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Abstract:

We consider several types of information with which to differentiate preferential ballot voting
systems. After establishing a formalism with which to discuss voting methods in a mathe-
matical context, we show that the aggregation of transitive individual preferences does not
always result in a unique transitive social preference ordering. Exposition on eleven different
preferential ballot voting systems is then given, as possible methods for resolving elections
with three or more candidates. To evaluate these methods, we introduce several desirable
conditions on voting systems, and then determine which are satisfied by the various methods
studied. Extending this, we construct continuous measures of two conditions, to gain more
information when methods do not satisfy certain conditions. Finally, we use election simu-
lations (on a uniform vote distribution) to measure how often each pair of election methods
provide the same result. We submit this information as suitable for making a reasoned choice
of election method in practical application.
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2 Introduction: The Problem of Aggregating Individual Prefer-
ences

2.1 The Goal of Voting Systems

The purpose of voting, especially in the context of democratic forms of government, is to
aggregate the preferences or opinions of individuals and process them to produce a single
opinion, which purportedly will be an accurate reflection of the views of the electorate. Since
the inception of democracy, determining the best possible method for accomplishing the task
of voting has been an important, open question. The question has many facets; political,
philosophical, practical, and mathematical. To unravel what makes a good (or the best)
voting system requires philosophy, to measure those things and determine whether they can
occur requires mathematics.

2.2 Reasonable Criteria

Intuitively, we can quickly declare a number of criteria for a voting system that would
universally be deemed “reasonable.” It’s clear that one particular person’s vote shouldn’t
determine the outcome of the election (this is called nondictatorship), it’s clear that the order
of the candidates and voters shouldn’t affect the outcome (candidate and voter symmetry),
and it’s clear that my voting for a candidate shouldn’t decrease their final ranking (this
is called monotonicity). While each of these conditions are intuitive, they require rigorous
mathematical formulation to test. Further, there are other, more subtle criteria that are
not obviously reasonable, but prevent unreasonable outcomes. We’ll see that in elections
involving three or more candidates, we can’t have everything. Guaranteeing one condition
often precludes another. Determining when this occurs is mathematics, deciding what to do
about it is philosophy.

2.3 Previous Approaches

Throughout the past few centuries, but mostly in the last fifty years, researchers have em-
ployed a number of different approaches to the question of determining the best voting
system. Several philosophers have developed their own methods for aggregating votes, many
of which we’ll consider through this paper. They have built these systems around a number
of concepts; symmetry, avoiding particular paradoxes, satisfying a certain set of conditions.
None of these things can individually crown the best voting system. Researchers have shown
(in numerous different combinations) that some sets of reasonable criteria are, in fact, mutu-
ally exclusive. A natural approach is then to determine if certain sets of conditions determine
a unique voting system, adding conditions to eliminate systems at each stage. Philosoph-
ically, we must be careful to add conditions for the sake of the conditions, not in order to
cleanly narrow the field of potential voting systems. Yet, still we lack a good way to compare
systems which satisfy different sets of conditions, leading us to the approach of this paper.
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2.4 Summary of Approach

After setting up the basic notation and definitions for discussing voting systems, we begin
by explaining the major voting methods under consideration. Then, we follow the “standard
approach” of defining a number of reasonable conditions and classifying the systems based
on which conditions they satisfy. This, however, is insufficient. Because no system can sat-
isfy all conditions, inevitably we’ll need to compare systems which satisfy different sets of
conditions. We approach this problem in two ways:

First, the majority of work concerning voting systems and various criteria has been bi-
nary, that is, a focus on determining whether a particular system satisfies a given condition
or not. Some work has been done in computing the probability of the occurrence of various
paradoxes (especially Condorcet’s Paradox), in the abstract setting of some type of random
elections. We extend the spirit of this work to consider the probability that given voting
systems abide by the criteria. In this way, we intend to provide a more complete profile
of information for the philosophers to discuss. A voting system which fails several criteria,
but only does so in one out of every million cases may very well be more desirable than
another criteria which passes other criteria, but fails another over half the time. Measuring
these conditions in a probabilistic sense will allow us to make more informed decisions in
comparing voting systems.

Second, we recognize that if two voting systems produce the same social preference given
any set of individual votes, then they should be considered the same system (even if this is
not obvious based on the method of calculation). Further, measuring how often two voting
systems agree, and determining in what situations they disagree provides another dimension
of information to consider their quality. This information will also be useful in introducing
comparisons based on method ease and efficiency, as we’ll be able to determine exactly what
is lost by moving to a more complicated method.
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3 Notation and Definitions

The study of the aggregation of social preferences is not as universal a topic as say, calculus
or algebra. As such, there is a comparably wider range of definitions and notations used
in the literature (which have evolved over time, but still remain relatively diverse). Each
writer has their own personal bias, so it is important to clearly lay out notation from the
beginning. The exposition of notation also serves as a good introduction to the definitions,
jargon, and basic concepts of voting theory.

Let’s begin with the basics. Any election (which we’ll define precisely) must contain at
least two candidates (also called alternatives), with the implication that either a ranking
of candidates or a single “winning” candidate is desired. We will denote candidates by
capital letters; A,B,C... typically beginning with A. Further, we will denote the number of
candidates in an election by m.

For our purposes, we can consider votes and voters as equivalent objects (we require no
information about who made which vote, anonymity which is typically held sacred in modern
electoral processes). The implication is, of course, that each voter makes exactly one vote.
Also, because of the anonymity, we will not need to refer to specific voters to distinguish
them, as we might need to with candidates. We will denote the number of votes/voters in
an election by n.

While we’ll see that different voting systems are based on different interpretations of
what a vote is, the vast majority (that we’ll consider) are based on a set of pairwise pref-
erences. Intuitively, a pairwise preference is a single voter’s opinion on two candidates. We
denote, for example, the preference of A over B by A � B. We can represent this as a linear
binary relation on the set of candidates, following the convention of Markus Schulze (though
he does not tacitly assume linearity). This provides a few basic, reasonable properties:

The relation � is antisymmetric and linear. This means for any distinct candidates
A,B, either A � B (exclusive) or B � A. As a technical note, we say A ≡ A, indicating
that a candidate can’t be preferred over itself.

Further, � is transitive, meaning that for distinct candidates A,B,C;

(A � B and B � C)⇒ A � C (1)

This is a nontrivial assumption about our voters; specifically that their pairwise preferences
are rational. Consideration of non-transitive pairwise preferences is important, but not
something we’ll consider deeply in this paper.

Given a pairwise preference for each pair of candidates in the election, there is a unique
preference ordering of the candidates. For example, if a voter has the following pairwise
preferences:

A � B,A � C,C � B (2)

then their preference ordering is:
A � C � B (3)
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Typically, voting systems which collect all pairwise preferences as input will have voters pro-
vide this information as a preference ranking, because it is faster (though it could be argued
that thinking about each individual pairwise matchup is simpler for the voter). We call such
systems (technically those that use all pairwise information) preferential ballot voting
systems.

Finally, we are in a position to define an election. An election is simply a set of votes
(typically preference orderings) on a set of candidates. Generically, we’ll denote an election
by a capital E (making distinction between a candidate and an election if necessary). We’ll
see that the most important characteristics of an election are the number of candidates, m
and the number of voters n. Therefore, we define spaces of elections ε(m,n) to contain all
possible elections of n voters, voting on m candidates. This will be especially important
when considering random elections later on.

As we mentioned above, the study of voting systems would not exist if different voting
systems didn’t give different results on the same election. This idea motivates the precise
definition of voting systems.

A voting system is a function such that for each reasonable election space (positive num-
bers of candidates and voters) ε(m,n) the voting system selects on vote on m candidates
for each election E ∈ ε(m,n). This vote (typically a preference ordering) is called a social
preference ordering We will denote voting systems as functions, and thus by a lower case
letter (or short string of letters).

Finally, we require notation for measuring the aggregation of individual votes.

Given two candidates A,B, we’ll denote the number of voters who prefer A to B (that
is, the number of voters with pairwise preference A � B) by [A,B]. Similarly, the number of
voters with pairwise preference B � A is denoted by [B,A]. By convention, we set [A,A] = 0.

A convenient way to store this information is the margin of victory matrix M . This
is an antisymmetric matrix with the following entries:

MAA = 0 (4)

MAB = [A,B]− [B,A] (5)

This will be a very important tool for the computation of several voting systems. In fact,
there are a number of systems which determine the social preference ordering solely from the
margin of victory matrix. These methods are called margin of victory matrix voting
methods.
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4 The Difficulty of Resolving Elections

Now, we’ll use the formalism developed in the previous section to demonstrate that while
two candidate elections are easily determined, elections with three or more candidates do
not always have an obvious resolution.

Recall that we required each voter to submit a transitive preference ordering. We can
encode this transitive ordering as a single-voter margin of victory matrix, which we’ll call a
vote matrix. It is then clear that an equivalent definition of the margin of victory matrix
is the sum of the individual (transitive) vote matrices.

Now, while each transitive preference order corresponds to a unique vote matrix, a mar-
gin of victory matrix does not necessarily correspond to a transitive preference ordering.
Put another way, the sum of transitive preferences is not necessarily transitive. Consider the
following example:

The author and two friends are ordering a pizza, but can only afford a single topping;
sausage (S), pepperoni (P), or tomato (T). The preference orderings are as follows;

Voter Preference Order
1 S � P � T
2 P � T � S
3 T � S � P

The resultant margin of victory matrix is then;
S P T

S 0 1 −1
P −1 0 1
T 1 −1 0


We can see that this seems to imply an intransitive cycle of preferences S � P � T � S � ...,
which is not a reasonable social preference result. While in some sense this result (often called
Condorcet’s Paradox) [7] is a generic tie, we must develop means for selecting a winner when
the magnitudes of victory are non-identical.

We can show by exhaustion that any 2 × 2 margin of victory corresponds to a transitive
preference (either A � B or B � A) unless there is an exact tie. Thus, all two candidate
elections are easily resolvable. On the other hand, as the above example shows, this is not
the case for elections with more than two candidates. Thus, we are forced to consider exactly
how to approach such election scenarios. We should also take care to choose a voting system
which selects the implied transitive ordering, when one exists.
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5 Voting Systems

We’ll continue with an exposition of the most common voting methods (in the community
of people who study voting methods), providing salient examples of how they calculate
a social preference ordering given an election. The following sections will explain various
important conditions for voting systems, and demonstrate why these systems satisfy or fail
those conditions.

5.1 Single Vote Plurality

The most familiar voting system in use today is the single vote plurality system. In this
system, each voter selects a single candidate to vote for. The votes are tallied, and the
candidate with the largest number of total votes is then the winner. If a ranking of candidates
is desired, we simply order them based on number of votes received, from highest to lowest.
We’ll denote the plurality vote by p, and in this case the individual votes are simply one
candidate (the voter’s preferred candidate). Consider the following example election:

Candidate Votes
A 30
B 55
C 21
D 3

Because candidate B receives the most votes, B is the winner of the election. We denote
this as p(E) = B. The social preference ordering, if desired. is B � A � C � D.

Three reasons for the relative ubiquity of this system are:

• The system is extremely simple, both to vote in and to compute the result.

• The system satisfies all reasonable conditions in elections with two candidates, in fact,
it is the de facto choice for two candidate elections.

• The system has been entrenched in the political landscape, which influences our per-
ception of how elections should be run.

Unfortunately, many problems can occur in plurality elections involving three or more
candidates, which we’ll detail in the following section. One commonly understood problem
is that voting candidates with small chances of winning (for example, third-party candidates
in the United States) often feels like “wasting” ones vote. This can cause voters to represent
their true preferences dishonestly, by voting for their second-choice candidate.
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5.2 Approval Voting

In Approval Voting, the voter is instructed to cast a vote for every candidate he or she would
“approve” of winning the election. For example, in determining what type of ice cream to
buy for a class, a teacher may ask each student to vote for every flavor that they would be
able to eat. No distinction is made based on preference, each candidate is either approved or
denied by the voter. As in Single Vote Plurality, the winner is the candidate which receives
the most votes (“approvals”), and a ranking of candidates can be had by ordering based on
total number of votes. We’ll denote this voting method by a. Consider the following example
election:

Candidates Approved Not Approved Number of Votes
A,B,C none 8
A,B C 14
A,C B 20
B,C A 22
A B,C 9
B A,C 10
C A,B 14

none A,B,C 5

These represent all the votes of the election. To compute a(E) we need to tabulate the total
number of approvals for each candidate:

Candidate Total Approvals
A 51
B 54
C 64

Thus, we have that a(E) = C, and that the social preference ordering is C � B � A.

Note that the approval voting method does not favor polarizing candidates. One can easily
imagine the following election given two very polarizing candidates A,B and one moderate
candidate C. The first column of the table, true preferences represent the “internal”
knowledge each voter calls on when voting (this is only relevant when the voting system
does not ask for the full preference ordering.

True Preferences Candidates Approved Not Approved Number of Votes
A � C � B A,C B 81
B � C � A B,C A 75

Candidate Total Approvals
A 81
B 75
C 156
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Despite not being the favorite candidate of any voter, candidate C is the approval winner
in a landslide! Again, this is not a philosophical statement, the merits of this characteristic
can be debated. We can only use the mathematics to uncover these various characteristics
of voting systems.

5.3 Preferential Ballot Voting Systems

As we defined above, any system which takes into account each voter’s entire preference or-
dering is a preferential ballot voting system. It is important, now, to make a distinction
between these first two voting methods and those that will follow. Single Vote Plurality
and Approval Voting collect no knowledge about the various pairwise preferences the voters
hold. A single vote system only learns what each voters first choice is, rather than a full
profile, first through last. Approval Voting, while allowing multiple votes, only breaks the
candidates into two sets, approved and denied, and collects no ranking information within
these sets. We can anticipate the inadequacy of these voting methods simply based upon
the fact that they take in and use less information than the preferential ballot systems which
follow.

5.4 Instant Runoff Voting

The most popular preferential voting system is Instant Runoff Voting, also known as Alter-
native Voting, and it is an iterative process. In each round, we first check if any candidate
has a majority of the first place votes. If so, that candidate is selected as the winner. Oth-
erwise, the last place candidate (that is, the candidate with the fewest number of first place
votes) is eliminated, and removed from all ballots. Thus, any voter who selected the losing
candidate as their first preference now has a different first preference. This process is iterated
until some candidate gains a majority of first place votes. If a full ranking of candidates
is desired, the process can be continued with second place votes, third place votes, and so
on. This voting system will be denoted by irv. Let’s walk through a multi-stage example
election:

Preference Ordering Number of Votes
A � B � C � D 12
A � C � B � D 10
A � D � B � C 6
B � A � D � C 10
C � B � A � D 4
C � B � D � A 5
D � A � C � B 3
D � B � A � C 14

First place votes at the first pass:
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Candidate First Place Votes
A 28
B 10
C 9
D 17

Thus, candidate C is eliminated from the elections and the ballots. There are two ways to
represent this; to simply remove C from all ballots, essentially moving to an election with
three candidates, or to move C to the last position on each preference ordering. We’ll use
the latter method, since it will be useful when programming random elections under Instant
Runoff Voting later on. Moving to the second stage:

Preference Ordering Number of Votes
A � B � D � C 22
A � D � B � C 6
B � A � D � C 14
B � D � A � C 5
D � A � B � C 3
D � B � A � C 14

First place votes at the second pass:

Candidate First Place Votes
A 28
B 19
C eliminated
D 17

Since all of the voters who voted for C had B as their second choice, B gets by on the skin
of his/her teeth, forcing candidate D to be eliminated. This sets up the final round in which
we see a majority winner:

Preference Ordering Number of Votes
A � B � D � C 31
B � A � D � C 33

Thus, we have that irv(E) = B. Again, this may be an unexpected result given how few
first place votes the winning candidate had at the onset. Such is one facet of the nature of
the Instant Runoff Voting system. We do note that Instant Runoff will agree with Plurality
voting when there is a majority winner (one receiving at least half of the first-place votes),
in other cases (like this one), however, the results can be very different.

5.5 Borda Counts

There are several different versions of the Borda Count, a method often attributed to Jean-
Charles de Borda (1770) [2], though there have been many independent developments. We’ll
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adopt the following version; given a voter’s preferential order, we award n points to the voter’s
first preference, n − 1 points to the voter’s second preference, and so on, until the voter’s
least preferred candidate receives 1 point. The winner is then the candidate who scores the
most points, after adding the points from all voters. The social preference ordering is simply
a descending rank order of points scored.

Typically, any point-based system is classified as a Borda Count, even if there is a different
weighting scheme (some systems are based on having the fewest number of points). For
systems ranking candidates from most points to least, we require that an mth-place vote
score at least as many points as an (m + 1)th-place vote, though typically this inequality
will be made strict to ensure distinction between places. It is important to note that Borda
Counts with different weight schemes are not necessarily equivalent (in fact, if the schemes
are not scalar multiples, there will always exist a set of votes which produces different election
outcomes).

We’ll denote this voting system by bc. Consider the following example election:

Preference Ordering Number of Votes
A � B � C � D 5
D � B � C � A 2
C � B � D � A 1
C � D � B � A 1

Recall that candidates will receive 4 points for a first-place vote, 3 points for a second-
place vote, 2 points for a third-place vote, and 1 point for a last-place vote. Thus, the Borda
Count scores are:

Candidate Score
A 24
B 26
C 22
D 18

Thus, we have that bc(E) = B. Notice that the plurality winner, candidate A does not
win, while a candidate with zero first-place votes, candidate B does win. To see the effects
of a different weighting system, consider one which rewards first-place votes, giving 5 points
for a first-place vote instead of 4:

Candidate Score
A 29
B 24
C 24
D 20

Now, the election winner is given to be bc2(E) = A. As we might expect, the candidate with
the most first-place votes was rewarded with the victory. Notice how even a one-point change
can alter the election structure (the effect is, of course, increased if we increase the number
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of voters). This means we must be very careful in determining a Borda Count weighting
system, since that decision will affect what types of results we value (polarizing candidates,
widely accepted candidates, etc.).

We can also compute the Borda Count social preference order by summing the rows of
the margin of victory matrix. To see why, consider this deconstruction of the Borda Count
score. Since even a last place candidate gets 1 point, each candidate automatically gets n
points, where n is the number of voters. Then for each pairwise victory, the candidate must
be ranked one slot above another candidate on a particular ballot. Thus, the remaining
points are exactly equal to the number of pairwise victories the candidate has. Since there
is a clear bijection between the total number of pairwise victories and the sum of the entries
in a candidate’s row of the margin of victory matrix, we can simply use this value (which is
easier to compute when programming elections).

5.6 Instant Runoff Borda Count

Instant Runoff Borda Count behaves in a slightly different manner than Instant Runoff Vot-
ing. Instead of checking for a majority winner in each round, the process always iterates
until a single candidate remains. In each round, the candidate with the worst (least or most,
depending on the point allocation system) Borda Count score is eliminated, and removed
from the ballots, prompting a recalculation of the scores. This proceeds until a single can-
didate remains, though formulas can be calculated which will indicate a guaranteed winner
given a particular point allocation system.

This method will be denoted by irbc. We’ll use the same preferences as in the previous
example, and the standard Borda Count weighting to conduct an example election. Recall
the initial scores:

Candidate Score
A 24
B 26
C 22
D 18

This means that candidate D is eliminated. We then recalculate the preference orderings
and then calculate the new Borda scores:

Preference Ordering Number of Votes
A � B � C 5
B � C � A 2
C � B � A 2

Now that there are only three candidates in consideration, the point values will be 1, 2, and
3 (worst-to-best).
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Candidate Score
A 19
B 20
C 15

In the second pass, candidate C is eliminated, leading to one final recalculation (which
amounts to a two-person plurality election under the standard weighting):

Preference Ordering Number of Votes
A � B 5
B � A 4

Thus, clearly we have that irbc(E) = A. (For reference, the Borda Count scores are 14 for
candidate A and 13 for candidate B). Interestingly, the candidate with the highest current
score in the initial rounds did not win the election.

5.7 Least Worst Defeat

The Least Worst Defeat method is a margin of victory matrix method. In this method, we
determine the worst defeat of each candidate (the minimum value in a candidates row of
the margin of victory matrix). The candidate with the greatest such value (that is, with
the least severe defeat, or no defeat if the value is zero) is the winner. While the method
can be extended to provide a ranking of candidates (by second-least worst defeat, third-least
worst defeat, etc.), this is typically not done. We’ll denote this method by lwd. Consider
the following example election, as represented by the margin of victory matrix (we’ll label
the rows and columns for each candidate, the letters signifying them are, of course, not part
of the matrix): 

A B C D E F
A 0 −5 −3 1 −7 −5
B 5 0 7 1 −3 5
C 3 −7 0 −5 7 1
D −1 −1 5 0 11 3
E 7 3 −7 −11 0 1
F 5 −5 −1 −3 −1 0


We compile the worst defeat of each candidate (minimum number in the candidate’s row of
the margin of victory matrix):

Candidate Worst Defeat
A −7
B −3
C −7
D −1
E −11
F −5
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Thus, since candidate D has the greatest worst defeat (greatest numerically, least in terms
of severity), we have that lwd(E) = D. Notice that the candidate with the fewest number
of defeats (candidate B) does not necessarily win.

5.8 Instant Runoff Least Worst Defeat

Similar to the Instant Runoff Borda Count, we use a full iterative process to determine the
winner of Instant Runoff Least Worst Defeat. In each round, the candidate with the “worst”
(the minimum number) worst defeat is eliminated, and their row and column is removed
from the margin of victory matrix. The process continues until we are left with a single
candidate, the winner, and a full ranking can be determined by listing the candidates in
reverse order of elimination. We’ll denote this method by irlwd, and use the same starting
matrix as the lwd example for this example election. We’ll show the successive matrices,
with eliminated candidate and worst defeat in boldface:

A B C D E F
A 0 −5 −3 1 −7 −5
B 5 0 7 1 −3 5
C 3 −7 0 −5 7 1
D −1 −1 5 0 11 3
E 7 3 −7 -11 0 1
F 5 −5 −1 −3 −1 0




A B C D F
A 0 −5 −3 1 −5
B 5 0 7 1 5
C 3 -7 0 −5 1
D −1 −1 5 0 3
F 5 −5 −1 −3 0


The next iteration encounters a tie. There are two ways to deal with this, to look at the
second-worst defeat, or to utilize a tiebreaking vote. Later, we’re going to explain the
methodology of a tiebreaking vote, so for now we’ll just use the second-worst defeat.

A B D F
A 0 -5 1 -5
B 5 0 1 5
D −1 −1 0 3
F 5 −5 −3 0




B D F
B 0 1 5
D −1 0 3
F -5 −3 0


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 B D
B 0 1
D -1 0


Thus, we have that candidate B is the winner (irlwd(E) = B).

5.9 Kemeny-Young Method

The Kemeny-Young method is another system based off of the margin of victory matrix.
This method evaluates all possible social preference orderings, and determines the one that
matches the margin of victory matrix based on a scoring procedure. It can be computed
either using the number of votes for a particular candidate in each pairwise matchup, or
using the margins of victory of each pairwise matchup. Since we already have the margin of
victory matrix available, we’ll use the latter formulation.

Given a preference ordering of m candidates, for example B � A � C, there are m(m−1)
2

distinct pairwise matchups that are implied by rationality. In this case, we have that B � A,
A � C, and B � C. The Kemeny-Young method then assigns a score to this social pref-
erence ordering by adding up the values of the margin of victory matrix corresponding to
these pairwise matchups. Consider the following example margin of victory matrix:

A B C
A 0 −11 −3
B 11 0 13
C 3 −13 0


Then, the Kemeny-Young Score for the preference ordering would then be 11+(−3)+13 = 21.
We’ll use this as an example election and calculate the Kemeny-Young scores for all possible
preference orderings (there are 3! = 6 of them):

Preference Ordering Kemeny-Young Score
A � B � C −1
A � C � B −27
B � A � C 21
B � C � A 27
C � A � B −21
C � B � A 1

Thus, we see that the social preference ordering is B � C � A, and thus the election winner
is B.

We also mention, briefly, a practical condition (which we’ll consider further in the next
section). This method requires that we compare the scores of every possible preference or-
dering, and there are m! such orderings in an election with m candidates. This poses a
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computational problem, and while some algorithms have been developed to reduce compu-
tation, no polynomial running time algorithms have been found. In elections with a large
number of candidates, this may be a prohibitive factor.

5.10 Schulze Method

The Schulze Method is another preferential ballot method which utilizes the margin of vic-
tory matrix, in a way. Instead of considering the direct pairwise matchups, we consider a
sort of indirect defeat, based on the concept of a path.

Instead of using the direct margin of victory matrix, we construct a pairwise vote matrix,
in which the entry MAB is equal to the number of votes which have A � B (the quantity
earlier defined as [A,B]. Given a margin of victory matrix and the total number of votes,
it’s easy to compute the pairwise vote matrix, as in the following example (with 99 voters)
and the following margin of victory matrix:

A B C
A 0 17 −23
B −17 0 −31
C 23 31 0


The associated pairwise vote matrix is then:

A B C
A 0 58 38
B 41 0 34
C 61 65 0


Now, given this matrix, we can define a path from candidate A to candidate B as follows.

A path from candidate A to candidate B is a sequence of candidates C(1), ..., C(n) such
that the C(i) are distinct, C(1) = A, C(n) = B, and for all i < n − 1, [C(i), C(i + 1)] >
[C(i+ 1), C(i)] (that is, a chain of wins connecting A to B).

We can then define the strength of a path as the minimum value of all [C(i), C(i+ 1)], that
is, the weakest victory along the path.

The Schulze Method then proceeds in the following manner. Given two candidates, we
define p[A,B] to be the strength of the strongest path from candidate A to candidate B.
Then, we demand that A � B if and only if p[A,B] > p[B,A] (if no path from A to B exists,
we take p[A,B] = 0. Further, we define a candidate C as a potential winner if and only
if p[C,D] ≥ p[D,C] for every other candidate D.

In the vast majority of cases (including if we restrict ourselves to cases in which every
nonzero element of the margin of victory matrix is unique), there will be as single potential
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winner. However, if there are multiple potential winners, we must either use a tiebreaking
vote or a shared victory concept.

Consider the following example election (as represented by a pairwise vote matrix) [3]:


A B C D E

A 0 20 26 30 22
B 25 0 16 33 18
C 19 29 0 17 24
D 15 12 28 0 14
E 23 27 21 31 0


First, let’s look at an example of how to determine a strongest path, in this case p[A,B].

Since [A,B] < [B,A] (20 < 25), we can’t directly pass from candidate A to candidate
B in our path. Similarly, we can’t first pass to E. One possible path is A,C,B. This would
have a strength of 26, since [A,C] < [C,B]. But there is a stronger path; if we proceed
A,D,C,B, the weakest link is [C,B] = 29. Examination of the other possible paths shows
that this is the strongest possible path, so that p[A,B] = 29:

Path Strength Weakest Link
A,C,B 26 [A,C]
A,C,E,B 24 [C,E]

A,C,E,D,B 24 [C,E]
A,D,C,B 29 [C,B]

We then calculate the strength of the path between each pair of candidates, arranging this
information in a matrix: 

A B C D E
A 0 28 28 30 24
B 25 0 28 33 24
C 25 29 0 29 24
D 25 28 28 0 24
E 25 28 28 31 0


Then, we see that candidate E is the only potential winner, since it is the only candidate for
which p[E,X] ≥ p[X,E] for all other candidates X. Thus, E is the election winner. Writing
out the pairwise path strength matchups, we generate the following social preference order-
ing; E � A � C � B � D.

For a very detailed account of the Schulze Method, consult reference [3], the first in five
extensive papers written by Markus Schulze, inventor of this method.
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5.11 Ranked Pairs Method

The Ranked Pairs method (also called Tideman method, since it was developed by Nicolaus
Tideman) [4] uses preferential ballots and the margin of victory matrix to rank pairwise
matchups based on margin of victory (thus taking into account both number of victories,
and strength of victories). It essentially follows a three step process:

• First, determine the margin of victory matrix (i.e. calculate all pairwise matchups). For
the purposes of this exposition, we’ll assume (as is reasonable in large elections) that
the nonzero entries of the margin of victory matrix are unique. Otherwise, tiebreaking
votes may be required.

• Second, rank each pairwise matchup by margin of victory, largest to smallest.

• Finally, determine the preferential ordering by mandating (“locking-in”) each pairwise
matchup (beginning with the largest margin of victory) unless adding a matchup would
create an intransitive cycle in the preference order (for example A � B, B � C, and
C � A).

The process is best understood with an example election. Consider the following margin of
victory matrix: 

A B C D
A 0 17 −7 25
B −17 0 13 5
C 7 −13 0 3
D −25 −5 −3 0


We then rank the various pairwise defeats by magnitude:

Pairwise Result Margin of Victory
A � D 25
A � B 17
B � C 13
C � A 7
B � D 5
C � D 3

We can then begin locking in the results in order (removing the from the ranking as we
go along). We’ll proceed either until a full preference ordering has been determined, or we
encounter a cycle-producing pairwise result:

The first three lines go smoothly; in our preference ordering, we must have that A � D,
A � B, and B � C. Note that the last two results create a chain; by transitivity (rational-
ity), we have that A � B � C. This is a requirement of the Ranked Pairs method. Thus,
the next remaining entry would cause a cycle (A � B � C � A):
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Pairwise Result Margin of Victory
C � A 7
B � D 5
C � D 3

Therefore, we remove this result (disregarding it), and move on to the remaining pairwise
matchups:

Pairwise Result Margin of Victory
C � A 7
B � D 5
C � D 3

The rest is straightforward, since no more cycles occur; we add B � D and C � D. Thus,
the final social preference ordering is A � B � C � D.

5.12 Copeland Method

The Copeland Method is based on a simplified version of the margin of victory matrix called
the win-loss matrix, which is simply the sign of the margin of victory matrix. For example,
given the following margin of victory matrix:

0 5 1 −3
−5 0 3 −5
−1 −3 0 −9
3 5 9 0


The associated win-loss matrix would then be:

0 1 1 −1
−1 0 1 −1
−1 −1 0 −1
1 1 1 0


Given the win-loss matrix, we can define another measure of electoral success, the Copeland
score to be the number of 1’s in a candidate’s row of the win-loss matrix. Conceptually, this
is exactly the number of pairwise contests that the candidate wins. Determining a winner is
simple; the candidate with the highest Copeland score wins. If there is a tie, we must either
use a tiebreaking vote or declare a shared victory (this concept will be developed further later
on). We’ll refer to this method as cp. Consider the win-loss matrix above as an example,
the candidates have the following copeland scores:
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Candidate Copeland Score
A 2
B 1
C 0
D 3

Thus, we have that cp(E) = D. Notice the reasonable outcome; the candidate which beats
all others in pairwise competition was declared the winner. We’ll revisit this concept when
discussing conditions on voting systems. Let’s consider another example win-loss matrix, in
which we have a tie:  0 1 −1

−1 0 1
1 −1 0


Here we see that each candidate has a Copeland score of 1. At this point we would have to
utilize the tiebreaking vote or accept a shared victory among all three candidates.

5.13 Breaking Ties

While ties in the margin of victory matrix are rare (occurring roughly with probability equal
to 1

sqrtn
, n the number of voters) [1], they do cause problems in performing the algorithms re-

quired by several of our voting systems. There is no prescribed course of action, for example,
when two preference orders have exactly equal Kemeny-Young scores, or if several Ranked
Pairs entries are zero. Thus, we’re motivated to develop a tiebreaking procedure to ensure
that all non-diagonal entries in the margin of victory matrix are not only nonzero, but unique.

To do this, we introduce the following tie-breaking vote matrix. Given a small value ε
(for numerical convenience, we use ε = 0.1, Tij = εi − εj. We can see clearly that this will
not change the results of the election (since every entry is significantly less than one-half),
and that it ensures that each entry of the new margin of victory matrix M ′ is unique when
we add M and T .
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6 System Conditions

6.1 Basics

Before we consider the various system conditions used to differentiate the major voting
methods, we need to set forth a few extremely basic criteria that all reasonable voting
methods should satisfy. We consider this concepts to be so vital/basic to the purpose of
voting that they should be a first requirement for all voting systems, before we employ
mathematics and philosophy to make decisions.

6.1.1 Voter and Candidate Symmetry

It is clear that in democratic voting systems, each voter should have equal influence and
each candidate should have an equal chance. Rigorously, we mean that a rearrangement of
the voters or candidates (by name or position) should have no effect on the election. This
prevents any voter from having a vote that is worth more than another voter’s.

We understand that in business situations, it may not be desirable to have equality
in voting, but for the purposes of democratic voting (and this paper), we’ll stick to that
restriction.

6.1.2 Non-Dictatorship

Next, we require that a voting method take into account the votes of all the voters (this is
essentially implied by voter symmetry above). Formally, if there are multiple voters in an
election, we can not have the social preference equal to one voter’s preference in all elections
where that preference is held constant.

As an example of a method which fails both non-dictatorship and voter symmetry, con-
sider the Barry Votes Method. In this method, the vote of Barry Wright, III (that’s
me) is equal to the social preference. No matter the votes of all the other voters, the social
preference does not change (this violates non-dictatorship). Further, if I switch names with
someone else, the value of our votes certainly change, violating voter symmetry.

6.1.3 Surjectivity

When considering voting systems which produce a full ranking of preferences (social prefer-
ence ordering), we require that the voting system f be surjective. This means that for every
preference ordering p on a set of candidates, there exists a set of votes (an election E) such
that f(E) = p. To see that all of the election systems discussed so far exhibit surjectivity,
let E be the election with a single voter, and have that voter vote p.

As an example of a method which fails surjectivity, consider the Barry Wins Method.
In this method, no matter what votes are cast, Barry wins, and the remaining places are
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chosen randomly. Thus, any preference ordering which does not list Barry first can not be
achieved, violating surjectivity.

6.1.4 Resolution

Finally, we require that all voting methods make a choice! This means that for every election
E, f(E) has a value (typically a preference ordering). Note that we do not require this choice
be deterministic. We’ll discuss the question of deterministic systems later in this section.

6.2 Practical Conditions

Our consideration of voting methods must not be completely based on theoretical condi-
tions; in the end, a successful voting system must be carried out and used in real elections,
sometimes with millions of voters. Thought must also be taken to ensure that the input to
the elections (the votes) accurately reflect the true preferences of the voters. The computer
science phrase “garbage in, garbage out” certainly applies here. Thus, we have several prac-
tical considerations which are not vital to successful voting systems, but must be taken into
account when making a selection among different systems.

6.2.1 Polynomial Running time

Especially in dealing with elections involving millions of voters and hundreds of candidates
(for example, a worldwide ranking of the greatest college basketball players of all time), the
running time of the voting system algorithm can be crucial. Often, elections require quick
turnaround of results, and a system which takes three hours to compute results may be
strongly favored over one with slightly better voting properties that takes three weeks to
compile.

It is also important to distinguish the running time based on the number of voters and
the running time based on the number of candidates. In most situations, the number of
voters will be significantly greater than the number of candidates. Thus, a system which is
O(m2) and O(exp(n)) would be significantly worse than a system which is O(exp(m)) and
O(n2).

We’ll omit the proofs (this is not an algorithms paper), but of the methods we’ve dis-
cussed, only the Kemeny-Young Method fails to have polynomial running time. [5]

6.2.2 Margin of Victory Methods

As mentioned above, margin of victory methods can determine the election winner/social
preference ordering solely from the margin of victory matrix. This is often very convenient;
a programmer can work based on having just a single matrix as input, and it also guarantees
quadratic running time in n. While this is certainly not a necessary condition by any account,
it’s something worth noting, if only for the convenience.
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6.2.3 Clear Instruction

Moving to the user/voter aspect of the methods; it is vital to have clear, easy-to-follow
instructions for the voter. In most cases, this is the onus of whoever implements the system,
not who creates the system. The classic example is the 2000 U.S. Presidential Election, a
plurality election, in which many voters were confused by the setup of the ballot, and thus
may have misrepresented their true preferences, calling the legitimacy of the results into
question. The chief concern here is that voters will not correctly input their true preferences,
which would make it impossible to generate a true social preference ordering.

While this is not the case for any of the methods we described (most simply ask for a rank-
ordering of the candidates), we can envision systems which require extremely complicated
inputs from the voter, causing confusion based on the system, regardless of implementation.
For example, a system which asked for a ranking of all possible candidate rankings must be
considered suspect, as we can’t reasonably expect voters to accurately interpret their true
preferences precisely enough to correctly produce such a ranking.

6.2.4 Voter Purpose

Now, the question of voter honesty is broad, and an important topic in voting theory. At
the moment, we only want to consider one aspect of voting systems which impacts voter
honesty. The voter purpose condition requires that any true preference vote be meaningful
to the system, that it establish preferences to be considered and calculated in generating the
social preference.

Notably, the approval method fails this criterion. Consider the following mock election;
a philanthropist is going to give everyone who votes in an election an amount of money. The
choices/candidates are ten dollars, one hundred dollars, and one thousand dollars. Under
the approval voting method, I am supposed to vote for “all candidates which I approve of.”
Disregarding the vagueness of this instruction, I approve of any amount of money, and thus
my true preference would be to approve all. However, this effectively negates my vote, since
I do not differentiate between the candidates. It’s clearly in my best interest to only approve
the thousand dollar option, since I prefer it more.

There is no purpose to approving all the candidates in an election (or none of them)
from a strictly rational voting perspective, and this very well may induce dishonest voting,
something we would like voting systems to avoid.

6.2.5 Transparency

Finally, for a voting system to be successful (and generate high turnout, which improves the
accuracy of a social preference decision), it must be accepted by the electorate as fair. Now,
we’ll see that several of the systems we’ve described thus far are quite good, in terms of the
theoretical conditions which they satisfy. Unfortunately, their mechanism is obfuscated by
complicated mathematics and complex algorithms. This makes it difficult for the average
voter (who does not have expertise in the study of voting systems) to trust these systems.
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This will motivate our consideration of continuous conditions and method agreement testing;
if we have a simple system which agrees with a more complex one in 99.99% of elections, it’s
reasonable to consider preferring the simple method.

6.3 The Majority Condition

A candidate C is a majority winner if more than half of all voters list C as their first
preference (when considering non-preferential ballot systems, we interpret based on the true
preferences of the voters).

A voting system f meets the majority condition if for all elections E which have a ma-
jority winner C, we have that f(E) = C. That is, the system never fails to elect a majority
winner, if one exists. This condition stems from our experience with two-candidate elections,
in which the winner is always the majority winner (and a majority winner always exists).
Note that this condition implies the two-candidate condition which states that an elec-
tion method should give the correct result (majority winner) when run on elections with
only two candidates.

6.3.1 Proofs

We now give proofs that the following methods satisfy the majority criterion; Plurality, In-
stant Runoff, Instant Runoff Borda Count, Least Worst Defeat, Instant Runoff Least Worst
Defeat, Kemeny-Young, Schulze, Ranked Pairs, and Copeland. Some of the proofs are quite
straightforward.

Plurality:

Suppose there exists a candidate C which is a majority winner. This means that C re-
ceives more than n

2
votes. Thus, every other candidate must receive less than n

2
votes. This

implies that candidate C has the most first-place votes, and thus C (the majority winner)
is declared the election winner.

Instant Runoff:

Recall that the Instant Runoff algorithm checks for a majority winner at the beginning
of each stage. Clearly, if there exists a majority winner C, it will be found and selected at
the first stage, making it the election winner.

Instant Runoff Borda Count:

(Note that we are assuming the standard weighting system described in the initial develop-
ment of the Borda Count.)

Suppose that there exists a candidate C which is a majority winner. If C is the only
candidate, then clearly it is selected as the election winner. Otherwise, the Instant Runoff
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Borda Count (IRBC) begins eliminating candidates. We prove that candidate C can not be
eliminated (and thus, must be selected as the election winner).

Because IRBC eliminates the candidate with the lowest Borda Count during each round,
the eliminated candidate can not have a score greater than the average score of all candi-
dates. We begin by calculating this average score. Recall that each voter gives 1 point for
their bottom-ranked candidate, 2 the second-worst candidate, and so on up to n points for
the top-ranked candidate. Thus, the total number of points in an election in ε(m,n) (m
candidates, n voters) is:

BCtotal =
m(m+ 1)

2
× n (6)

And thus the average Borda Count score is given by:

BCaverage =
(m+ 1)n

2
(7)

Now, we compute the minimum possible score of a majority winner. Suppose the majority
winner C has exactly n

2
first-place votes (by definition, C must have more first-place votes

than this). Further, in the worst case, every other vote would place C last, so that C has n
2

first-place votes and n
2

last-place votes. The Borda Count of C is then:

BC(C) = m× n

2
+ 1× n

2
=

(m+ 1)n

2
(8)

Clearly, adding any first-place votes increases the Borda Count, and thusBC(C) > BCaverage,
so that the majority winner can not be eliminated during any stage of the IRBC computa-
tion. Thus, IRBC satisfies the majority condition.

Least Worst Defeat:

Recall that the Least Worst Defeat method selects the candidate with the greatest mini-
mum value in their row of the margin of victory matrix. If a candidate is a majority winner,
it must win all pairwise matchups (if C is a majority winner, then MCA > 0 for all A 6= C.
Thus, the worst defeat for C is no defeat, a value of 0. Since every other candidate has
a defeat (in particular, at the hands of candidate C), C must have the least worst defeat.
Thus, C, the majority winner, must be selected as the election winner.

Instant Runoff Least Worst Defeat:

Similarly, Instant Runoff Least Worst Defeat eliminates the candidate with the overall worst
defeat each round. Since a majority winning candidate has no defeats, it can never be elim-
inated, and thus will be declared the election winner.

Kemeny-Young:

Suppose that the Kemeny-Young method selects a social preference ordering in which the
majority winner M is not selected election winner, for example A � M � B � C. Since M
is a majority winner, it wins all pairwise matchups, in particular the matchup M � A. This
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means that the value associated with A �M is negative when calculating the Kemeny-Young
score. Thus, we have (denoting KY() to be the Kemeny-Young score):

KY (A �M � B � C) < KY (M � A � B � C) (9)

This is a contradiction, thus, M must be selected as the election winner, and Kemeny-Young
satisfies the majority condition.

Schulze:

Although the Schulze method is based on indirect defeats (via the path definition), in order
for a candidate A to have a path to another candidate B, there must be at least one can-
didate which defeats B (for which [X,B] > [B,X]. But, if B is a majority winner, it wins
all pairwise matchups, and thus no candidate can have a path to B. This means that for all
other candidates Y , p[B, Y ] > p[Y,B], which implies that B must be the election winner.

Ranked Pairs:

Recall that the Ranked Pairs method is based on pairwise matchups. Since the major-
ity winner wins all pairwise matchup, no entry in the Ranked Pairs sort will be able to rank
another candidate over the majority winner. This means that the majority winner will be
ranked above all other candidates in creating the social preference ordering, and is thus the
election winner.

Copeland:

Again, any majority winner must win all pairwise contests, implying that it must have
a maximal copeland score of m− 1. Thus, every majority winner must also be the election
winner.

6.3.2 Counterexamples

We now provide counterexamples to show that the following methods fail the majority con-
dition: Approval and Borda Count.

Approval:

Polarizing candidates, which collect many first and last place votes, are vulnerable to the
approval voting method. Recall the example given previously:

True Preferences Candidates Approved Not Approved Number of Votes
A � C � B A,C B 81
B � C � A B,C A 75
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Candidate Total Approvals
A 81
B 75
C 156

Here, the majority winner A is not selected as the election winner. Thus, the approval
method fails the majority condition.

Borda Count:

A similar situation can occur in the Borda Count, where a candidate who gets consistently
high rankings (even if they are not top rankings) can beat a majority winner which also has
many last-place rankings. Consider the example given previously:

Preference Ordering Number of Votes
A � B � C � D 5
D � B � C � A 2
C � B � D � A 1
C � D � B � A 1

Candidate Score
A 24
B 26
C 22
D 18

Thus, candidate B wins out over the majority winner, candidate A. Note how this differs
from the Instant Runoff Borda Count (in which the majority winner A was selected). In the
Borda Count, the winner must have the highest total (and it is possible for a majority winner
to not have the highest total). On the other hand, in the Instant Runoff Borda Count, the
winner must avoid having the lowest total in each round (we proved that a majority winner
can never have the lowest total).

6.4 The Condorcet Condition

We now consider a stricter version of the majority condition. We define a Condorcet win-
ner to be a candidate which beats every other candidate in pairwise matchups. Then, a
voting system meets the Condorcet Condition if for all elections with a Condorcet win-
ner, C, the system selects the Condorcet winner as the election winner.

Notice that every majority winner is also a Condorcet winner. Thus, if a voting system
passes the Condorcet condition, it also passes the majority condition (also, if a voting sys-
tem fails the majority condition, it must fail the Condorcet condition).
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The Condorcet condition is very significant, and the first major hurdle in our considera-
tion of voting systems. It is both transparent and reasonable to suggest that a candidate
which “defeats all comers” should be elected. It is also counterintuitive, in a sense, to elect
a candidate which is not preferred over another candidate (the Condorcet winner). Further,
we’ll see that Condorcet winners occur in a large portion of elections; this means that Con-
dorcet methods agree on this large portion as well. Thus, the Condorcet condition is often
used as a first filter in selecting an appropriate voting method.

6.4.1 Proofs

Now, we’ll give proofs that the following methods satisfy the Condorcet condition; Instant
Runoff Borda Count, Least Worst Defeat, Instant Runoff Least Worst Defeat, Kemeny-
Young, Schulze, Ranked Pairs, Copeland.

Instant Runoff Borda Count:

As with the majority condition, we’ll prove that a Condorcet winner must always have
greater than the average Borda Count score, and thus can not be eliminated during the
Instant Runoff Borda Count process. Recall the average Borda score is given by:

BCaverage =
(m+ 1)n

2
(10)

Now, given a Condorcet winner C, we have that C defeats every other candidate in more
than n

2
votes. This means that C must get more than n

2
×(m−1) Borda Count points, simply

because of the number of candidates ranked below C on various votes. Further, since even
a last-place vote earns 1 point, C (and every candidate) is guaranteed a base of n points.
Together we have that;

BC(C) >
n

2
× (m− 1) + n =

(m+ 1)n

2
= BCaverage (11)

Thus, since the Condorcet winner always has an above average Borda Count, it can never
be eliminated, and is thus the election winner.

Least Worst Defeat:

Again, since a Condorcet winner (like a majority winner) wins all pairwise matchups, and
thus has no defeats. This means it has the maximal minimum value (in its row of the margin
of victory matrix), and is selected election winner.

Instant Runoff Least Worst Defeat:

Similarly, because the Condorcet winner automatically has a least worst defeat of 0, it
can not be eliminated at any stage of Instant Runoff Least Worst Defeat (since every other
candidate has a defeat, and thus a negative least worst defeat). Thus, the Condorcet winner
is always selected as election winner.

32



Kemeny-Young:

The proof is congruent to that of the majority condition. Suppose that the Kemeny-Young
method selects a social preference ordering in which the Condorcet winner C is not selected
election winner. Since C is a Condorcet winner, it wins all pairwise matchups, so there must
exist another ordering with strictly greater Kemeny-Young score. This is a contradiction,
thus, C must be selected as the election winner, and Kemeny-Young satisfies the Condorcet
condition.

Schulze:

As with the majority condition, in order for a candidate A to have a path to another can-
didate B, there must be at least one candidate which defeats B (for which [X,B] > [B,X].
But, if B is a Condorcet winner, it wins all pairwise matchups, and thus no candidate can
have a path to B. This means that for all other candidates Y , p[B, Y ] > p[Y,B], which
implies that B must be the election winner.

Ranked Pairs:

As with the majority criterion, since the Condorcet winner wins all pairwise matchups,
no entry in the Ranked Pairs sort will be able to rank another candidate over the majority
winner. This means that the Condorcet winner will be ranked above all other candidates in
creating the social preference ordering, and is thus the election winner.

Copeland:

As with the majority condition, because a Condorcet winner wins all pairwise matchups,
it has the maximal (and unique) Copeland score of m − 1. Thus, every Condorcet winner
must also be the election winner under the Copeland method.

6.4.2 Counterexamples

We’ll provide counterexamples to show that the following methods fail the Condorcet con-
dition; Plurality, Approval, Instant Runoff, and Borda Count.

Plurality:

While all majority winners are Condorcet winners, not all Condorcet winners are major-
ity winners. In fact, a Condorcet winner can have zero first-place votes, as demonstrated in
this example election:

Preference Ordering Number of Votes
A � B � C � D 34
C � B � D � A 33
D � B � A � C 33
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Now, look at the first place votes and the margin of victory matrix:

Candidate First-Place Votes
A 34
B 0
C 33
D 33


A B C D

A 0 −32 34 −32
B 32 0 34 34
C −34 −34 0 34
D 32 −34 −34 0


Thus, we see that the Condorcet winner B comes in last place in the plurality election (can-
didate A has the most first-place votes, and is thus selected as the plurality election winner).

Approval:

Because the Approval method fails the majority criterion, it must also fail the Condorcet cri-
terion. The counterexample given for the majority criterion is also a counterexample for the
Condorcet criterion (the majority winner is also the Condorcet winner, and is not elected).

Instant Runoff:

As with the plurality method, Instant Runoff voting is highly dependent upon getting first
place votes, which Condorcet winners do not necessarily have a large quantity of. Looking at
the example election given to show that the plurality method fails the Condorcet condition
again: votes, as demonstrated in this example election:

Preference Ordering Number of Votes
A � B � C � D 34
C � B � D � A 33
D � B � A � C 33

Candidate First-Place Votes
A 34
B 0
C 33
D 33

Because candidate B (the Condorcet winner) has zero first-place votes, it is eliminated in
the first pass (and is thus not selected as the election winner).

Borda Count:
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Because the Borda Count fails the majority criterion, it must also fail the Condorcet crite-
rion. The counterexample given for the majority criterion is also a counterexample for the
Condorcet criterion (the majority winner is also the Condorcet winner, and is not elected).

6.5 The Copeland Condition

We now consider one further extension of both the majority and Condorcet conditions, the
Copeland condition. Recall that the Copeland score of a candidate is equal to the number
of pairwise matchups it wins (also, the number of 1 in the candidate’s row of the win-loss
matrix, or the number of positive values in the candidate’s row of the margin of victory
matrix). A voting system meets the Copeland condition if it selects a candidate with the
maximal Copeland score in all elections.

If there is a unique candidate with the maximal Copeland score, the method must select
that candidate (the Copeland winner) as the election winner. If multiple candidates tie for
the maximal Copeland score (as in the forthcoming example) the method need only select
one of them (that is, it does not have to agree with the tiebreaking procedure of the Copeland
method, or accept a shared victory).

The following example shows that it is indeed possible (though we’ll see later on, rare)
to have a tie for the maximal Copeland score:

Preference Ordering Voters
A � B � C 9
B � C � A 9
C � A � B 9

This yields the following margin of victory matrix and win-loss matrix:
A B C

A 0 9 −9
B −9 0 9
C 9 −9 0




A B C
A 0 1 −1
B −1 0 1
C 1 −1 0


Finally, we note that satisfying the Copeland condition implies satisfying the Condorcet
condition (the special case in which there is a candidate with maximal Copeland score),
which in turn implies the majority condition (the special case of a Condorcet winner which
is also a majority winner). Thus we have the following:

Copeland⇒ Condorcet⇒Majority (12)
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!Majority ⇒!Condorcet⇒!Copeland (13)

6.5.1 Proofs

We now give proofs that the following methods satisfy the Copeland condition; Copeland.

Copeland:

By definition, the Copeland method selects a candidate with the maximal Copeland score,
and thus necessarily satisfies the Copeland condition (as it should). In fact, it is the only
method studied here which satisfies the Copeland condition.

6.5.2 Counterexamples

We now provide proofs/counterexamples that the following methods fail the Copeland condi-
tion; Plurality, Approval, Instant Runoff, Borda Count, Instant Runoff Borda Count, Least
Worst Defeat, Instant Runoff Least Worst Defeat, Kemeny-Young, Schulze, and Ranked
Pairs.

Plurality:

Because the Plurality method fails the Condorcet condition, it must fail the Copeland con-
dition. The counterexample given for the Condorcet condition is also a counterexample for
the Copeland condition (the Condorcet winner also has the highest Copeland score).

Approval:

Because the Approval method fails the Condorcet condition, it must fail the Copeland con-
dition. The counterexample given for the Condorcet condition is also a counterexample for
the Copeland condition (the Condorcet winner also has the highest Copeland score).

Instant Runoff:

Because the Instant Runoff method fails the Condorcet condition, it must fail the Copeland
condition. The counterexample given for the Condorcet condition is also a counterexample
for the Copeland condition (the Condorcet winner also has the highest Copeland score).

Borda Count:

Because the Borda Count fails the Condorcet condition, it must fail the Copeland con-
dition. The counterexample given for the Condorcet condition is also a counterexample for
the Copeland condition (the Condorcet winner also has the highest Copeland score).

Instant Runoff Borda Count:
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Now, Instant Runoff Borda Count does satisfy the Condorcet condition, so we must look
to elections without a Condorcet winner to find a counterexample. Consider the following
election, represented by the votes on four candidates:

Preference Ordering Number of Votes
B � D � A � C 12
D � A � C � B 9
A � C � B � D 7
A � B � D � C 2

The margin of victory matrix and Copeland scores are thus:
A B C D

A 0 6 30 −12
B −6 0 −2 12
C −30 2 0 −16
D 12 −12 16 0


Candidate Candidates Defeated Copeland Score

A B,C 2
B D 1
C B 1
D A,C 2

Now, we compute the current Borda scores to determine the first eliminated candidate:

Candidate Borda Count
A 87
B 77
C 53
D 83

It’s significant that candidate C is eliminated in the first pass, since candidate A beats
C on every vote. This means as we calculate the second round of preferences and then
scores, candidate A will lose more points than the other candidates (enough, in fact, to
cause elimination):

Preference Ordering Number of Votes
B � D � A 12
D � A � B 9
A � B � D 9

Candidate Borda Count
A 57
B 63
D 60
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This reduces us to two candidates, B and D. Even though B only has one pairwise victory,
it is the crucial one; B defeats D and thus wins the election (Borda score 51− 39). Thus, a
candidate without the highest Copeland score is selected as the election winner, and Instant
Runoff Borda Count fails the Copeland condition.

Least Worst Defeat:

Because Least Worst Defeat satisfies the Condorcet condition, it will not fail the Copeland
condition whenever a Condorcet winner is present. We must then consider a situation in
which there is not a Condorcet winner. Consider the following margin of victory matrix:

A B C D E
A 0 1 3 1 −7
B −1 0 −5 −3 3
C −3 5 0 1 −3
D −1 3 −1 0 5
E 7 −3 3 −5 0


We then have the following Copeland scores and Least Worst Defeats:

Candidate Copeland Score
A 3
B 1
C 2
D 2
E 2

Candidate Least Worst Defeat
A −7
B −5
C −3
D −1
E −3

Thus, we see that the candidate with the highest Copeland score (candidate A) loses in Least
Worst Defeat; although it only has one defeat, that defeat is quite severe. Therefore, Least
Worst Defeat fails the Copeland condition.

Instant Runoff Least Worst Defeat:

In fact, the same example used for Least Worst Defeat is a counterexample for Instant
Runoff Least Worst Defeat (since candidate A’s only defeat is the worst defeat among all
candidates, and is thus eliminated in the first pass. Therefore, Instant Runoff Least Worst
Defeat also fails the Copeland condition.

Schulze:
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While the Schulze method is a Condorcet method, it can fail to elect a candidate with the
highest Copeland score if its path strengths are comparatively weak. Consider the following
example election [3], given as a pairwise vote matrix:


A B C D E

A 0 18 11 21 21
B 12 0 14 17 19
C 19 16 0 10 10
D 9 13 20 0 30
E 9 11 20 0 0


The Copeland scores are then as follows:

Candidate Candidates Defeated Copeland Score
A B,D,E 3
B D,E 2
C A,B 2
D C,E 2
E C 1

Now, we summarize the path strengths in the form of a matrix:


A B C D E

A 0 18 20 21 21
B 19 0 19 19 19
C 19 18 0 19 19
D 19 18 20 0 30
E 19 18 20 19 0


Thus, we see that candidate B is the only potential winner, since p[B,X] > p[X,B] for
all other candidates X. Thus B (not holding a maximal Copeland score) is selected as the
election winner, and the Schulze method fails the Copeland condition.

Kemeny-Young:

Again, we must look beyond elections with Condorcet winners in order to find a Copeland
counterexample for the Kemeny-Young method. Because the Kemeny-Young method de-
velops scores based on full preference orderings, when a Condorcet winner is present, the
preference ordering with the maximal score must select it as election winner (otherwise, a
simple switch would find an ordering with a higher score). In elections without a Condorcet
winner, however, some pairwise matchup implied by the preference ordering must be false.
By making certain pairs more damaging to the score, we can find elections which elect a win-
ner without maximal Copeland score. Consider the follow example, as a margin of victory
matrix:

39




A B C D

A 0 1 1 −11
B −1 0 1 −11
C −1 −1 0 25
D 11 11 −25 0


First, we check the Copeland scores of each candidate:

Candidate Candidates Defeated Copeland Score
A B,C 2
B C 1
C D 1
D A,B 2

Notice that the lone victory of candidate C is of the greatest magnitude (in fact, equal to
the magnitude of the other five pairwise victories combined). This makes it weight very
strongly in the Kemeny-Young scoring process. Further, D then beats candidate A and
B very strongly as well (in comparison to the victories of A and B. This makes it very
difficult to place D behind A or B. Since it was already very difficult to place C behind D,
transitivity moves C to first place, despite its low Copeland score. Now that we’ve explained
the result intuitively, let’s back it up with the raw Kemeny-Young scores:

Preference Ordering Kemeny-Young Score
A � B � C � D 6
A � B � D � C −44
A � C � B � D 4
A � C � D � B 26
A � D � B � C −22
A � D � C � B −24
B � A � C � D 4
B � A � D � C −46
B � C � A � D 2
B � C � D � A 24
B � D � A � C −24
B � D � C � A −26
C � A � B � D 2
C � A � D � B 24
C � B � A � D 0
C � B � D � A 22
C � D � A � B 46
C � D � B � A 44
D � A � B � C 0
D � A � C � B −2
D � B � A � C −2
D � B � C � A −4
D � C � A � B −4
D � C � B � A −6
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Thus, we see that the winning social preference ordering is C � D � A � B, which elects C
as the winner, proving that the Kemeny-Young method fails the Copeland condition.

Ranked Pairs:

Although Ranked Pairs is a Condorcet method, it can fail to elect a candidate with the
highest Copeland score if its victories are of comparatively small magnitude. Consider the
following example election among five candidates, given as a margin of victory matrix:


A B C D E

A 0 −13 −3 25 7
B 13 0 19 −21 11
C 3 −19 0 −1 9
D −25 21 1 0 5
E −7 −11 −9 −5 0


Now, let’s summarize the candidates defeated and the Copeland scores:

Candidate Candidates Defeated Copeland Score
A D,E 2
B A,C,E 3
C A,E 2
D B,C,E 3
E 0

Now, we rank the pairwise matchups by magnitude to apply the Ranked Pairs method. We
put matchups that cause an intransitive cycle in boldface, and build the preference ordering
as we work down the list;

Pairwise Matchup Magnitude Current Preference Ordering
A � D 25 A � D
D � B 21 A � D � B
B � C 19 A � D � B � C
B � A 13 A � D � B � C
B � E 11 A � D � B � C,B � E
C � E 9 A � D � B � C � E
A � E 7 A � D � B � C � E
D � E 5 A � D � B � C � E
C � A 3 A � D � B � C � E
D � C 1 A � D � B � C � E

Thus, we have that the final social preference ordering is A � D � B � C � E, which
makes candidate A the election winner, but a candidate without the highest Copeland score
in the election. Thus, Ranked Pairs fails the Copeland condition.
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6.6 Monotonicity

The concept of monotonicity is straightforward, and it’s justification is intuitive. In simple
terms, we demand that increasing a candidates position on a ballot not decrease their posi-
tion in the resultant social preference ordering. Changing our vote in way which signifies a
stronger preference for candidate A shouldn’t decrease the chances of A winning the election,
or hurt the final position of A in the social preference ordering. More formally;

A voting method f satisfies the monotonicity condition if for any election E, for all
candidates C, increasing the position of C on any ballot in E (thus creating a new election
E) does not cause the position of C in f(E) to worsen in f(E).

I can not find a good justification to allow non-monotonic voting systems, as this would
cause discord among the votership. The voters should not have to consider the mathematics
of the system in expressing their preferences; this is likely to cause a misrepresentation of
true preferences, whether intentional or unintentional.

6.6.1 Proofs

We now provide proofs that the following methods satisfy the monotonocity condition; Plu-
rality, Approval, Borda Count, Least Worst Defeat, Kemeny-Young, Schulze, Ranked Pairs,
and Copeland. Many of the proofs are relatively straightforward.

Plurality:

The plurality position is only dependent on the number of first-place votes a candidate
receives. Given a candidate A, increasing the position of A on some ballots can not decrease
the total number of first-place votes A gets, nor can it increase the number of first-place votes
any other candidate X gets. Therefore, the social preference ordering position of candidate
can not decrease (since no other candidate can increase their total number of first-place
votes), and the Plurality method satisfies the monotonicity condition.

Approval:

Similarly, the approval vote depends only on the number of ballots on which a candidate
appears above the approval line. Increasing the position of a candidate A on some ballots can
not decrease the number of approvals A receives, nor can it increase the number of approvals
any other candidate X earns. Thus, A’s position in the social preference ordering can not
decrease, and the approval method satisfies the monotonicity condition.

Borda Count:

Consider a candidate A with some Borda Count score. Increasing the position of A on
any ballot strictly increases the Borda Count score of A, and strictly decreases the Borda
Count score of some other candidate X. Therefore, A can not be passed by any other can-
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didate, and its position in the social preference ordering can not decrease, so that the Borda
Count satisfies the monotonicity condition.

Least Worst Defeat:

Again, consider a candidate A. Increasing its position on any number of ballots can not
increase its pairwise defeat with any other candidate X, and further, it strictly increases the
the pairwise defeat corresponding to MAX for some candidate X. Therefore, the worst defeat
of A can not get worse, and the worst defeats of all other candidates X can not improve.
This implies that A’s position in the social preference ordering can not decrease, and thus
Least Worst Defeat satisfies the monotonicity condition.

Kemeny-Young:

Recall that the Kemeny-Young method ranks all possible social preference orderings by
adding up the values of the margin of victory matrix corresponding to the pairwise defeats
implied by the social ordering. Suppose we have a candidate A, and the social preference
ordering with the highest Kemeny-Young score is;

X1 � X2 � ...Xj � A � Y1 � Y2 � ... � Yk (14)

Now, if we simply increase the position of A on some set of ballots (without rearranging any
of the other candidates with respect to each other), only margin of victory matrix elements
of the formMAZ can change. The values which do not involve candidate A are left unchanged.

Because the above preference order has the maximal Kemeny-Young score, it has a higher
Kemeny-Young score than any ordering which permutes the set (Xi, Yl), leaving A fixed.
Representing the contribution of only the margin of victory matrix terms excluding candi-
date A as K, we can write the Kemeny-Young score of the social preference ordering as:

K +

j∑
i=1

MXiA +
k∑

l=0

MAYl
(15)

After increasing the position of A on some ballots, the values in MXiA are left unchanged or
decrease, while the values in MAYi

are left unchanged or increase. Because K is unchanged,
and increasing values of MAYi

only reinforces A being ranked above all Yi in the preference
ordering, we must only consider the change in values of MXiA.

If these values decrease, the only improvement we can make is to replace them with val-
ues MAXi

, which actually implies an improvement in A’s position in the preference ordering.
Thus, the Kemeny-Young method satisfies the monotonicity condition.

Schulze:

A full proof that the Schulze method is monotonic is presented in [1], Markus Schulze’s
recent account of the Schulze Method. The proof requires a different notationa and formal-
ism to frame the method than that developed here. Thus, we give only a sketch of the proof,
and refer the reader to Schulze’s paper for a more complete treatment.
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Using the path heuristic of the Schulze method, we must only consider two possibilities;
that our target candidate A is already a potential winner (p[A,X] ≥ p[X,A] for all other
candidates X, or not. If not, the proof is trivial; a candidate can only improve from not
being a potential winner. Now, if A is a potential winner, and we increase the position of
A on ballots, we must show both that A remains a potential winner and that the number
of potential winners does not increase (covering the interpretation in which the potential
winners have an equal, random chance of being selected election winner).

Again, recall that the Schulze method is based on the strength of paths between two candi-
dates (defined as the maximal weakest defeat among all paths between the two candidates).
Suppose that we increase the position of candidate A, a potential winner, on some set of
ballots. The pairwise defeats [A,X] can not decrease. This implies that the weakest defeat
along any path beginning at candidate A can not decrease, and the strengths of paths p[A,X]
all can not decrease.

Further, since the candidate A was moved up on ballots, without changing the relative po-
sition of any other candidates, the strengths of paths p[X,A] can not increase. This means
that any candidate who was not previously a potential winner can not become a potential
winner after the vote change. Thus, the Schulze method is indeed monotonic.

Ranked Pairs:

Recall that the Ranked Pairs method operates by ranking the pairwise victories in descend-
ing order of magnitude. It then locks in each successive pairwise comparison, unless there
is a conflict with an already locked pairwise matchup. Suppose we have a candidate A, and
we increase the position of A of some set of ballots. This means that the magnitude of any
pairwise victories of A can not decrease, and the magnitude of any pairwise losses can not
increase. This means no pairwise defeat of A can rise on the list, and no pairwise victory of
A can fall on the list. Therefore, candidate A can not fall on the preference ordering, which
means that Ranked Pairs satisfies the monotonicity condition.

Copeland:

Recall that the Copeland method only depends on the number of pairwise matchups each
candidate wins. Suppose we take a candidate A and increase its position on some set of
ballots. This can not decrease the number of pairwise matchups it wins, and further, it
can not increase the number of pairwise matchups any other candidate X wins. Therefore,
the position of A in the social preference ordering can not decrease, and thus the Copeland
method is monotonic.

6.6.2 Counterexamples

We now provide counterexamples to show that the following methods fail the monotonicity
condition; Instant Runoff, Instant Runoff Borda Count, and Instant Runoff Least Worst De-
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feat. Note that all methods which fail this condition eliminate candidates in succession, and
the dependence on the order of elimination will cause them to fail the monotonicity condition.

Instant Runoff Voting:

As mentioned above, the order of elimination of candidates is important in instant runoff
type voting systems. Increasing the position of a candidate on several ballots can change
the order in which other candidates are eliminated, and this can effect the elimination of
the assisted candidate. Consider the following example election, looking at the preference
orderings and first-place votes:

Preference Ordering Number of Votes
A � B � C 10
B � A � C 9
C � A � B 5
C � B � A 7

Candidate First-Place Votes
A 10
B 9
C 12

We see that candidate B is eliminated first, leaving 19 votes for A and 12 votes for C, making
A the election winner (the social preference ordering is A � C � B). Consider what happens
if all of the voters who initially voted (C � A � B) change their votes to A � C � B, thus
improving their preference of candidate A;

Preference Ordering Number of Votes
A � B � C 10
A � C � B 5
B � A � C 9
C � A � B 0
C � B � A 7

Candidate First-Place Votes
A 15
B 9
C 7

The changed votes cause candidate C to be eliminated first, setting up a head-to-head com-
petition between A and B, which A loses! Thus, candidate A goes from first to second in
the social preference ordering after receiving additional support, violating the monotonicity
condition.

Instant Runoff Borda Count:
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We follow a similar line of thought in constructing a counterexample for the Instant Runoff
Borda Count. We begin with a set of preference orderings which setup a favorable second
round head-to-head matchup for our target candidate, and then disrupt this matchup by
increasing the votes of the target candidate. Consider the following set of preferences and
the associated Borda Count scores:

Preference Ordering Number of Votes
A � C � B 9
B � A � C 1
B � C � A 6
C � B � A 3

Candidate Borda Count
A 38
B 36
C 40

The elimination of candidate B then leads to a head-to-head matchup between A and C,
which A wins (10 votes to 9), producing a social preference ordering of A � C � B. Now,
suppose that all those who voted B � C � A change their votes to B � A � C, increasing
their opinion of candidate A;

Preference Ordering Number of Votes
A � C � B 9
B � A � C 7
B � C � A 0
C � B � A 3

Candidate Borda Count
A 44
B 36
C 34

This time, candidate C is eliminated, instigating a head-to-head matchup between A and B,
which A loses (again 10 votes to 9), producing a social preference ordering of B � A � C.
Thus, Instant Runoff Borda Count also fails the monotonicity condition.

Instant Runoff Least Worst Defeat:

Finally, we consider Instant Runoff Least Worst Defeat, which functions in a similar way
to the previous two counterexamples. Consider the following margin of victory matrix and
worst defeats:
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
A B C

A 0 6 −5
B −6 0 5
C 5 −5 0


Candidate Worst Defeat

A −5
B -6
C −5

Thus, candidate B is eliminated, making candidate C the election winner (as MCA = 5).
Now, consider the following modified margin of victory matrix, in which C wins more pairwise
matchups against A (signifying an swapping of A and C on ballots which ranked A above
C); 

A B C
A 0 6 -7
B −6 0 5
C 7 −5 0


Candidate Worst Defeat

A -7
B −6
C −5

The changed ballots cause candidate A to be eliminated first, setting up a head-to-head
matchup between B and C, which B wins (MBC = 5), causing a drop in C’s position in the
preference order, violating monotonicity.

6.7 Clone Invariance

A set of candidates Ci are clones if all voters rank them equivalently compared to all other
candidates. This means that for every voter, the preference ordering must not rank any
other candidate between two members of Ci. For example, the preference ordering

A � D � C2 � C4 � C1 � C3 � B (16)

treats the Ci as clones, while the preference ordering

C3 � C4 � A � C1 � C2 � D � B (17)

does not treat the Ci as clones. If all voters treat a set of candidates Ci as clones, then they
are, in fact, clones.

Clones are significant from a practical and political perspective. Suppose that the results of

47



a voting system could be altered by introducing clones of a particular candidate (politically,
this might mean introducing candidates with very similar platforms, for example). Formally,
a voting method satisfies the clone invariance condition if a candidate C clones itself to
a set Ci, then the chance of C winning the election is equal to the chance of any of the Ci

winning the election.

This is important, as if cloning candidates provided some advantage, politicians would ac-
tively seek clones and have them run, creating insincere slates of candidates (which surely
disrupts the voters’ abilities to vote their true preferences amongst the legitimate candi-
dates). On the other hand, if cloning candidates provides a disadvantage, then candidate
who take common (or reasonable, or productive) stances could be unfairly penalized. If both
can occur in different situations, we have a mess of confusion.

Before we consider which methods satisfy this condition, we must distinguish between two
types of clones. We define a set of candidates Ci to be internal clones if the margin of vic-
tory matrix amongst the Ci is the zero matrix. This means that, with respect to each other,
the voters have no preference on the clones. If then, the clones would tie as the election
winner (for example, if they all tie for the highest Copeland score), we can imagine one of
them is selected at random as the winner. Any set of clones which are not internal clones will
be called external clones. We then consider two types of clone invariance; clone invariance
is defined as above, with no restrictions on the clones. Internal clone invariance will,
expectedly, consider only internal clones. Obviously, clone invariance implies internal clone
invariance (which can thus be considered a weaker form of clone invariance).

6.7.1 Proofs

We now provide proofs that the following methods satisfy clone invariance; Approval, In-
stant Runoff, Instant Runoff Least Worst Defeat, Schulze, and Ranked Pairs. We also
provide proofs that the following methods satisfy internal clone invariance (but not general
clone invariance); Least Worst Defeat

Approval:

Suppose we have an election in which voters provide approval lines. On any particular
ballot, if a candidate C is approved, then if C is replaced by a set of clones Ci, all of the
clones must be approved. Similarly, if C is not approved, then none of the clones can be
approved. This means that the approval scores of each of the clones is equal to the original
approval score of C. Of course, the approval scores of all the other candidates are left un-
changed. Therefore, the clones (collectively) will occupy the same spot in the approval social
preference ordering as did the original candidate C. This means that if C was the approval
winner, one of the clones will be, and if not, none of the clones can be. Thus, the approval
method satisfies clone invariance (and therefore satisfies internal clone invariance).

Instant Runoff:
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In the process of instant runoff voting, the candidate with the fewest number of first place
votes is eliminated during each round. When a candidate is eliminated, its votes are redis-
tributed to the next candidate on the ballot.

First, we note that while, as in the plurality case, if a candidate C is replaced by a set
of clones Ci, the first-place votes of C are split amongst the clones. This may indeed cause
some of the clones to be eliminated earlier than C was in the original election. However,
because the Ci are clones, as long as the eliminated candidate is not the last member of
the set, all of the first-place votes are redistributed to other clones. This implies two things;
when only a single clone remains, it will have all of the first place votes the original candidate
C did at that point, and no other candidate can gain first-place votes from the clones until
all of them are eliminated.

These means that we can consider the election involving clones in the following way; each
round ends when a non-clone is eliminated, or when the last clone is eliminated. By the
above observations, this election must proceed in the same order as the original instant
runoff election. Thus, the instant runoff method satisfies clone invariance (and therefore
satisfies internal clone invariance).

Least Worst Defeat:

Suppose we have a candidate C replaced by a set of internal clones, |{C1, ..., Ck}. Because
the clones are internal, the Ci block of the margin of victory matrix is the k by k zero matrix.
Further, for every other candidate X, the margin of victory matrix entry MXCi

= MXC for
all i. The implication of this is that the worst defeat of all candidates remains unchanged
(though the frequency of it may be repeated). Further, the worst defeat of all of the clones
is equal to the worst defeat of the original candidate C. Thus, Least Worst Defeat satisfies
internal clone invariance.

Instant Runoff Least Worst Defeat:

Just as with Instant Runoff Voting, the introduction of clones does not change the value
of the elimination condition for any of the candidates.

Suppose we have an election with some candidate C replaced by an arbitrary set of clones
Ci. Now, if a candidate X had a defeat of MXC against C, then for each Ci it has the same
defeat MXCi

= MXC . Thus, the introduction of clones can not alter the worst defeat of any
candidate. Further, if a clone is eliminated, the worst defeats of a non-clone candidate do
not change unless that clone was the last clone, which is equivalent to the original candidate
being eliminated.

Further, if the clones are not internal clones, then the worst defeat of C is greater than
or equal to the worst defeat for all Ci, as the internal defeats could be worse than the origi-
nal worst defeat of C (we’ll see that this causes standard Least Worst Defeat to fail general
clone invariance, but not internal clone invariance). However, once a single clone is left, it’s
worst defeat must be equal to the worst defeat of the original candidate C. This, combined
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with the fact that the worst defeats of all other candidates remains constant, implies that
the last clone eliminated will be eliminated in the position that the original candidate C
was (with respect to the non-clone candidates). Thus, Instant Runoff Least Worst Defeat
satisfies clone invariance (and therefore satisfies internal clone invariance).

Schulze:

Again, for a full proof of clone invariance, we refer the reader to [1], Markus Schulze’s
exposition on the Schulze method, which establishes a more intricate formalism for studying
the Schulze method. We give a sketch of the proof here.

Suppose we have a candidate A replaced by a set of clones Ai. If the candidate A was
not a potential winner before, then none of the clones can be potential winners (as there
must exist a candidate X such that p[Ai, X] < p[X,Ai]. If A was a potential winner, we
show that at least one of the Ai must be a potential winner.

Because the candidates are clones, since A is a potential winner, each Ai satisfies p[Ai, X] ≥
p[X,Ai] for all X not in the set of clones. Further, we can consider the Schulze method
as applied to the set of clones. By definition, there must be at least one potential win-
ner. Therefore, at least one clone must be an overall potential winner, since it satisfies
p[Ai, X] ≥ p[X,Ai] for all X not equal to Ai. Thus, the Schulze method is indeed clone
invariant (and thus internal clone invariant).

Ranked Pairs:

Suppose we have a candidate C which is replaced by an arbitrary set of clones Ci. First,
the pairwise defeats of other candidates against C must be equal to their pairwise defeats
against each of the Ci. This means that where a pairwise matchup (such as C � X or
X � C) would be listed in the ranked pairs count, we simultaneously include either Ci � X
or X � Ci for all i.

Our other concern is the relationships between the Ci themselves. Consider the results
of ranked pairs run on the Ci themselves. Because each of the Ci behave identically with
respect to all other candidates, the results of the original ranked pairs election and of the
Ci election are independent. Thus, the victor in the Ci election will be the highest ranked
clone, since no other candidate can selectively negate the ranked pairs validity of any clone
candidate.

This means that the entire set of clone candidates collectively finish in the same position
that the original candidate C did, and thus, Ranked Pairs satisfies clone invariance (and also
internal clone invariance).
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6.7.2 Counterexamples

We now provide counterexamples that the following voting methods fail all clone invariance;
Plurality, Borda Count, Instant Runoff Borda Count, Kemeny-Young, Copeland. We also
provide counterexamples to show that the following methods fail clone invariance (though
they satisfy internal clone invariance); Least Worst Defeat. Recall that if a counterexample
is found using internal clones, this proves that the method fails all clone invariance.

Plurality:

When candidates generate clones, the number of first-place votes the candidate originally
received may be split amongst the clones, causing a decrease in plurality score. Consider the
following election, given the preference orderings and the first-place votes:

Preference Order Number of Votes
A � B � C 15
B � A � C 9
C � B � A 6

Candidate First-Place Votes
A 15
B 9
C 6

Clearly, candidate A is elected the plurality winner. Suppose, now, that candidate A is
replaced by the set of internal clones {A1, A2, A3}. The votes then stand as follows:

Preference Order Number of Votes
A1 � A2 � A3 � B � C 5
A2 � A3 � A1 � B � C 5
A3 � A1 � A2 � B � C 5
B � A1 � A2 � A3 � C 3
B � A2 � A3 � A1 � C 3
B � A3 � A1 � A2 � C 3
C � B � A1 � A2 � A3 2
C � B � A2 � A3 � A1 2
C � B � A3 � A1 � A2 2

Candidate First-Place Votes
A1 5
A2 5
A3 5
B 9
C 6
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Because the clones Ai have split their first-place votes three ways, candidate B now has
the most first-place votes, and wins the plurality election. Thus, the plurality method fails
internal clone invariance, and therefore fails clone invariance.

Borda Count:

Constructing a counterexample involving external clones is relatively straightforward for
the Borda Count; consider the following example;

Preference Ordering Number of Votes
A � B � C 10
B � A � C 6

Candidate Borda Count
A 42
B 38
C 16

And thus, we see that candidate A wins the election. However, if B introduces a clone,
which it beats on all ballots (perhaps by notifying supporters and instructing them how to
vote), B can take control of the election;

Preference Ordering Number of Votes
A � B1 � B2 � C 10
B1 � B2 � A � C 6

Candidate Borda Count
A 52
B1 54
B2 36
C 16

By leveraging the patsy clone, B1 now wins the election, violating clone invariance.

However, it is not as straightforward to find a counterexample involving internal clones,
since they can not claim as many defeats over their own clones. It helps, for our analysis, to
note that a candidate’s Borda Count is equal to the number of voters (since even last place
scores one point) plus the number of candidates defeated (summed over all ballots). We’ll
consider the change in the number of candidates defeated following the introduction of clones.

Suppose that in an initial election with n voters, candidate A has a higher Borda Count
than candidate B. Candidate B then tries to control the election by introducing internal
clones, so that B is replaced by {B1, ..., Bk}. By the required symmetry present with internal

clones, each clone gains n(k−1)
2

defeats, and thus adds this many Borda Count points. Now,
suppose that candidate A defeats B on x ballots (note that x > n

m
, where m is the number
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of candidates, since A receives a higher total Borda score than B). Then, candidate A gains
x(k − 1) defeats, and adds this many Borda Count points.

Now, for a reversal in preference ordering to occur (that is, for all of the Bi, which have
the same score, to overtake candidate A), we then require

n(k − 1)

2
> x(k − 1) + (BC(A)−BC(B)) (18)

where BC(A) and BC(B) are the old Borda scores of A and B. Solving for x, we then have
the following inequality;

n

m
< x <

n

2
− BC(A)−BC(B)

k − 1
(19)

But further, as the difference between BC(A) and BC(B) increases, so to must the lower
bound on x (as the n

m
gives the smallest possible victory). Thus, increasing the initial victory

of A constricts the inequality on both ends, severely decreasing the number of available
counterexamples. We now provide such a counterexample;

Preference Order Number of Votes
A � C � B 8
B � A � C 14

We see that m = 3 and n = 22. Rounding to integers, we see that;

8 ≤ x < 11− BC(A)−BC(B)

k − 1
(20)

Thus, if we use a set of two clones, the difference in initial Borda Scores must be less than
or equal to two;

Candidate Borda Count
A 52
B 50
C 30

We see that candidate A wins, and by exactly two points. Thus, introducing a set of internal
clones should cause a reversal of A and B in the social preference ordering;

Preference Order Number of Votes
A � C � B1 � B2 4
A � C � B2 � B1 4
B1 � B2 � A � C 7
B2 � B1 � A � C 7

Candidate Borda Count
A 60
B1 61
B2 61
C 38
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As expected, both clone candidates tie for the highest Borda Score, and thus one will be
selected as the election winner. This shows that the Borda Count indeed fails internal clone
invariance.

Instant Runoff Borda Count:

Unlike Instant Runoff voting, in which first place place votes could not transfer until all
clones were eliminated, in Instant Runoff Borda Count, the presence of clones can change
the order in which candidates are eliminated. Of course, this can cause a change in the over-
all results. Recall that the Borda Count is equivalent to summing the rows of the margin of
victory matrix. Thus, consider the following margin of victory matrix and the sum of the
rows; 

A B C
A 0 2 −3
B −2 0 6
C 3 −6 0


Candidate Row Total

A −1
B 4
C −3

Thus, candidate C is eliminated, setting up a head-to-head matchup between A and B,
which candidate A wins, making A the election winner. Now, suppose A is replaced by a set
of four internal clones Ai; 

A1 A2 A3 A4 B C
A1 0 0 0 0 2 −3
A2 0 0 0 0 2 −3
A3 0 0 0 0 2 −3
A4 0 0 0 0 2 −3
B −2 −2 −2 −2 0 6
C 3 3 3 3 −6 0


Candidate Row Total

A1 −1
A2 −1
A3 −1
A4 −1
B −2
C 6

By cloning the candidate that C originally defeated, and B originally lost to, we are able
to eliminate B in the first round. This sets up a situation in which C is the Condorcet
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winner of the remaining candidates, and thus C is the election winner, rather than one of
the clones. Thus, Instant Runoff Borda Count fails the internal clone invariance condition,
and therefore clone invariance in general.

Least Worst Defeat:

While Least Worst Defeat does satisfy internal clone invariance, it does not satisfy clone
invariance in general. While internal clones have a zero margin of victory matrix, this is not
true for clones in general. Consider the following election, as a margin of victory matrix;

A B C
A 0 5 7
B −5 0 3
C −7 −3 0


Clearly, since A is a Condorcet winner, it has no defeats, and thus is the Least Worst Defeat
winner. Suppose now that A is replaced by a set of clones, each of which claims one victory
and one defeat over the other clones:

A1 A2 A3 B C
A1 0 11 −17 5 7
A2 −11 0 13 5 7
A3 17 −13 0 5 7
B −5 −5 −5 0 3
C −7 −7 −7 −3 0


Because each of the similar candidates loses heavily to another, they have the three worst
defeats, and thus none of them is selected election winner (previous loser candidate B is now
the winner). Thus, Least Worst Defeat does not satisfy general clone invariance.

Kemeny-Young:

Consider the following election, in which the introduction of a set of clones changes the
winner (and improves the cloned candidate’s position in the social preference ordering). We
give the margin of victory matrix, and associated Kemeny-Young scores;

A B C
A 0 2 −5
B −2 0 3
C 5 −3 0


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Preference Order Kemeny-Young Score
A � B � C 0
A � C � B −6
B � A � C −4
B � C � A 6
C � A � B 4
C � B � A 0

Thus, we see that candidate B is the winner, and that candidate A is selected last in the
social preference ordering. Consider what happens now, if A is replaced by a set of two
internal clones, A1 and A2. The margin of victory matrix is then:

A1 A2 B C
A1 0 0 2 −5
A2 0 0 2 −5
B −2 −2 0 3
C 5 5 −3 0


We write the Kemeny-Young scores without subscripts on the A candidates, since permuting
A1 and A2 has no effect on the Kemeny-Young score:

Preference Order Kemeny-Young Score
A � A � B � C −3
A � B � A � C −7
A � B � C � A 3
B � A � A � C −11
B � A � C � A −1
B � C � A � A 9
A � A � C � B −9
A � C � A � B 1
A � C � B � A −3
C � A � B � A 7
C � A � A � B 11
C � B � A � A 3

And thus we see that candidate C is now the winner, and that the previous winner B has
fallen to last place in the social preference ordering. Further, candidate A has improved
their position in the preference order by being replaced by a set of clones, and therefore the
Kemeny-Young method fails internal clone invariance (and general clone invariance).

Copeland:

Because internal clones introduce a margin of victory matrix full of ties, internal clones
can be at a significant disadvantage in a Copeland election, which is predicated on num-
ber of pairwise victories. Consider the following win-loss matrix, and associated Copeland
scores;
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
A B C D E

A 0 −1 1 1 1
B 1 0 1 −1 −1
C −1 −1 0 1 1
D −1 1 −1 0 1
E −1 1 −1 −1 0


Candidate Candidates Defeated Copeland Score

A C,D,E 3
B A,C 2
C D,E 2
D B,E 2
E B 1

Thus, we see that candidate A is the Copeland election winner. Now, suppose A is replaced
by a set of three internal clones. The results then change:



A1 A2 A3 B C D E
A1 0 0 0 −1 1 1 1
A2 0 0 0 −1 1 1 1
A3 0 0 0 −1 1 1 1
B 1 1 1 0 1 −1 −1
C −1 −1 −1 −1 0 1 1
D −1 −1 −1 1 −1 0 1
E −1 −1 −1 1 −1 −1 0


Candidate Candidates Defeated Copeland Score

A1 C,D,E 3
A2 C,D,E 3
A3 C,D,E 3
B A1,A2,A3,C 4
C D,E 2
D B,E 2
E B 1

We can see that since B defeated A in the original election, it gains two points in the
Copeland score, since it beats all clones of A. On the other hand, the clones tie each other,
and thus gain no defeats. Since B is now the election winner, we see that Copeland fails
internal clone invariance, and thus clone invariance in general.

6.8 Loser Independence

The concept of loser independence is relatively simple (and similar to another common condi-
tion, the independence of irrelevant alternatives). Intuitively, given an election, with election
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winner C, if a losing candidate were to drop out (if it is convenient, imagine that all candi-
dates can accurately predict the results of the election), this should not change the result of
the election. Formally, if the removal of any losing candidate causes the election winner to
change in any election, the voting method fails the loser independence condition. Note
that, equivalently, adding another outcome (which does not become the election winner)
should not change the election outcome.

This is important, since if a candidate knows that they will lose, they may be tempted
to drop out (via a bribe) to benefit another candidate who would not win if they stayed in
the election. Allowing this type of corruption certainly seems like a bad idea. Unfortunately,
every method we’ve discussed so far (except the Approval method, which has other weak-
nesses) fails this condition.

It turns out that (requiring a deterministic outcome) the Condorcet and loser independence
conditions are incompatible. This is very similar to the famous Arrow’s Paradox. [6], which
incited much of the study of preferential ballot voting systems (since it was the first widely
published work to show that two “vital” conditions on a voting system were incompatible,
leading many to claim that no perfect voting system exists).

The proof of this is relatively simple. Suppose a voting method f satisfies both the Con-
dorcet condition and the loser independence condition. Now consider the following election,
represented by a margin of victory matrix, where x,y, and z are positive integers.

A B C
A 0 x −z
B −x 0 y
C z −y 0


Now, since there is no Condorcet winner, without loss of generality, suppose that f(E) = A
(that is, the election winner is A). By loser independence, if B drops out of the election, A
must remain the winner, but since the remaining margin of victory matrix is; A C

A 0 −z
C z 0


By the Condorcet condition C must be the election winner, a contradiction. Thus, no
Condorcet method can also satisfy the loser independence condition.

6.8.1 Proofs

Only one method discussed here satisfies the condition of loser independence: Approval
Voting, given a caveat. We must assume that the removal of a candidate C from the race
does not change the voter’s set of approved candidates (other than, of course, removing C).
In this case, the number of approval votes for each candidate is unchanged, and since C
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was not the approval winner, the approval winner is therefore unchanged. This means that
approval voting indeed satisfies the condition of loser independence.

6.8.2 Counterexamples

We know provide counterexamples demonstrating that the non-Condorcet methods (except
Approval voting) we have discussed fail the condition of loser independence. Recall from
above that all deterministic Condorcet methods fail the loser independence condition. The
counterexamples have a similar spirit to the counterexamples used for the monotonicity con-
dition; we eliminate a candidate that creates an unfavorable head-to-head matchup for the
winner (note that while Condorcet methods fail loser independence, a Condorcet winner can
not typically be ousted by the removal of a losing candidate).

Plurality:

Consider the following election, as a set of ballots and the corresponding number of first-place
votes;

Preference Order Number of Votes
A � B � C 7
B � A � C 4
C � B � A 6

Candidate First-Place Votes
A 7
B 4
C 6

Thus, candidate A is the plurality winner. Now, suppose that candidate C is removed from
the race. The preferences and first-place votes are then recalculated for a simple majority
election:

Candidate First-Place Votes
A 7
B 10

And now, candidate B is the winner, since in all votes for candidate C, B was the second
choice. Thus, plurality fails the loser independence condition.

Instant Runoff Voting:

Consider the following election, as a set of ballots and the corresponding first-place votes;
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Preference Ordering Number of Votes
A � B � C � D 5
B � D � A � C 4
C � D � B � A 6

Candidate First-Place Votes
A 5
B 4
C 6
D 0

In this case, candidate D is eliminated, leading to the next round of Instant Runoff Voting.
The final two rounds progress as follows:

Preference Ordering Number of Votes
A � B � C 5
B � A � C 4
C � B � A 6

Candidate First-Place Votes
A 5
B 4
C 6

Candidate (First-Place) Votes
A 9
C 6

Thus, candidate A is the election winner. Now, consider how the election would change
if losing candidate C were removed from the race. This would produce a three candidate
Instant Runoff election involving A, B, and D, which proceeds as follows:

Preference Ordering Number of Votes
A � B � D 5
B � D � A 4
D � B � A 6

Candidate First-Place Votes
A 5
B 4
D 6

Candidate (First-Place) Votes
A 5
D 10
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And we see that candidate D (the last place candidate when C remained in the election) is
now the election winner, ousting A. Thus, Instant Runoff Voting fails the loser independence
condition.

Borda Count:

We can use an election essentially equivalent to the counterexample for the Plurality method
as a counterexample for the Borda Count. Consider the following set of ballots and the as-
sociated Borda Count scores;

Preference Ordering Number of Votes
A � B � C 3
A � C � B 4
B � A � C 4
C � B � A 6

Candidate Borda Count
A 35
B 34
C 33

Thus, we see that candidate A is selected as the election winner. However, if losing candidate
C drops out, we have the following head-to-head matchup;

Candidate Number of Votes
A 7
B 10

And we see that candidate B now wins the election, showing that the Borda Count also fails
the loser independence condition.

6.9 Summary Table

We know summarize which methods satisfy each of the conditions we’ve discussed thus far,
as a reference for decision making.
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Voting Method Majority Condorcet Copeland Monotonicity
Plurality Yes No No Yes
Approval No No No Yes

Instant Runoff Yes No No No
Borda Count No No No Yes

Instant Runoff Borda Count Yes Yes No No
Least Worst Defeat Yes Yes No Yes

Instant Runoff Least Worst Defeat Yes Yes No No
Kemeny-Young Yes Yes No Yes

Schulze Yes Yes No Yes
Ranked Pairs Yes Yes No Yes

Copeland Yes Yes Yes Yes

Voting Method Internal Clone Inv. Clone Inv. Loser Independence
Plurality No No No
Approval Yes Yes Yes

Instant Runoff Yes Yes No
Borda Count No No No

Instant Runoff Borda Count No No No
Least Worst Defeat Yes No No

Instant Runoff Least Worst Defeat Yes Yes No
Kemeny-Young No No No

Schulze Yes Yes No
Ranked Pairs Yes Yes No

Copeland No No No

6.10 Conditions Philosophy

We make a brief philosophical aside at this juncture. As we define a list of reasonable
conditions for voting systems to follow, it may be tempting to pick a favorite system, and
then argue the merits of the conditions which it satisfies. Instead, we recommend beginning
with conditions, choosing a set of them based on their merit, then deriving what systems in
fact hold all the conditions (if any). Especially while tabling practical considerations, it is
best to begin by considering what properties are most desirable. As we develop probabilistic
measures of some of these conditions, we will have to reevaluate this approach, because
we will not only have to compare the merits of different conditions, but quantify these
differences in order to make rational decisions. We’ll revisit this concept in the conclusions
section. First, we need to compile more information.
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7 Simulation of Measurable Conditions

7.1 Converting Binary Conditions into Continuously Measurable Conditions

As we stated at the beginning of the paper, one goal is to refine how conditions of voting
systems are measured. Just as preferential ballot voting systems utilize more information
than single vote systems; continuous measures are more illuminating than binary ones. An
increase in information is certainly valuable to those making decisions concerning the merits
of our various preferential ballot voting systems. Our job, then, is to determine the ap-
propriate extensions of existing conditions which accurately quantify the extent to which
voting systems satisfy those conditions. We note that this quantization is philosophically
distinct from quantifying the relative importance of the different conditions; to make ratio-
nal decisions we need some measure of both, and unfortunately the latter is necessarily a
philosophical question.

7.2 Condorcet and Copeland Ratios

As we’ve analyzed above, Condorcet winners do not occur in every election, and in an election
with m candidates, the maximal Copeland score is not always m−1. We must take this into
account when measuring the effectiveness of voting systems with respect to the Condorcet
and Copeland conditions.

Before, we determined that a method is a Condorcet method if it selects the Condorcet
winner whenever it exists. While the probability of the existence of Condorcet winners has
been well studied [7], the probability of non-Condorcet methods selecting the Condorcet
winner (when it exists) has not been significantly covered. In this spirit, we define the
Condorcet Ratio to be the fraction of possible elections with Condorcet winners in which
a method actually selects the Condorcet winner. Because this fraction is dependent both on
the number of candidates and voters, we denote it Cratio(m,n).

Similarly, we can not expect a method to select a winner with a Copeland score of m− 1
when the maximal score in a particular election is m − 3. Thus, we define the Copeland
Ratio as the average value of the Copeland score of the alternative selected by a method
divided by the maximal Copeland score (in each particular election). For example, a method
which picked a winner with Copeland score 4 when there was a candidate with Copeland
score 5 would have a 0.8 ratio for that particular election. The Copeland Ratio is then the
average of these ratios over all possible elections. Again, because of the dependence on m,
the number of candidates, and n, the number of voters, we denote it CPratio(m,n).

To measure these ratios, we run a large number of random elections through all of the
voting methods. Intuitively, we uniformly select a random preference order from the set of
m! possible preference orderings for each voter. Thus, we approximate a uniform random
distribution over the set of possible votes. The rationale here is that random votes rep-
resent a worst case scenario, both in the proportion of Condorcet winners present, and in
unearthing examples which test the framework of the various methods. As we saw in the

63



sections above, many of the counterexamples to voting conditions are quite contrived, and
thus may not appear in many actual elections. Using a large sample of random elections
helps us to avoid that bias, as well as set a baseline for how the methods perform in actual
election situations.

The following results correspond to random elections run with n = 1001 voters, for the
indicated number of candidates and indicated election sample size:

3 candidates, 1001 voters, 100000 elections:

Voting Method Condorcet Ratio Copeland Ratio
Plurality 0.764 0.871
Approval 0.599 0.755

Instant Runoff 0.944 0.961
Borda Count 0.898 0.951

Copeland 1 1
IRLWD 1 1
IRBC 1 1

Kemeny-Young 1 1
Least Worst Defeat 1 1

Ranked Pairs 1 1
Schulze 1 1

4 candidates, 1001 voters, 50000 elections:

Voting Method Condorcet Ratio Copeland Ratio
Plurality 0.653 0.845
Approval 0.547 0.778

Instant Runoff 0.877 0.911
Borda Count 0.870 0.957

Copeland 1 1
IRLWD 1 0.993
IRBC 1 0.994

Kemeny-Young 1 0.997
Least Worst Defeat 1 0.994

Ranked Pairs 1 0.995
Schulze 1 0.995

5 candidates, 1001 voters, 20000 elections:
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Voting Method Condorcet Ratio Copeland Ratio
Plurality 0.567 0.823
Approval 0.517 0.794

Instant Runoff 0.802 0.849
Borda Count 0.852 0.961

Copeland 1 1
IRLWD 1 0.984
IRBC 1 0.987

Kemeny-Young 1 0.992
Least Worst Defeat 1 0.987

Ranked Pairs 1 0.990
Schulze 1 0.989

6 candidates, 1001 voters, 15000 elections:

Voting Method Condorcet Ratio Copeland Ratio
Plurality 0.506 0.809
Approval 0.497 0.808

Instant Runoff 0.736 0.789
Borda Count 0.849 0.964

Copeland 1 1
IRLWD 1 0.977
IRBC 1 0.981

Kemeny-Young 1 0.988
Least Worst Defeat 1 0.982

Ranked Pairs 1 0.984
Schulze 1 0.983

7 candidates, 1001 voters, 10000 elections:

Voting Method Condorcet Ratio Copeland Ratio
Plurality 0.460 0.796
Approval 0.475 0.812

Instant Runoff 0.658 0.722
Borda Count 0.839 0.965

Copeland 1 1
IRLWD 1 0.974
IRBC 1 0.977

Kemeny-Young 1 0.985
Least Worst Defeat 1 0.979

Ranked Pairs 1 0.981
Schulze 1 0.981

The first thing we notice is that Condorcet methods which do not satisfy the Copeland con-
dition (that is, all Condorcet methods except the Copeland method) in a binary fashion have
very high Copeland ratios. This means that while we can readily find counterexamples to
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the Copeland condition, they occur extremely rarely. Naturally, they occur more frequently
as the number of candidates increase (and the complexity of the margin of victory matrix
increases). In the case of three candidates, no examples exist, since the only possibilities
are a Condorcet winner (which must be selected), or a three-way tie with Copeland score.
The reason for the high Copeland ratio among these methods is that counterexamples can
only occur when there is no Condorcet winner. We summarize these results in terms of the
number of candidates:

Voting Method m = 3 m = 4 m = 5 m = 6 m = 7
IRLWD 1 .993 .984 .977 .974
IRBC 1 .994 .987 .981 .977
KY 1 .997 .992 .988 .985

LWD 1 .994 .987 .982 .979
RP 1 .995 .990 .984 .981
Sch. 1 .995 .989 .983 .981

Second, we can analyze the continuous performance of the non-Condorcet methods with
respect to the Condorcet Ratio. This information is summarized below, again in terms of
the number of candidates;

Voting Method m = 3 m = 4 m = 5 m = 6 m = 7
Plur. .764 .653 .567 .506 .460
App. .599 .547 .517 .497 .475
IRV .944 .877 .802 .736 .658
BC .898 .870 .852 .849 .839

We see that Instant Runoff and Borda Count perform significantly better than the more
commonly used Plurality and Approval methods (which quickly drop below fifty percent
success). Instant Runoff Voting performs very well for a small number of candidates, but
quickly deteriorates, while the Borda Count remains very consistent, having a Condorcet
Ratio over eighty percent for all simulations studied. Unsurprisingly, the Copeland Ratio
scores follow very similar trends for the non-Condorcet methods.
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8 Agreement Simulations

8.1 Philosophy

One of the merits of binary conditions is that when systems follow them, we gain a guaranteed
subset of outcomes. All Condorcet methods, for example, will yield the same election winner
in elections with Condorcet winners. Given that a set of clone invariant methods yield the
same result on a particular election, we know that the methods will also agree on any election
which is a “clone extension” of the original. When measuring conditions continuously, we
often lose this certainty. A Condorcet Ratio of 0.88 doesn’t tell us which 12 percent of
Condorcet winners are missed, and two methods with Condorcet Ratios of 0.88 could differ
on as much as 24 percent of elections with Condorcet winners, or they could agree on all of
them. The information simply isn’t there.

Philosophically, if two methods agree on all possible elections, they should be considered
the same method, since their outputs are identical. We’ll see that some seemingly distinct
methods actually do agree in all cases, for certain numbers of candidates. However, it is a
reasonable question to ask what level of agreement is significant. Would policymakers be
satisfied in replacing a very complicated, expensive system with an simpler, cheaper one if
they agreed 99 percent of the time? Again, the philosophical questions can’t be considered
without the statistical information, thus we turn to simulations to determine the relative
agreement of our various preferential ballot voting systems.

8.2 Simulation of Random Elections

While we used random elections in the previous sections as a worst case scenario in simu-
lating actual election behavior, here we use random elections in order to best approximate
the exact percentage of elections on which two different voting methods agree. Again, we
simulate using a random distribution of votes over the set of possible preference orderings.
As the sample of elections increases, we approach an even distribution over all possible elec-
tions (for a given number of voters and candidates), and thus approach the true percentage
of agreement.

We have the following random election simulations for n = 1001 voters and the given number
of candidates and sample size of elections:

3 candidates, 1001 voters, 100000 elections:
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

Plur. App. IRV BC Cope. IRLWD IRBC KY LWD RP Sch.
P lur. 1.000 0.527 0.730 0.745 0.685 0.711 0.716 0.727 0.727 0.727 0.727
App. 0.527 1.000 0.545 0.573 0.531 0.558 0.561 0.566 0.566 0.566 0.566
IRV 0.730 0.545 1.000 0.813 0.860 0.907 0.908 0.902 0.902 0.902 0.902
BC 0.745 0.573 0.813 1.000 0.817 0.830 0.846 0.876 0.876 0.876 0.876
Cope. 0.685 0.531 0.860 0.817 1.000 0.912 0.912 0.912 0.912 0.912 0.912

IRLWD 0.711 0.558 0.907 0.830 0.912 1.000 0.984 0.954 0.954 0.954 0.954
IRBC 0.716 0.561 0.908 0.846 0.912 0.984 1.000 0.970 0.970 0.970 0.970
KY 0.727 0.566 0.902 0.876 0.912 0.954 0.970 1.000 1.000 1.000 1.000
LWD 0.727 0.566 0.902 0.876 0.912 0.954 0.970 1.000 1.000 1.000 1.000
RP 0.727 0.566 0.902 0.876 0.912 0.954 0.970 1.000 1.000 1.000 1.000
Sch. 0.727 0.566 0.902 0.876 0.912 0.954 0.970 1.000 1.000 1.000 1.000


Immediately, we see that four methods are equivalent for three candidate elections (this
is relatively unsurprising, since there are only six possible transitive preference orderings).
Kemeny-Young, Least Worst Defeat, Ranked Pairs, and the Schulze method all agree (and
satisfy both the Condorcet and Copeland conditions) for these elections. We find that the
other Condorcet methods all agree over ninety percent of the time, the most divergent being
the Copeland method (because of the shared victory implied in cases without a Condorcet
winner). As we might expect, the Condorcet ratio is a good predictor for the agreement
of Condorcet and non-Condorcet methods; Instant Runoff and Borda Count agree with the
Condorcet methods in more than eighty percent of elections, while Plurality and Approval
average approximately seventy percent and fifty-five percent agreement, respectively.

4 candidates, 1001 voters, 50000 elections:



Plur. App. IRV BC Cope. IRLWD IRBC KY LWD RP Sch.
P lur. 1.000 0.433 0.589 0.621 0.529 0.579 0.585 0.598 0.598 0.598 0.599
App. 0.433 1.000 0.455 0.517 0.439 0.487 0.491 0.498 0.500 0.498 0.500
IRV 0.589 0.455 1.000 0.709 0.725 0.806 0.810 0.804 0.799 0.803 0.800
BC 0.621 0.517 0.709 1.000 0.717 0.762 0.781 0.818 0.822 0.818 0.824
Cope. 0.529 0.439 0.725 0.717 1.000 0.826 0.826 0.826 0.826 0.826 0.826

IRLWD 0.579 0.487 0.806 0.762 0.826 1.000 0.967 0.918 0.909 0.915 0.908
IRBC 0.585 0.491 0.810 0.781 0.826 0.967 1.000 0.945 0.936 0.942 0.937
KY 0.598 0.498 0.804 0.818 0.826 0.918 0.945 1.000 0.975 0.986 0.978
LWD 0.598 0.500 0.799 0.822 0.826 0.909 0.936 0.975 1.000 0.982 0.997
RP 0.598 0.498 0.803 0.818 0.826 0.915 0.942 0.986 0.982 1.000 0.985
Sch. 0.599 0.500 0.800 0.824 0.826 0.908 0.937 0.978 0.997 0.985 1.000


As the set of possible margin of victory (and win-loss) matrices grows more complex, we
begin to see a divergence of results. For elections with more than three candidates, there are
no methods which are equivalent, although the same set of four methods (Kemeny-Young,
Least Worst Defeat, Ranked Pairs, and Schulze) do agree over ninety-seven percent of the
time (with Least Worst Defeat and Schulze disagreeing on only three elections per thousand).
The Condorcet Instant Runoff methods (IRLWD and IRBC) continue to behave coherently,
agreeing more than ninety-six percent of the time. We also see a quick deterioration in the
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agreement percentages of the Plurality method, concomitant with its decreasing Condorcet
ratio.

5 candidates, 1001 voters, 20000 elections:



Plur. App. IRV BC Cope. IRLWD IRBC KY LWD RP Sch.
P lur. 1.000 0.363 0.474 0.524 0.428 0.482 0.488 0.501 0.504 0.502 0.505
App. 0.363 1.000 0.388 0.482 0.389 0.440 0.444 0.452 0.454 0.453 0.455
IRV 0.474 0.388 1.000 0.618 0.614 0.707 0.713 0.711 0.700 0.705 0.702
BC 0.524 0.482 0.618 1.000 0.662 0.711 0.732 0.775 0.779 0.775 0.783
Cope. 0.428 0.389 0.614 0.662 1.000 0.765 0.766 0.771 0.767 0.769 0.767

IRLWD 0.482 0.440 0.707 0.711 0.765 1.000 0.953 0.889 0.866 0.880 0.866
IRBC 0.488 0.444 0.713 0.732 0.766 0.953 1.000 0.924 0.901 0.911 0.904
KY 0.501 0.452 0.711 0.775 0.771 0.889 0.924 1.000 0.948 0.966 0.954
LWD 0.504 0.454 0.700 0.779 0.767 0.866 0.901 0.948 1.000 0.953 0.992
RP 0.502 0.453 0.705 0.775 0.769 0.880 0.911 0.966 0.953 1.000 0.960
Sch. 0.505 0.455 0.702 0.783 0.767 0.866 0.904 0.954 0.992 0.960 1.000


6 candidates, 1001 voters, 15000 elections:



Plur. App. IRV BC Cope. IRLWD IRBC KY LWD RP Sch.
P lur. 1.000 0.319 0.390 0.461 0.363 0.411 0.418 0.430 0.433 0.428 0.433
App. 0.319 1.000 0.330 0.460 0.359 0.409 0.415 0.427 0.430 0.426 0.431
IRV 0.390 0.330 1.000 0.545 0.532 0.618 0.625 0.625 0.613 0.617 0.615
BC 0.461 0.460 0.545 1.000 0.633 0.673 0.697 0.742 0.751 0.740 0.754
Cope. 0.363 0.359 0.532 0.633 1.000 0.719 0.722 0.732 0.725 0.728 0.726

IRLWD 0.411 0.409 0.618 0.673 0.719 1.000 0.936 0.865 0.828 0.849 0.828
IRBC 0.418 0.415 0.625 0.697 0.722 0.936 1.000 0.907 0.870 0.884 0.872
KY 0.430 0.427 0.625 0.742 0.732 0.865 0.907 1.000 0.916 0.940 0.921
LWD 0.433 0.430 0.613 0.751 0.725 0.828 0.870 0.916 1.000 0.923 0.991
RP 0.428 0.426 0.617 0.740 0.728 0.849 0.884 0.940 0.923 1.000 0.930
Sch. 0.433 0.431 0.615 0.754 0.726 0.828 0.872 0.921 0.991 0.930 1.000


7 candidates, 1001 voters, 10000 elections:
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

Plur. App. IRV BC Cope. IRLWD IRBC KY LWD RP Sch.
P lur. 1.000 0.275 0.332 0.404 0.319 0.369 0.373 0.386 0.387 0.386 0.389
App. 0.275 1.000 0.288 0.424 0.329 0.378 0.385 0.396 0.395 0.392 0.396
IRV 0.332 0.288 1.000 0.477 0.456 0.538 0.542 0.543 0.529 0.532 0.531
BC 0.404 0.424 0.477 1.000 0.613 0.648 0.671 0.721 0.737 0.715 0.741
Cope. 0.319 0.329 0.456 0.613 1.000 0.693 0.696 0.709 0.702 0.704 0.703

IRLWD 0.369 0.378 0.538 0.648 0.693 1.000 0.929 0.843 0.804 0.828 0.804
IRBC 0.373 0.385 0.542 0.671 0.696 0.929 1.000 0.884 0.846 0.858 0.850
KY 0.386 0.396 0.543 0.721 0.709 0.843 0.884 1.000 0.899 0.917 0.906
LWD 0.387 0.395 0.529 0.737 0.702 0.804 0.846 0.899 1.000 0.891 0.989
RP 0.386 0.392 0.532 0.715 0.704 0.828 0.858 0.917 0.891 1.000 0.900
Sch. 0.389 0.396 0.531 0.741 0.703 0.804 0.850 0.906 0.989 0.900 1.000


The trends of divergence continue for five, six and seven candidate elections. Unsurprisingly,
no two methods behave equivalently for such elections. However, we do notice that Least
Worst Defeat and Schulze continue to show a very coherent response, agreeing in nearly
ninety-nine percent of all elections through seven candidates. The set of methods which were
equivalent for three candidates remain similar, agreeing on approximately ninety percent of
elections. On the other hand, the non-Condorcet methods begin to disagree more often than
not, not only with Condorcet methods, but with each other. It is telling that the Plurality
and approval methods agree less than forty percent of the time with every method except
for the Borda Count. We would expect the divergence of methods to magnify as the number
of candidates increases further.
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9 Conclusions

Given all of the data we’ve collected, we would like to make a confident decision about the
“best” available election method. Unfortunately, as we’ve alluded to throughout the paper,
this simply isn’t possible. We don’t have normative measures of the relative importance
of different voting conditions, and in the absence of a method which satisfies all conditions
(which we’ve proven can not exist), we must make some compromises. The main purpose of
this thesis has been to provide a more complete set of information on which to base decisions;
we feel strides have been taken to do just that. However, if only for the exercise or as an
example, it is also important to put this new information to practical use.

9.1 The Importance of the Condorcet Condition

The Condorcet condition is often the first voting system condition to be considered in a
classroom setting [1] or in voting theory texts [2], [6], [7]. There are several good reasons to
use the Condorcet condition as a necessary condition for a good voting system, and we use
it as a first test in selecting a voting system:

First, intuitively it is reasonable to select the candidate which beats every other candi-
date in pairwise matchup. To select another candidate seems to accept a minority view as
the correct social choice (as a minority must perceive this candidate to be better than the
Condorcet winner).

Second, Condorcet winners are common. Consider the following data (from [7]), the per-
centage of Condorcet winners is uniform random elections (as conducted in the simulations
of this paper):

Number of Candidates 2 3 4 5 6 7 8 9
Probability of Condorcet 1 .91226 .82452 .74869 .68477 .63082 .61010 .54547

This means that in elections with fewer than ten candidates, a Condorcet winner should
occur at least half of the time. This is a significant subset of elections that we can agree on.
Choosing a Condorcet method guarantees an expected result for all such elections. Further,
even in elections with more than ten candidates, in most practical cases, the election will in-
volve less than ten (probably closer to three) candidates with a legitimate chance of winning
(frontrunners), and thus will likely behave as an election with fewer candidates, increasing
the chance of having a Condorcet winner.

Finally, suppose we pit a Condorcet winner against the winner of any other voting sys-
tem in a head-to-head runoff election. The Condorcet winner will win every time, which is
a powerful statement to the social desire for a Condorcet winner.

Thus, we take the Condorcet condition as necessary, eliminating the common methods of
Plurality, Approval, Instant Runoff, and Borda Count from our short-list of possible “best”
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voting methods.

9.2 Monotonicity, Clone Invariance, and Loser Independence

Because the majority condition is implied by the Condorcet condition, we do not need to
consider it further. We also discount the Copeland condition since it is tailored to the
Copeland method, and serves better as a continuous measure, rather than a binary measure.
This leaves us with three conditions to differentiate our Condorcet methods; monotonicity,
clone invariance, and loser independence. We will not make any attempt here to justify one
of these conditions as more important than the others; this depends too much on personal
philosophy and the specific political and practical considerations involved in different elec-
tion landscapes. Instead, we’ll simply see which methods satisfy the most of the conditions.

Unfortunately, as we showed previously, the Condorcet condition is incompatible with the
Loser Independence condition. This means we can not use it to distinguish between Con-
dorcet methods (and is a motivation to develop a related continuous measure). Thus, we look
to our summary table for any methods which satisfy both monotonicity and clone invariance.

Three such methods exist; Ranked Pairs, Schulze, and Least Worst Defeat (which only
satisfies internal clone invariance).

9.3 Agreement and Practicality

Currently, we don’t have a good way to distinguish between these methods. We do know
that they mutually agree a large percentage of the time, and that Least Worst Defeat and
the Schulze method agree especially often. Without other conditions (which would be, ad-
mittedly, arbitrarily chosen to eliminate methods), or a classification of the elections which
cause disagreement, we are left at somewhat of a standstill. We can, fortunately, be confident
that any one of these three systems will serve election purposes well, given the set of good
conditions which they satisfy, and their relative agreement.

We are then motivated to think practically. If we are to introduce a new system of vot-
ing to a skeptical public, it behooves us to choose the simplest, clearest method. There can
be no doubt that this is Least Worst Defeat. Voting reform is a tricky political process as it
stands; choosing a mathematically complex system would only make the prospect of change
more frightening. Thus, because of the set of conditions it satisfies, its agreement with other
theoretically desirable methods, and its practical application, we recommend Least Worst
Defeat as the “best” available new voting method.

9.4 Future Research

In this thesis, we’ve made strides towards developing a better library of information and data
with which to compare preferential ballot voting systems. There are are three main areas in
which we would like to extend this work, to build a more complete profile of information.
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• Developing continuous measures of conditions other than the Condorcet and Copeland
Ratios. Finding and simulating reasonable measures of Monotonicity, Clone Invariance,
and Loser Independence will allow us to better compare Condorcet methods which fail
one or more of these conditions.

• Classifying elections which cause divergent results from different voting methods. Our
simulation of the agreement matrices revealed the extend to which different methods
agree or disagree on possible elections. We can extend this idea further by examining
those elections for which elections disagree. Understanding these examples may allow
someone to make a qualitative decision between similar methods (such as Least Worst
Defeat and Schulze).

• Exploring non-deterministic systems. Dr. Hubert Bray has developed a non-deterministic
voting method which satisfies most all of the conditions considered here (except the
Copeland condition) for elections with less than 6 candidates. Understanding these
systems may lead to the discovery of a system which satisfies more theoretical proper-
ties, and this gain could be weighed against a loss of determinism.
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