indexing gHil21 in a ontinuous way. Asimple ombinatorial onsideration shows that no other sequene of permutationsyields a ontinuous urve of order 2 whose starting- and endpoints are loated atorners of the grid. However, any onstrutor for a ontinuous urve of higherorder must have the property that both starting- and endpoint are orner-pointsof the grid.What about the 3D ase? Are there any di�erenes onerning the amountof possible CHPs? The analysis of the \Simple Indexing Shemes" (whih arerelated to our CHPs) in Chohia and Cole [5℄ already shows that the numberof CHPs in the 3D ase grows drastially ompared to the 2D setting. Lots of\Simple Indexing Shemes" in [5℄ now, by our analysis, turn out to be identialmodulo symmetry. Our goal is to speify all struturally di�erent CHPs, that is,all CHPs that are not idential modulo symmetry (rotation and reetion). Sine,by Theorem 3, we �nd any symmetri similarities of two CHPs in the struture oftheir generating elements, we may restrit our attention to the investigation of thegenerators and all suitable sequenes of permutations. In addition, Lemma 1 andLemma 2 an be seen as helpful tools to desribe symmetrially disturbed CHPsin a very onstrutive way. They at least provide formulas of how to alulatethe sequene of permutations for a disturbed CHP out of the given sequene ofthe original CHP. The following theorem also generalizes and answers work ofSagan [17℄.Theorem 5. For the 3D ase there are 6 � 28 = 1536 struturally di�erent (thatis: not idential modulo reetion and rotation) CHPs. These types are listed inTable 1.Proof. Theorem 3 says that we an restrit our attention to heking any on-tinuous urves of order 1 whih are di�erent modulo symmetry. Given suh aontinuous generator C, the total amount of CHPs whih an be onstruted by12
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generator version �1 �2 �3 �4(2 8)(3 5) / (3 7)(4 8) / (3 7)(4 8) / (1 3)(6 8) /(a) (2 4 8)(3 5 7) (2 8 4)(3 7 5) (2 8 4)(3 7 5) (1 3)(2 4)(5 7)(6 8)(2 8)(3 5) / (3 7)(4 8) / id / (1 7 3)(4 6 8) /(b) (2 4 8)(3 5 7) (2 8 4)(3 7 5) (2 4)(5 7) (1 7 5 3)(2 8 6 4)Hil31.A (2 8)(3 5) / (3 7)(4 8) / id / (1 7)(4 6) /() (2 4 8)(3 5 7) (2 8 4)(3 7 5) (2 4)(5 7) (1 7 5)(2 6 4)(2 8)(3 5) / (3 7)(4 8) / (3 7)(4 8) / (1 3)(6 8) /(d) (2 4 8)(3 5 7) (2 8 4)(3 7 5) (2 8 4)(3 7 5) (1 3)(2 4)(5 7)(6 8)(2 8)(5 7) / id / (3 5)(6 8) / (2 8)(5 7) /(a) (2 6 8)(3 5 7) (2 6)(3 7) (2 8 6)(3 7 5) (2 6 8)(3 5 7)Hil31.B (2 8)(5 7) / id / (3 5)(6 8) / (3 5)(6 8) /(b) (2 6 8)(3 5 7) (2 6)(3 7) (2 8 6)(3 7 5) (2 8 6)(3 7 5)generator version �5 �6 �7 �8(1 3)(6 8) / (1 5)(2 6) / (1 5)(2 6) / (1 7)(4 6) /(a) (1 3)(2 4)(5 7)(6 8) (1 5 7)(2 4 6) (1 5 7)(2 4 6) (1 7 5)(2 6 4)(1 3 5)(2 6 8) / id / (1 5)(2 6) / (1 7)(4 6) /(b) (1 3 5 7)(2 4 6 8) (2 4)(5 7) (1 5 7)(2 4 6) (1 7 5)(2 6 4)Hil31.A (2 8)(3 5) / id / (1 5)(2 6) / (1 7)(4 6) /() (2 4 8)(3 5 7) (2 4)(5 7) (1 5 7)(2 4 6) (1 7 5)(2 6 4)(1 3 5)(2 6 8) / id / (1 5)(2 6) / (1 7)(4 6) /(d) (1 3 5 7)(2 4 6 8) (2 4)(5 7) (1 5 7)(2 4 6) (1 7 5)(2 6 4)(1 3)(4 6) / (1 3)(4 6) / id / (1 7)(2 4) /(a) (1 3 7)(2 4 6) (1 3 7)(2 4 6) (2 6)(3 7) (1 7 3)(2 6 4)Hil31.B (1 7)(2 4) / (1 3)(4 6) / id / (1 7)(2 4) /(b) (1 7 3)(2 6 4) (1 3 7)(2 4 6) (2 6)(3 7) (1 7 3)(2 6 4)Table 1: Desription of all 3-dimensional CHPs.
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Hil31.A-version (a) Hil31.A-version (b) Hil31.A-version ()
Hil31.A-version (d) Hil31.B-version (a) Hil31.B-version (b)Figure 4: Constrution priniples for CHPs with generators Hil31.A and Hil31.B.C is given by all possibilities of pieing together 8 (rotated or reeted) versions ofC (\suburves") along its anonial orner-indexing eC. By exhaustive searh, weget that there are 3 di�erent (modulo symmetry) types of ontinuous generators,namely Hil31.A, Hil31.B and Hil31.C (see Fig. 3). As desribed above, we now haveto hek whether there are ontinuous arrangements of these generators alongtheir anonial orner-indexings. Beginning with type A, an exhaustive ombi-natorial searh yields that there are 4 possible ontinuous formations of Hil31.Aalong gHil31.A. All possibilities are shown in Fig. 4, where the orientation of eahsubube is given by the position of an edge (drawn in bold lines). For eah sub-ube there are two symmetry mappings whih yield possible arrangements for thegenerator within suh a subgrid. The permutations expressing these mappingsare listed in Table 1.Analogously, we �nd out the possible arrangements for generator type B. Notethat there are no more than 2 di�erent ontinuous arrangements of this generatoralong its anonial orner-indexing. Finally we easily hek that Hil31.C annoteven be the onstrutor of a ontinuous urve of order 2. Table 1 thus yields thatthere are exatly 4 � 28 + 2 � 28 = 6 � 28 struturally di�erent CHPs.A omplete lassi�ation of the high-dimensional ases appears to be muhmore diÆult. We end this setion by skething several further results based onour haraterization of urves with Hilbert property.

14
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�1 = (2 16)(3 13)(6 12)(7 9)�2 = (3 15)(4 16)(5 9)(6 10)�3 = �2�4 = (1 3 13 11 9 7)(2 4 14 12 10 8)(5 15)(6 16)�5 = �4�6 = (1 5 13 9)(2 6 14 10)(3 11 15 7)(4 12 16 8)�7 = �6�8 = (1 7)(4 6)(10 16)(11 13)�9 = �8�10 = (1 9 13 5)(2 10 14 6)(3 7 15 11)(4 8 16 12)�11 = �10�12 = (1 11)(2 12)(3 5 7 9 15 13)(4 6 8 10 16 14)�13 = �12�14 = (1 13)(2 14)(7 11)(8 12)�15 = �14�16 = (1 15)(4 14)(5 11)(8 10)Figure 5: Construting elements for a 4-D CHP (generator Hil41 and permuta-tions).4.2 Constrution of an r-dimensional Hilbert urveAs already mentioned before, CHPs seem to outperform many other spae-�llingurves onerning their properties important for appliations like data struturesor parallel proessing (e.g. omputational e�ort, loality, et.). Sine suh qual-ities might depend only weakly on the inside struture of a CHP, it, however,seems to be important to have at least one easily onstrutible CHP for eahdimension. Without giving an expliit proof here, we just indiate how the on-strution of a high-dimensional CHP an be done indutively in an easy way: Aontinuous generator of dimension r an be derived indutively simply by \joiningtogether" two ontinuous generators of dimension r � 1. A similar onsideration�nally helps to speify the suitable permutations in order to obtain indexings ofhigher order. As an example we give a CHP of dimension 4, whose generatorHil41 is onstruted by joining together two generators Hil31, version (a) (f. Fig-ure 3). The generator Hil41 and a suitable sequene of permutations are shown inFig. 5. Note that this onstrution priniple an be extended to obtain Hilbertindexings in arbitrary dimensions in an expressive, easy, and onstrutive way:Following the onstrution priniple of Hil31, version (a), �rst pass through anr� 1-dimensional struture, then in \two steps" do a hange of dimension in therth dimension, and �nally again pass through an r � 1-dimensional struture.This method applies to �nding the generators as well as to �nding the permuta-tions. Thus the onstrution priniple of Hil31, version (a) in a sense is iteratedr � 2 times in order to generate an indexing of dimension r.
15
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4.3 Reursive omputation of CSSCsNote that whenever a CSSC C = fCk j k � 1g is expliitly given by its generatorand the sequene of permutations, we may use the reursive formula (1) of Sub-setion 3.1 to ompute the urves Ck. In other words, the de�ning formula (1)itself provides a omputation-sheme for CSSC, whih is parameterized by thegenerating elements (generator and sequene of permutations). This underlinesthe usefulness of the simple struture of CSSCs in partiular with respet toaspets of omputation.4.4 Aspets of loalityThe above mentioned parameterized formula might, for example, also be usedto investigate loality properties of CSSCs by mehanial methods. The loalityproperties of Hilbert urves have already been studied in great detail. As anexample for suh investigations, we briey note a result of Gotsman and Lin-denbaum [9℄ for multidimensional Hilbert urves. In [9℄ they investigate a urveC : f1; : : : ; nrg ! f1; : : : ; ngr with the help of their loality measureL2(C) := maxi;j2f1;::: ;nrg d2(C(i); C(j))rji� jj ; (2)where d2 denotes the Eulidean metri. In their Theorem 3 they laim the upperbound L2(Hrk) � (r + 3) r2 2r for any r-dimensional Hilbert urve of order k,without preisely speifying what an r-dimensional Hilbert urve shall be. Sinethe proof of their result does not utilize the speial Hilbert struture of the urve,this result an even be extended to arbitrary CSSCs.Moreover, apart from the given loality measure L2 we an onsider measuresLp (with p = 1 or p = 1), replaing the Eulidean distane d2 in de�nition (2)by the Manhattan metri d1, and the Maximum metri d1, respetively.When making use of the speial CHP-property of a lass of urves one even anget loser results. For the 2D ase (see Theorem 4) Gotsman and Lindenbaumpresent a result (f. [9, Theorem 4℄) whih an be improved to the followingtheorem. Its proof, whih is based on a more detailed investigation than the onegiven in Gotsman and Lindenbaum's previous proof, an be found in [1℄.Theorem 6. For the 2D Hilbert indexing H2 = fHil2k j k � 1g we have6(1� O(2�k)) � L2(Hil2k) � 6126(1� O(2�k)) � L1(Hil2k) � 625 :for all Hil2k 2 H2 with ord(Hil2k) = k.This result is ompleted by a result for the Manhattan metri [6, 15℄, whihin the above notation would beL1(Hil2k) = 9 for all Hil2k 2 H2:16
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5 ConlusionThere is no denying the fat that dealing with dimensions greater than 3 makesthe study of multi-dimensional strutures quite hard due to the loss of geometriintuition. In this paper we tried to provide a simple as possible mathematialmehanism to desribe and analyze spae-�lling Hilbert urves in arbitrary dimen-sions. Using a formalism based on generating elements and permutations, whihompletely desribe whole families of Hilbert urves, we were able to disoversome nie ombinatorial properties of Hilbert urves in arbitrary dimensions.Our formalism still leaves a lot of freedom we have not made use of. So givingup the restrition to \pure" Hilbert urves, it would be fairly straightforwardto also study generators with side-length b instead of 2 (f. [1℄). However, inthis ase the formalism would beome a little more ompliated beause there isno longer suh a simple isomorphism between orner indexings and generators.Note that, for example, Butz [3℄ studied loality in multidimensional urves withb = 3, paying less attention to a ombinatorial study and strutural issues of theurves as we did. From an appliation point of view, it may also be importantto study non-ubi grids and the orresponding indexings. Here our formalismin priniple also works, but one has to take are of the fat that in this aseonly a more restrited form of permutations applies. It would also be possibleto make use of more than one generator as we do in the Hilbert ase, thus alsogaining urves with somewhat better loality properties than Hilbert ones (f. [2,5℄ for 2D and 3D ases). However, this probably would extremely ompliate theombinatorial analysis while only obtaining a modest improvement in loalityproperties. Our paper lays the basis for several further researh diretions. So itould be tempting to determine the number of struturally di�erent r-dimensionalurves with Hilbert property for r > 3. Moreover, a (mehanized) analysis ofloality properties of r-dimensional (r > 3) Hilbert urves is still to be done(f. [15℄). An analysis of the onstrution of more ompliated urves using moregenerators or di�erent permutations for di�erent levels remains open.Referenes[1℄ J. Alber. Loality properties of disrete spae-�lling urves: Resultswith relevane for omputer siene. Studienarbeit, Universit�at T�ubingen,1997. (in German). Available through http://www-fs.informatik.uni-tuebingen.de/ niedermr/publiations/index.html.[2℄ T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer. Spae-�llingurves and their use in the design of geometri data strutures. TheoretialComput. Si., 181:3{15, 1997. 17
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