Algorithm 123— SINGLE TRANSFERABLEVOTE BY
MEEK'S METHOD

|. D. HILL; B. A. WICHMANN fandD. R. WOODALL*

1987,Receved 17 Octoberl985,in final form 13 May 1986

1 INTRODUCTION

The singletransferablesote (STV) methodof conduct-
ing an electionexists in a numberof differentformu-
lationsin differentcountries.Most of the methodsare
designedo be practicablewhen countingis by hand,
andthis necessarilyenforcessimplicity even at the ex-
penseof not alwaysgettingthe bestpossibleanswer

Meek[1, 2] consideredhe questionof the bestpos-
sible method within the STV framework, whena com-
puteris availableto dothecounting,andit is hismethod
thatwe presentiere.Themethodwasrediscaered,in a
differentformulation,by Woodall[4. However, neither
Meek nor Woodall dealtwith certaindetailed points,
suchashow to resohe a ‘tie’, sowe have hadto ex-
tendthe systento be complete.Thealgorithmasgiven
herehasbeenadoptedby the Royal StatisticalSociety
for its Councilelections.

Thebasisof ary STV systemconsistf the follow-
ing. (1) Voting by orderof preferencef candidateshe
first choice beingmarkedl, the second2, and so on,
on the ballot papers. (Meek also consideredan alter
native formulationin which voterswould beallowedto
indicate equalpreferencefor somecandidatesnstead
of a strict ordering; we have not implementedhis al-
ternative.) (2) A quotafor election,calculatedrom the
numberof votesandthenumberof seatdo befilled. (3)
A first countingby first preferencesnly, andthe elec-
tion of ary candidatewho equalsor exceedsthe quota
(exceptin the specialcaseof a multi-way tie). (4) Re-
distribution of surplusvotes(above the quota)for ary
candidatein accordancevith thevoters’furtherprefer
encesandelectionof ary who now reachthequota.(5)
Whenno furtherredistribution of surplusess possible,

*Clinical ResearctCentre Harrow, Middlesex,HA1 3UJ

t5 Ellis FarmClose Woking, GU229QN

{ Departmenbf MathematicsUniversityof Nottingham Notting-
hamNG72RD

the exclusionof the candidatevho thenhasthe fewest
votes, and redistritution of thosepapers. (6) Further
counting, election, redistrikution of surplusesand ex-
clusionasnecessaryntil all seatsarefilled.

In the Meek formulation the rule for redistrikuting
surplusess that,at every stagejf a candidatéhasvotes
totalling & timesthe quota,thenhe (or she)keepsl /&
of eachof thosevotesandpassegk — 1)/k onto the
next candidatenthevoter'slist. This saméfractionap-
pliesalsoto portionsof votesreceved aspartsof other
surpluses.This requiresthe iterative solution of non-
linearequations.t is provedin Section4 below thata
solutionalwaysexistsandis unique.

It shouldbe emphasisedhat the resultswill not al-
waysbethe sameasby manualcountingmethods.The
algorithmdeliberatelyusesthe power of the computer
to getbetterresultsthanareeasilyachievableby hand.

2 THE SPECIFICATION

21

At eachstage eachcandidatds in oneof threestates,
designatedas ‘elected’, ‘excluded’ and ‘hopeful’. At
the startevery candidatés in the hopefulstate.

22

At eachstagethe votesare scannedandthe one vote
allowedto eachvotermaybesplit into partsthatareas-
signedto thevariouscandidatesccordingo thevoter’s
choices.At thefirst stagethewhole of thevote goesto
the first choice— this follows automaticallyfrom the
operatiorof rules2.1and?2.3.

2.3

Eachcandidatez, hasan associatedveight, w,, and
keepsa proportionw,, of eachvote or partof avotere-
ceived, while passingon to anothercandidatgasspec-
ified by the voter’s choices)a proportion1 — w,,. Ev-
ery hopefulcandidatdhasweightl, andthereforekeeps
everything receved and passesiothingon. Every ex-
cluded candidatehas weight 0, and thereforekeeps
nothing and passesverythingon. Electedcandidates
have weightsbetweer0 and1, to be calculatedby rule
2.5.

24

Thus if someonehas voted for candidatea as first
choice,b assecond¢ asthird, andno more:

e a recevesfrom thatvoterw, of avote
¢ brecevesfrom thatvoter(1 — w,)w of avote

¢ crecevesfrom thatvoter (1 — wg)(1 — wp)w, Of
avote

A fraction (1 — wq)(1 — ws)(1 — w.) remainsand
this goesto ‘excess’. (Notethatif a hopefulcandidate
appeardn the list, all the fractionsbeyond that point
automaticallypecomeD).

2.5

The quota is defined as (total votes — total ex-

cess)/(numbeof seatst 1), andtheweightsfor elected
candidatesrefound suchthatthetotal vote remaining
with eachof themequalshe quota.Thisis doneby the
corvergentiterative schemespecifiedn rule 2.9.

2.6

Theweightshaving beenfound,theresultingtotal votes
for eachhopefulcandidateare examined,andary can-
didate whose total votes equal or exceed the quota
changestatefrom hopefulto elected exceptin thespe-
cial casewhereall the hopeful candidatesither have

zerovotesor exactly equalthe quota. In this caseall

thosewith zero votes are excluded, one other is ex-

cludedby a pseudo-randonehoiceandthe othersare
elected).

2.7

If no candidatewere electedunderrule 2.6, thenthe
hopeful candidatewith the fewestvoteschangesstate
from hopeful to excluded. Any tie is resohed by a
pseudo-randorohoice.

2.8

If thetotal numberof electedcandidatess equalto the
numberof seatstheelectionis complete Otherwisehe
processs repeatedrom rule 2.2.

29

The corvergentiterative schemes asfollows: setw;
equalto 0 for excludedcandidates] for hopeful can-
didatesandtheir Iastcalculated/alueSw?. for elected
candidates.(Immediatelyafter electionof ary candi-
datethe last calculatedvalueis 1 initially.) Applying
rule 2.3, using theseweights, let v; be the total value
of votesreceved by candidatej andlet e be the total
excess.Usingthis valuefor e, calculatethe new quota
g usingrule 2.5. Finally updatethe weightsfor elected
candidateso valuesw; = wfq/v;. Repeatheprocess
of successiely updatingy;, e, ¢ andw; until everyfrac-
tion ¢/v;, for electedcandidateslies within the limits
0.99999%nd1.00001(inclusive).

3 THE PROGRAM
(by I.D. HILL, and
B.A. WICHMANN)

We have allowedfor upto 40 candidateshut theneces-
sarychangeo allow alargernumberis trivial.

3.1 Thedata

The datafile shouldbe held on disc, or other device
thatallows quick ‘rewinding’, becausét hasto beread
mary timesduring programexecution.

Its form shouldbe asfollows:

2
2

PN~ b
w N b
o OO

N AR
OrRr Ww

4

243 0
342

1
0

OoOrLN

" Adant'
"Basil"
"Charlotte"
"Donal d"
"Titl e"

Thefirst line meanghatthereare4 candidatesor 2
seats.The secondine meangthat candidatenumber2
withdrew beforethe count. As mary candidategasnec-
essarymaybeincludedin thisline, eachprecededy a
minussign. If nocandidatavithdrew, theline shouldbe
omittedentirely. Thethird line meanghat3 votersput
candidatel first, candidate3 secondcandidatet third,
andno more. Eachsuchlist mustendwith a zero. The
final zeroendsthevotes.Thesubsequerinesnamethe
candidatesin theorderof candidatsmmumbersasusedin
the votes,andfinally give atitle for the election.If ary
of thesenamesopr thetitle, is longerthan20 characters,
only thefirst 20 will beused.

For electionson ary substantialscale, further pro-
gramsare desirableto get the datainto this required
form. Machine-readablballot papersvould obviously
beagreathelpif a suitablesystemcanbe devised.

3.2 Ties

The only ties that canoccurin this systemare asfol-

lows. (1) If n + 1 candidatesll exactly equalthequota,
whereonly n seatsare available. One of thesecan-
didatesmustthenbe excluded (togetherwith all other
candidateswho necessarilyhave zero votes) and the
othern elected.(2) If the candidatewith fewestvotes
mustbeexcludedandtwo or morehave equalfewest.In

boththesecasespseudo-randomrocedurés used,on
the groundsthat ‘if they areequal,they areequal’and
ary procedurgo chooseone mustbe arbitrary Alter-

nativesaresometimesecommendedsuchasexcluding
theonewho hadfewer votesthefirsttime they weredif-

ferent,or thelasttime they weredifferent,or whatever,

but suchrules add much complicationfor no real ad-
vantagesosimplicity is preferable.

The pseudo-randongeneratotlis derived, with per
mission,from Applied Statisticsalgorithm AS 183[3.
This needsthree seedsto initialise it, and theseare
formedfrom dataitemsfor the particularelection. This
leavesit sufficiently nearlyrandomthatnobodycanma-
nipulateit to favour a particularcandidateyet hasthe

adwantagethat, for a given election, thereis alwaysa
uniqueresult. Runningit on a differentday, or usinga
differentcomputey will makeno change— in the un-
likely eventthatarandomchoiceis neededthe same
thing will alwayshappenfor ary given dataset. If a
tie doesoccuranda randomchoicehasto be made,a
warningmessagés printed.
It shouldbe emphasisethatatie thatactuallyinflu-

encegheresultis avery rareevent.

3.3 Partial abstentions

Thereis no compulsionon votersto give a complete
listing of candidatesThey may stopshortif desired.If

they dosoandtheuseof theirvote‘runs off theend’we

allow it to doso,butadjustthequotato allow for thefact
thatthereare now fewer remainingusablevotes. This

treatsthe partial abstentiorin sucha way asto be fair

to all remainingcandidates.

This usageis different from that adoptedin most
manual counting systemswhere, under such circum-
stancesyotesaredividedinto ‘transferable’and‘non-
transferableandno quotaadjustments made.We are
corvincedthat, within Meek’s system,our approachs
right, but it hasto be madeclearthatwe arein dispute
overthis with thecouncilof the ElectoralReformSoci-
ety. We have heldup publicationof thealgorithmin the
hopeof resolvingthedifficulty, but now feelthatwe can
wait nolonger Unfortunately it is thereforenecessary
to warn potentialusersthatthey may be told by others
thatour methodis undesirableén this particular

3.4 Language

Thealgorithmis presentedh standardascal.Onsome
machinesmall,non-standard;hangesnayberequired
in the methodof accessindhe datafile. We have used
uppercaselettersfor Pascalword-symbolsjower-case
or mixed-casdor identifiers.

3.5 Listing

PROGRAM st vpas(datafile, output);

{This programcounts the votes in a Single Transferable Vote el ection,
using Meek’'s nethod, and reports the results}

{If there are nore than 40 candidates an increase in the size of
MaxCandidates is the only change needed}

CONST MaxCandi dates = 40;
NaneLength = 20;

TYPE Candi dates = 1 .. MaxCandi dates;
CandRange = 0 .. MaxCandidates;
name = PACKED ARRAY [1 .. NanmeLength] OF char;

VAR NuntCandidates, NunSeats: Candi dates;

candi date, NunEl ected, NunExcl uded,
mul tiplier, ignored: CandRange;
Droop, excess, quota, total: real;
faulty, SomeoneH ected, Randomised: Bool ean;
FracDigits: 1 .. 4;
table, seedl, seed2, seed3: integer;
datafile text;
title: name;
votes, weight: ARRAY [Candi dates] OF real;

status: ARRAY [Candi dates] OF (Hopeful, Elected, New yElected,

Al npst, Excluded, ToBeExcluded, NotUsed, Used);
names: ARRAY [Candi dat es] OF nane;

FUNCTI ON | nlnteger: integer;

{Reads the next integer fromdatafile and returns its val ue}

VAR i: integer;
BEG N
read(datafile, i);
Inlnteger :=i

END; {Inlnteger}

PROCEDURE Pri nt Qut ;

{Updates the table nunber and prints out the current results}

VAR arg: real;
cand: Candi dat es;
BEG N
table :=table + 1;
witeln;
witeln(® ': 20, title);
witeln;
wite('Table: ', table: 1);
witeln(' Quota: ', quota: 1: FracDigits);
witeln;

{The nunbers of bl anks follow ng Candi date, Retain and
Transfer are 12, 3 and 3 respectivel y}

writeln(’ Candi date Ret ai n Transfer Votes');
witeln;
FOR cand := 1 TO NunCandidates DO

BEG N

write(nanes[cand]);
| F status[cand] = ToBeExcluded THEN
arg := 100.0 ELSE arg := 100.0 * weight[cand];
wite(arg 6: 1, "%);
wite(100.0 - arg: 8 1, '%);

{If it is valid to do so, print quota instead of votes[cand]
because the latter might have a small rounding error that
woul d confuse unsophisticated users}

| F status[cand] = Elected THEN arg := votes[cand] / quota
ELSE arg := 0.0;

IF (arg >= 0.99999) AND (arg <= 1.00001) THEN arg := quota
ELSE arg := votes[cand];

wite(arg 10: FracDigits, ' ');
| F status[cand] = Excluded THEN write(’ Excl uded’)
ELSE I F status[cand] = Elected THEN wite(' Hected')
ELSE I F status[cand] = New yElected THEN wite(' Newy Elected’)
ELSE | F status[cand] = ToBeExcluded THEN
BEG N
wite('To be Excluded);
status[cand] := Excluded
END;
witeln;

| F (NunCandi dates > 9) AND (cand MOD 5 = 0) AND
(cand <> NuntCandidates) THEN writeln
END;

witeln;

writeln(’ Excess', excess: 40: FracDigits);
witeln;

witeln(’'Total ', total: 40: FracDigits);
witeln;

witeln

END; {PrintQut}

FUNCTI ON Lowest Candi dat e: CandRange;

{Returns the candi date nunber of the candi date who currently has the
| owest nunber of votes. If two or nore are equal |owest, then a

pseudo-random choi ce i s made between then}

VAR cand: Candi dat es;
LowCand: CandRange;

FUNCTI ON random real ;

{Returns a pseudo-random nunber rectangularly distributed
between 0 and 1. Based on Wchmann and Hill, Algorithm
AS 183, Appl. Statist. (1982) 31, 188 - 190}

VAR rndm real;
BEG N

{ If seeds have not been set, then set then}

| F seedl = 0 THEN
BEG N
seedl : = NuntCandi dat es;
seed2 NunBeat s + 10000;
rndm:= total + 20000.0;
VH LE rndm > 30322.5 DO rndm : = rndm - 30322.0;
seed3 : = round(rndm
END;

seedl := 171 * (seedl MOD 177) - 2 * (seedl DIV 177);

seed2 := 172 * (seed2 MOD 176) - 35 * (seed2 DIV 176);
seed3 := 170 * (seed3 MOD 178) - 63 * (seed3 DIV 178);

| F seedl < 0 THEN seedl := seedl + 30269;

| F seed2 < 0 THEN seed2 seed2 + 30307;

| F seed3 < 0 THEN seed3 := seed3 + 30323;

rndm : = seedl / 30269.0 + seed2 / 30307.0 + seed3 / 30323.0;
random : = rndm - trunc(rndm

END; {randon}

FUNCTI ON | ower (cand, |owest: CandRange): Bool ean;

{Find whether cand has fewer votes than |owest, and al so
reports whether a random choice had to be nade}

VAR | ow y: Bool ean;

BEG N

IF lowest = 0 THEN
BEG N
RandonUsed : = fal se;
lover := true
END

ELSE | F votes[cand] = votes[lowest] THEN
BEG N
Randonsed : = true;
{Miltiplier is used to nake all equally-lowest candi dates

equally likely to be chosen, even though they are
consi dered serially and not simultaneously}

lower := (multiplier * random< 1.0)
END
ELSE
BEG N
lowy := (votes[cand] < votes[lovest]);
lower := lowy;
IF lowy THEN Randonlsed := fal se
END;
| F Randomsed THEN multiplier := nultiplier + 1
ELSE mul tiplier := 2

END; {Ilower}

BEG N
LowCand :
FOR cand :

0;
1 TO NunCandidates DO

| F (status[cand] = Hopeful) OR (status[cand] = Al nbst) THEN

| F | ower (cand, LowCand) THEN LowCand := cand;
Lowest Candi date := LowCand
END; {Lowest Candi dat e}

PROCEDURE conput e;

PROCEDURE el ect (cand: Candi dates);
BEG N {This is the heart of the program which counts the votes, taking
status[cand] := New yEl ect ed; the current weights into account, and adjusts the weights and
Nun€l ected := NunEl ected + 1 the quota iteratively to attain the required sol ution}

END, {elect}
{Maxlterations is the maxi mum nunber of iterations allowed in

PROCEDURE excl ude(cand: Candi dates); calculating the weights. It is unlikely that so many will
BEG N ever be used, but its value may be increased if desired}
status[cand] := ToBeExcl uded;

wei ght [cand] 0.0; CONST Maxlterations = 500;
NunExcluded := NunExcluded + 1; VAR tenp, value: real;
| F Randonsed THEN count, iteration: integer;
BEG N cand: CandRange;
witeln; converged, ended: Bool ean;
witeln;
writeln(’Random choice used to exclude ', names[cand]) PROCEDURE Rewi nd;
END

END; {exclude} {Returns to the beginning of datafile, and ignores the first two

nunbers on it. These are the nunber of candidates and the Randonsed : = fal se;
nunber of seats, whose values are not needed again. Nunbers FOR cand := 1 TO NuntCandidates DO
indicating withdrawn candidates are also ignored} | F status[cand] = Hopeful THEN excl ude(cand);
excl ude(Lowest Candi dat e) ;
VAR ig, ignore: integer; count := count - 1
BEG N END;
reset (datafile);
FORig := -1 TO ignored DO ignore := Inlnteger SoneoneH ected : = fal se;
END; {Rew nd} FOR cand := 1 TO NuntCandi dates DO
| F status[cand] = Al npst THEN
BEG N BEG N
iteration := 1; el ect (cand) ;
SoneoneElected := true
REPEAT END;
Rewi nd;
excess := 0.0; | F SomeoneH ected THEN Print Qut;
FOR cand := 1 TO NuntCandidates DO votes[cand] := 0.0; FOR cand := 1 TO NuntCandi dates DO
count := Inlnteger; | F status[cand] = New yElected THEN
BEG N
WH LE count > 0 DO I F NunEl ected < NunBeats THEN
BEG N wei ght[cand] := quota / votes[cand];
val ue := count; status[cand] := Elected
cand := Inlnteger; END
ended : = fal se; END; {conput e}
WH LE cand>0 DO PROCEDURE conpl ete;
BEG N
| F NOT ended AND (wei ght[cand] > 0.0) THEN {Used to elect all remmining candidates if the nunber
BEG N remai ni ng equal s the nunber of seats renaining}
ended := (status[cand] = Hopeful);
| F ended THEN VAR cand: Candi dat es;
BEG N BEG N
votes[cand] := votes[cand] + value; FOR cand := 1 TO NuntCandidates DO
value := 0.0 | F status[cand] = Hopeful THEN el ect (cand)
END END; {conpl et e}
ELSE
BEG N PROCEDURE Prelininaries;
votes[cand] := votes[cand] + value * weight[cand];
value := value * (1.0 - weight[cand]) {Checks datafile for errors and sets initial values of variables}
END
END; VAR cand, count, LineNo: integer;
cand : = | nlnteger
END; PROCEDURE error(cand: integer; TooBig: Bool ean);
BEG N
excess = excess + val ue; witeln;
count := Inlnteger wite ("On line ' , LineNo: 1, ', Candidate ', cand: 1);
END; | F TooBig THEN wite (' exceeds maxinuni)
ELSE wite (' is repeated’);
quota := (total - excess) * Droop; witeln;
faulty := true
{The next statenent is unlikely ever to be used, but is a END;, {error}

saf eguard agai nst certain pathol ogical test data}
PROCEDURE ReadName(VAR n: nane);
I F quota < 0.0001 THEN quota := 0.0001;

converged := true; {Reads the nane of a candidate, or reads a title, and stores
FOR cand := 1 TO NuntCandi dates DO it for later use. If the nane has nore than NaneLength
| F status[cand] = Elected THEN characters the excess ones will be disregarded. If it
BEG N has fewer than NanmeLength characters blanks will be used
tenp := quota / votes[cand]; to extend it}
IF (tenp > 1.00001) OR (tenp < 0.99999) THEN
converged := fal se; VAR i: integer;
tenp : = wei ght[cand] * tenp; ch: char;
wei ght[cand] := tenp; BEG N
{The next statement is unlikely ever to be used, but is REPEAT
a safeguard against certain pathol ogical test data} read(datafile, ch)
UNTIL ch =""";
IF tenmp > 1.0 THEN wei ght[cand] := 1.0
END; i =0
read(datafile, ch);
iteration :=iteration + 1 WH LE ch <> "’
UNTIL (iteration = Maxlterations) OR converged; BEG N
IF i < NanmeLength THEN
| F NOT converged THEN BEG N
BEG N ior=io+ 1
n[i] :=ch
{The "Failure to converge" nessage is unlikely ever to appear. END;
If it does, increasing Maxlterations will probably cure it} read(datafile, ch)
END;
witeln;
witeln; WH LE i < NaneLength DO
witeln(’ Failure to converge'); BEG N
witeln ir=0o+ 1
END; nfi] =" "
count 0; END

END; {ReadNane}
FOR cand := 1 TO NunCandi dat es DO

| F (status[cand] = Hopeful) AND (votes[cand] >= quota) THEN BEG N
BEG N Droop := 1.0/ (NunSeats + 1);
status[cand] := Al nost; Li neNo 1;
count := count + 1 seedl 0;
END; total := 0.0;
table := 0;
{Allow for the special case where there is a multi-way tie and Nun€l ected :
too nmany candi dates reach the quota sinultaneously} NunExcl uded
ignored := 0;
WH LE NunEl ected + count > NunBeats DO FOR cand := 1 TO NuntCandidates DO weight[cand] := 1.0;
BEG N count := Inlnteger;
PrintQut;

{Deal with withdrawals, if any}

WH LE count < 0 DO
BEG N
wei ght[-count] := 0.0;
count := Inlnteger
END;
WH LE count > 0 DO
BEG N
LineNo := LineNo + 1;
total := total + count;
FOR cand := 1 TO NunCandi dates DO status[cand] := NotUsed;
cand := Inlnteger;
WH LE cand > 0 DO
BEG N
| F cand > NunCandi dates THEN error(cand, true)
ELSE | F status[cand] = Used THEN error(cand, false)
ELSE status[cand] := Used;
cand : = | nlnteger
END;

count := Inlnteger
END;

FOR cand := 1 TO NunCandidates DO
BEG N
ReadNane(nanes[cand]) ;
status[cand] := Hopeful;
| F weight[cand] < 0.5 THEN

BEG N
status[cand] := Excluded;
NunExcl uded : = NunExcl uded + 1;
ignored :=ignored + 1
END

END;

ReadNane(title);
I'F NOT faulty THEN
BEG N

{FracDigits controls the nunber of digits beyond the deci mal
point that will be printed in the output tables}

FracDigits := 4;

IF total > 999.5 THEN FracDigits := FracDigits - 1;
IF total > 99.5 THEN FracDigits := FracDigits - 1;
IF total > 9.5 THEN FracDigits := FracDigits - 1
END

END;, {Prelimnaries}
{Start of main progran}

BEG N
reset(datafile);
NunCandidates := Inlnteger;
NunBeats := Inlnteger;
witeln;
witeln;
writeln(’ Number of Candidates = ', NunCandidates: 1);
witeln (" Number of seats = ', NunBeats: 1);
| F NunCandi dates < NunSeats THEN witeln(’ All candi dates elected) ELSE
BEG N
faulty := fal se;
Prelininaries;
I F NunCandi dat es <= NunBeats + NunmExcluded THEN
witeln(” ALl non-withdrawn candidates elected) ELSE
BEG N

{The Prelininaries procedure will have reset faulty to true if
the data contain errors}

I'F NOT faulty THEN
BEG N
REPEAT

{Count votes and el ect candidates, transferring
surpluses until no nore can be done or all
seats are filled}

REPEAT
conput e
UNTI L NOT SoneoneElected OR (NunEl ected >= NunBeats);

{Unless the election is finished, sonmeone nust
now be excl uded}

I F NunEl ected < Numseats THEN
BEG N
PrintQut;
excl ude(Lowest Candi dat e) ;
I F NunCandidates - NunmExcluded = NunBeats
THEN conpl ete ELSE Pri nt Qut
END
UNTI L NunEl ected = NunBeats;

{Now that all seats are filled, exclude any candidates not
already elected, and print out the final table}

Randonsed : = fal se;
FOR candi date := 1 TO NunCandi dat es DO

| F status[candidate] = Hopeful THEN excl ude(candi date);
Print Qut
END
END
END

4 PROOF OF EXISTENCE
AND UNIQUENESS (by D.
R. WOODALL)

We prove in this sectionthatthe equationghatneedto
besolvedateachstageof Meek’s methodhave aunique
solution.

At eachstage gachcandidatds in oneof threestates,
called ‘elected’, ‘excluded’ and ‘hopeful’. It is ex-
plainedin Section2 how a candidatearrivesin one of
thesestates;pbut for the purposeof the formal proof it
is irrelevant: we maysupposehateachcandidatds as-
signedto one of thesestatesat random,subjectto the
conditionthatthe numberm of ‘elected’ candidatess
non-zerocanddoesnot exceedthe numbers of seatsto
befilled: 1 < m < s. We alsorequirethe following
non-triviality condition: thereis atleastoneballot pa-
perthatcontainghenameof a‘hopeful’ candidaten its
list of preferencesTheseconditionswould certainlybe
fulfilled in arealelection(in which no equationneeds
to be solveduntil somecandidatés declaredelected’).

Let the ‘elected’ candidatede C4, ..., C,,. Letthe
weightassignedo candidateX (asin Section2.3)bew,,
(0 € w, < 1). Sinceeach'excluded’ candidatealways
recevesweightO andeach'hopeful’ candidateeceves
weight 1, the assignedwveights are specifieduniquely
by them-vectorw = (wy, ..., wy,), in whichw; is the
weightassignedo C; for eachj (j = 1, ..., m).

In the situation describedby the m-vector w, let
Ve (w) denotethevotefor candidateX (thatis, thesum
of the part-wotesthat X receivesfrom all the electors);
for corveniencewrite V¢, (w) asV; (w). Let E(w) de-
notethe total excessvote, and definethe quota @ (w)
tobe(V — E(w))/(s + 1), whereV is the total num-
ber of votes (ballot papers). The effect of the non-
triviality condition mentionedabove is to ensurethat
Q(w) > 1/(s+1) > 0 forall w, sinceif aballotpaper
containsthe nameof a ‘hopeful’ candidateamongits
preferenceshenno partof thatvote canbelost to the
excessvote,andsoV — E(w) > 1.

We shall makeextensive useof the following facts,
which areobviousfrom the above definitionsandfrom
Section2.4, andin which we usetheterms‘increases’

and‘decreasesin the weak sensethat is, both terms
correctly describea numberthat doesnot change): if

onecomponenty; of w is decreasednhilstall theother
componentsireunchangedthen:

(1) V;(w) deceases in exact proportionto the de-
creasen wj;

(2) eachVy(w) (k # j) increases

(3) thesumof the votesfor all the ‘elected’ candidates
deceasedy anamounts > 0 (sincethecontribu-
tion from eachballot paperdecreases);

(4) theexcessvoteincreasesby at mostv;
(5) thequotadeceasesby atmostu/(s + 1).

Letanm-vectorw becalledfeasibleif 0 < w; <1
andV;(w) > Q(w) for eachj, andbecalledasolution
vector if 0 < w; < 1 andV;(w) = Q(w) for eachj
(= 1,...,m). The purposeof this sectionis to prove
thatif there is a feasiblevector thenthere is a unique
solutionvector We notein passinghat,in arealelec-
tion, the existenceof a feasiblevectoris assuredsince
the solutionvectorat eachstageof the countingyields
afeasiblevectorfor the next stage.

We shallusethefollowing algorithmwhich, starting
with a feasiblevector will constructa solutionvector
(Thisis thealgorithmdescribedn Section2.9.)

Algorithm: Let w® = (w?,...,w2) be afeasible
vector Givenw!’, definewi*! by therule
= wiQ(w') Vi (w')

foreachj (j =1, ..., m).

Theorem 1. ThisAlgorithmconstructsa sequencef
feasiblevectorsthat corvegesto a solutionvector.

Proof. Supposehatw’ is a feasiblevector sothat
Vi(w') > Q(w') > 0 andsow’ > 0 for eachj. Then
to corvert w’ into w't! we must (weakly) decease
eachof its components.Fix j, andlet w’ be the vec-
tor obtainedfrom w’ by replacingthe one component
wi by w't!. By (2), (1), (6) and(5),

w

(6)

Vi(w™h) > Vi(w') = Vi (w')wit' /]

= Q(w') > Q(w'™"). (7)

This holdsfor eachj, andsow*! is afeasiblevec-
tor. Sincew" is feasibleby hypothesisjt follows by
inductionthatw’ is feasiblefor all ;.

It follows from this that, for eachfixed j, the se-
qguence

0,1 2
Wi, W

Wi, Wi, ;...

is amonotonicdecreasingequencéhatis boundedoe-
low (by 0), andsocorvemes. Thusthereis alimit vec-
tor w™ = (wP®,....., wy). Wemustprove thatw™ is
asolutionvector By thefeasibility of w’ and(7),

0< Vi(w') = Q') = Vi(w') = Vj(w'),

<V - (w) —with)

since decreasinguw; by cannotdecreasé/;(w) by
morethanV'§ (V' beingthe total numberof ballot pa-
pers).But,asi — oo, wi —wit' — 0, andsinceV; (w)
and@(w) arecontinuousfunctionsof w it followsthat
Vi(w®) = Q(w). Thisholdsfor eachj, andsow
is a solutionvector asrequired.C

Theorem 2. The solution vector whoseexistence

wasprovedin Theoeml, is unique

Proof. Let w = (wl,...,wm) and
w* = (w},..,w},) be two solution vectors and
definew’ = (w?, ..., wl,) by

w?

;= min(w;, w})

for eachj. For afixedj supposevithoutlossof gener
ality thatw} = w;, andnotethat, by (2) and(5)

Vi(w®) 2 Vj(w) = Q(w) > Q(w).

This holdsfor eachj, andsow? is afeasiblevector
By Theorem1 we can apply the Algorithm to w° to
constructa solutionvectorw® = (wg...,wS) such
that

[e¢] 0
0 <w® <w; < wj

for eachj. We shallprove thatw® = w, from which
it will immediatelyfollow thatw = w° = w*, asre-
quired.

We prove first that Q(w™) = Q(w). By (5),
Q(w>) < Q(w). By thesameargumentthatis used
to derive (5) from (3),

(s + D(Q(w) — Q(w™)) = E(w™) — E(w)
<D Vi(w) = Vi (w™))

j=1

=m(Q(w) — Q(w™))

sincew andw® arebothsolutionvectors.Sincem <

s, Q(w) — Q(w>®) < 0. ThusQ(w*) = Q(w), and
Vi (w™) = Vj(w) (8)

for eachj.

Finally, let S denotethe set of candidatesC; (if
ary) for whomw3® < w;, andsupposehat .S is non-
empty Sincew;® < 1 for eachsuchj andV;(w™)
Q(w) > 0, it is not difficult to see(by considering
eachballot paper)that the sumof the votesfor all the
candidatesn S is a strictly increasingfunction of the
weight assignedo eachsuchcandidate,and so must
strictly increasewhen the vector w* is replacedby
w. But this violates(8). So S must be empty and
w™ = w. Thiscompleteshe proofthattherecanbeat
mostonesolutionvectorw. O

References

[1] B. L. Meek. Une nouwlle approchedu scrutin
transkrable Mathématiquegt sciencefiumaines
25, 13-23(1969).

[2] B. L. Meek. Une nouwlle approchedu scrutin
transerable(fin). Mathematiquest scienceu-

maines29, 33-39(1970).

[3] B. A. Wichmannand 1. D. Hill. Algorithm AS
183 — an efficient and portable pseudo-random
numbergeneratarApplied Statistics31, 188-190

(1983).

[4] D. R. Woodall. Computercountingin STV elec-

tions.Repesentatiorf0, 4-6 (1982).

A Document detalils,
lished

Scannedndcorvertedto IATEX, November1999.

My addresss not NPL dueto thepolitical sensitvity
of NPL during the Thatcheryears! The work wasnot
doneatNPL, in ary case.

David Hill hasnow retiredandhis addresss: Laver-
ton, Berry Lane, Chorleywood, RickmansworthWD3
5EY.

Not pub-

The secondparagraphof section4 states: there is
at leastone ballot paperthat containsthe nameof a
‘hopeful’ candidatein its list of prefeences The pro-
gramdoesnot checkthis! This error wascorrectedin
theversionsof Meekin actualusein 1999.

Theprogramaspublishedabore producegjuitevolu-
minousoutputin relationto the standardresult sheet’
that the ElectoralReform Societyusesfor STV elec-
tions. Versionsof Meekusedin realelectionstherefore
summariseéhe outputin someway — which caneven
beto producea corventionalresultsheet.

