
Soc Choice Welfare (2008) 30:353–362
DOI 10.1007/s00355-007-0235-2

ORIGINAL PAPER

On the complexity of achieving proportional
representation

Ariel D. Procaccia · Jeffrey S. Rosenschein ·
Aviv Zohar

Received: 3 January 2006 / Accepted: 6 March 2007 / Published online: 19 April 2007
© Springer-Verlag 2007

Abstract We demonstrate that winner selection in two prominent proportional
representation voting systems is a computationally intractable problem—implying
that these systems are impractical when the assembly is large. On a different note, in
settings where the size of the assembly is constant, we show that the problem can be
solved in polynomial time.

1 Introduction

Andrew Carnegie, the American industrialist, famously remarked: “The first man gets
the oyster, the second man gets the shell.” Nevertheless, in many settings there may
be multiple winners; the second, third, and fourth men (or women) may also savor
the oyster. When elections are held for a legislature, for instance, there are often hun-
dreds of winners. Although many single-winner voting rules can be generalized to
elect multiple winners (Brams and Fishburn 2002), complications arise when multiple
winners are involved—complications that are not necessarily shared by single-winner
scenarios.

One of the basic properties that one expects from a multi-winner voting rule is
proportional representation (PR). Intuitively, the requirement is that the proportional
support enjoyed by different factions be accurately reflected in the election’s results. In

A. D. Procaccia (B) · J. S. Rosenschein · A. Zohar
School of Engineering and Computer Science, The Hebrew University of Jerusalem,
Jerusalem 91904, Israel
e-mail: arielpro@cs.huji.ac.il

J. S. Rosenschein
e-mail: jeff@cs.huji.ac.il

A. Zohar
e-mail: avivz@cs.huji.ac.il

123

354 A. D. Procaccia et al.

practice, this usually means that the percentage of votes secured by a party is roughly
proportional to the number of seats it is awarded.

Monroe (1995) proposes an intriguing multi-winner voting scheme that strives
towards proportional representation. In what Monroe refers to as the “pure” version
of his scheme, the elected set of candidates minimizes voters’ sum of “misrepresenta-
tion” values. More concrete versions of the system specify the source of these values.
Monroe’s scheme attempts to realize the following principle: if there are k winners,
voters should be partitioned into k equally–sized groups, and each group assigned to
a candidate, in a way that minimizes dissatisfaction of voters from their associated
candidates. Chamberlin and Courant (1983) preceded Monroe with a similar voting
scheme. The main difference is that they eschew the abovementioned principle, but
attempt to achieve a comparable outcome using weighted voting.

Unfortunately, otherwise appealing theoretical voting schemes may have a fatal
flaw: the problem of determining who the winners are may be computationally intrac-
table. A problem is considered tractable (in this context) if its solution can be cal-
culated using a number of computational steps that is polynomial in the size of the
input; problems that may require exponential time are considered intractable. Indeed,
for all practical purposes, it would take an absurdly long time to solve a problem that
demands a number of steps that is exponential in the size of the input—when the input is
large. Computational complexity theory (Papadimitriou 1994) classifies problems into
complexity classes, such as NP (see Sect. 2 for details). The class of NP-complete
problems contains problems that, intuitively, are at least as hard as any other problem
in NP . Such problems are almost unanimously believed to be intractable.

Bartholdi et al. (1989) establish computational intractability as a major consid-
eration against the adoption of a voting system. Specifically, they show that in the
voting schemes devised by Charles Dodgson (a.k.a. Lewis Carroll, author of “Alice’s
Adventures in Wonderland”) and Kemeny, it is NP-hard to pinpoint the winners. The
importance of such results is not at all diminished by the fact that the complexity
analysis involved is worst-case. There is no arguing that a situation where the out-
come of an election takes centuries to compute must be avoided at all costs—even if
such occasions are relatively rare. This stands in stark contrast to work on the com-
putational complexity of manipulating elections (Bartholdi and Orlin 1991; Bartholdi
et al. 1989; Conitzer and Sandholm 2002; Procaccia and Rosenschein 2007); even
if a manipulation problem is NP-hard, it may still be the case that manipulation is
often possible. NP-hardness is thus not a strong enough guarantee of resistance to
manipulation, although it can be a mighty objection against a voting system.

Potthoff and Brams (1998) show that in the Monroe and the Chamberlin–Courant
voting schemes, the winners can be determined using integer programming. Although
this provides a method to safely and accurately compute results of elections when the
numbers involved are small, it is by no means an efficient method, as finding the solu-
tion of a general integer program is an NP-complete problem (Papadimitriou 1981).
Potthoff and Brams acknowledge this obstacle, and formulate an improved integer
program for settings where the electorate is large. Nevertheless, the modified integer
program is still of gargantuan size when the number of candidates is large.

In this paper we prove that in general, implementing the Monroe scheme or the
Chamberlin–Courant scheme is anNP-complete problem, i.e., it is hard to tell whether

123

On the complexity of achieving proportional representation 355

there is a set of candidates with score lower than a given threshold. This implies that
it is impossible to actually find the winners in polynomial time. The result holds even
if the misrepresentation values are based on simple approval ballots.

We also consider a scenario where the number of winners is small, although the
electorate and the number of candidates are large. Using a simple reduction, we show
that in this setting winner selection can be accomplished efficiently.

The paper proceeds as follows. In Sect. 2 we briefly discuss computational com-
plexity analysis. In Sect. 3 we formally define the voting schemes devised by Monroe,
and by Chamberlin and Courant. In Sect. 4, we prove that winner selection is hard
when the number of winners is large, and in Sect. 5, we demonstrate that the win-
ner selection problem can be efficiently solved when the number of winners is small.
Finally, our conclusions appear in Sect. 6.

2 Computational complexity

Computational complexity is a branch of the theory of computation, that deals with
the resources required to solve a problem; in our context the resource is time, but
there are other scarce resources, such as memory. Established in the second half of the
twentieth century, it has since become a standard tool in many disciplines, including
operations research and economics. In this section, we briefly discuss a tiny fragment
of the theory. Readers are urged to consult (Sipser 1996) for an especially readable
overview; a more detailed presentation can be found in (Papadimitriou 1994).

The time complexity of a problem is the worst-case number of computational steps
required to solve the problem, as a function of the size of the input, using the best
algorithm. The problems considered are often decision problems: questions to which
the answer is either “yes” or “no”. A decision problem is formally described as a set:
instances that are contained in the set are “yes” instances, while those that are not are
“no” instances.

Decision problems are classified into complexity classes; the two best-known are P
and NP . P is the class of all decision problems whose time complexity is polynomial
in the size of the input. In order to show that a problem is in P , one has to devise an
algorithm that solves the problem in polynomial time for any input; such an algorithm
is considered formally efficient.

NP is the class of decision problems whose positive solutions can be verified in
polynomial time, given the right information. In other words, for any “yes” instance
of an NP problem, there exists a witness that makes it possible to verify in polyno-
mial time that the given instance is indeed a “yes” instance. Consider the following
problem:

Definition 1 In the Exact 3- Cover (X3C) problem, we are given a set U of n points
such that n is divisible by 3, and a collection of m subsets of U , F = {F1, . . . , Fm},
each of cardinality 3, i.e., for all j , |Fj | = 3. We are asked whether it is possible to
find n/3 (disjoint) subsets in F such that their union covers the entire set U .

An instance is a specific choice of 〈U ,F〉. If the given instance is a “yes” instance,
a witness is a choice of n/3 subsets from F . One can easily check in polynomial time
whether the n/3 subsets indeed cover U .

123

356 A. D. Procaccia et al.

Some of the problems in NP are known as NP-complete problems. Informally,
these are problems that are at least as hard as any problem in NP: if one NP-complete
problem can be solved efficiently, then any problem in NP can be solved efficiently.
Known algorithms that solve NP-complete problems precisely might require a num-
ber of computational steps that is exponential in the size of the input. Unfortunately,
exponential functions tend to grow at an alarming rate. For example, consider an algo-
rithm that executes 2n computational steps, where n is the size of the input; when
n = 400, this algorithm might require more than 10100 operations, which is signifi-
cantly more than the number of particles in the known universe. Even with computers
that are a 1,000 fold faster than today’s best supercomputers, such a computation
would run longer than the the current age of the universe. Furthermore, this is a trifle
compared to the time required to solve the problem when the size of the input is 500.

To prove that a problem is NP-complete, one must show that any problem in NP
can be reformulated as this problem. Formally:

Definition 2 Let A and B be two sets, which are associated with decision problems.
A function g from instances of A to instances of B is a polynomial reduction if and
only if g can always be calculated in polynomial time, and for all instances x of the
problem A:

x ∈ A ⇔ g(x) ∈ B.

If there exists such a function, we say that A reduces to B, and write A ≤p B.

Given that one knows how to reduce problem A into problem B, one can solve A
by translating it to B, and then solving B.

Definition 3 A problem B is NP-complete if and only if:

1. B ∈ NP .
2. NP-hardness: For all A ∈ NP , A ≤p B.

As literally thousands of problems are currently known to be NP-complete, the
most straightforward way to show that a problem is NP-complete is to provide a
reduction from some problem already known to be NP-complete; this is sufficient,
since a composition of reductions is also a reduction.

The problem X3C is intuitively difficult: there is no obvious way to avoid checking
many choices of n/3 subsets from F—and there is a large number of possibilities.
In this case, the intuition does not fail us; the following result is known (Garey and
Johnson 1979):

Lemma 1 X3C is NP-complete.

3 Proportional representation systems

Let the set of voters be V , and denote |V | = n; let the set of candidates be C , |C | = m.
We use i to index the voters, and j to index the candidates. Furthermore, assume that
k candidates are to be elected.

123

On the complexity of achieving proportional representation 357

We begin by specifying Monroe’s pure scheme (Monroe 1995). For each voter i
and candidate j , a misrepresentation value µi j is known; this value characterizes the
degree to which candidate j misrepresents voter i .

Let S = {S ⊆ C : |S| = k}. Let S ∈ S, and let fS : V → S be a function that
assigns voters to candidates in S. The misrepresentation score of voter i under fS is
µi fS(i). The total misrepresentation of assignment fS is

∑
i∈V µi fS(i).

Monroe requires that fS be restricted so that a similar number of voters is assigned
to each candidate in S. In other words, each candidate in S must be assigned at least
�n/k	 voters; we say that such an assignment is balanced. The misrepresentation score
of S is the misrepresentation score of fS , where fS : V → S is the assignment with
the minimal misrepresentation, subject to the above restriction. The k winners are the
set S ∈ S with the lowest misrepresentation score.

Chamberlin and Courant (1983) adopt a similar approach; as before, one consid-
ers sets S ∈ S and assignments fS . However, Chamberlin and Courant impose no
restrictions on the assignments. Therefore, each set S is associated with the assign-
ment fS : V → S that minimizes misrepresentation among all possible assignments.
In order to maintain proportionality, Chamberlin and Courant compensate by using
weighted voting in the assembly: if S was the winning set of candidates, and the func-
tion fS was the one that minimized misrepresentation, a candidate j ∈ S is given
weight | f −1

S (j)| in the assembly. For example, if a candidate was assigned two voters
by the assignment that minimized misrepresentation, this candidate’s weight in the
assembly is two. In other words, candidates that were assigned many candidates (i.e.,
faithfully represent many voters) have more power after the assembly has been seated.
However, for the purpose of winner selection, we consider the Chamberlin–Courant
scheme to be a simpler version of Monroe’s scheme, as the assignment fS need not
be balanced.

The misrepresentation values µi j may be naturally derived from ballots cast by the
electorate. Assume voters cast ordinal ballots, i.e., each voter ranks all candidates,
and denote by ri j the rank of candidate j on the ballot of voter i . In this setting, it is
reasonable to define µi j = ri j −1. Another possibility, which Monroe recommends, is
approval balloting: voters either approve or disapprove candidates, and may approve
as many candidates as they wish. The misrepresentation value µi j is 0 if i approves
j , and 1 otherwise.

4 Winner selection is intractable when the assembly is large

Before proceeding with a rigorous computational complexity analysis, we must for-
mulate the computational problems that we face.

Definition 4

1. In the Implementation problem, we are given the set of voters V , the set of can-
didates C , integers k, t ∈ N, and misrepresentation values µi j ∈ R

+. We are asked
whether there exists a subset S ⊆ C such that |S| = k, with misrepresentation at
most t .

123

358 A. D. Procaccia et al.

2. In the Winner-Selection problem, we are given the set of voters V , the set of
candidates C , and misrepresentation values µi j ∈ R

+. We must find a set of k
candidates S ∈ S that minimizes misrepresentation.

Keeping in mind the discussion in Sect. 3, these formulations are valid with respect
to both approaches mentioned: in Chamberlin and Courant’s scheme the misrepresen-
tation of a subset is the minimum over all assignments, while in Monroe’s scheme it
is the minimum over all balanced assignments.

Notice that the Implementation problem is formulated as a decision problem,
while Winner-Selection is formulated as an optimization problem. The two prob-
lems are strongly coupled, but one might prefer to formulate the decision version of
Winner-Selection as “given a set S, is it a winning set?” as in Bartholdi et al. (1989).
However, we note that Winner-Selection, as formulated in Definition 4, is at least
as hard as Implementation. Indeed, if one can solve the former efficiently, one can
also solve the latter. In more detail, if one can actually determine the winners, one
would know that the minimal possible misrepresentation is, say, t ′. This implies that
any instance of Implementation with t < t ′ is a “no” instance, while any instance
with t ≥ t ′ is a “yes” instance. Therefore, if we show that Implementation is NP-
hard, this would imply that it is impossible to solve the Winner-Selection problem
in polynomial time, other than if P = NP (and this is considered unlikely).

We shall presently prove that the Implementation problem is computationally
intractable in both schemes. We strengthen the result by limiting voters’ ballots to
approval—misrepresentation values are either 0 or 1.

Remark 1 The Implementation problem in Chamberlin and Courant’s Scheme is
closely related to the k- Median problem. The latter problem is defined as follows:
given a set F of m potential facilities, a set U of n users (or customers), a distance
function d : U × F → R, and an integer k ≤ m, determine which k facilities to
open so as to minimize the sum of the distances from each user to its closest open
facility. The connection to our problem is self-evident when one thinks of the facilities
as candidates, the users as voters, and the distances as misrepresentation values. Con-
sequently, the NP-hardness of the k- Median (Kariv and Hakimi 1979) entails the
NP-hardness of Implementation in the Chamberlin–Courant Scheme. However,
we prove that this holds even when the misrepresentation values are 0 or 1, and extend
the result to Monroe’s scheme (where the assignments must be balanced).

Theorem 1 The Implementation problem in the Monroe scheme and in the Cham-
berlin–Courant scheme is NP-complete, even with approval ballots.

Proof We must first show that the problem is in NP . Given a “yes” instance
〈V, C, {µi j }, k, t〉, it can be verified in polynomial time when a specific choice S
of k candidates, coupled with an assignment fS , are produced as a witness. One sim-
ply verifies that the misrepresentation of S with respect to fS is at most t . In the
Monroe scheme, it is also necessary to verify that fS is balanced.

We must show that any problem in NP can be reduced to Implementation in
the Chamberlin–Courant scheme or in the Monroe scheme, with approval ballots. It
is sufficient to exhibit a polynomial reduction from some NP-complete problem; we

123

On the complexity of achieving proportional representation 359

use X3C. We begin by showing how to transform an instance of the latter problem to
an instance of the former; this transformation is the reduction function.

We are given an instance 〈U ,F〉 of X3C. We associate each point i ∈ U with a voter
i ∈ V , and associate each set Fj ∈ F with a candidate j ∈ C . µi j = 0 (candidate j
is approved by voter i) if in the given instance of X3C it holds that i ∈ Fj ; otherwise
µi j = 1. This should make the association between sets in F and candidates apparent:
a candidate j is affiliated with the three voters i such that µi j = 0. Finally, we set
k = |V |/3. We ask whether there is S ⊂ C , such that |S| = k, with a misrepresentation
score of exactly 0. Notice that this reduction between problems can be carried out in
polynomial time.

It remains to show that an instance of X3C is a “yes” instance if and only if the
transformed instance is a “yes” instance of our problem. Assume an instance of the
former problem is a “yes” instance. Hence, there is a cover {Fj1, . . . , Fjk }. Observe
the set of candidates S = { j1, . . . , jk}; each candidate jl is approved by the three
voters associated with points in Fjl . These voters can be assigned to the candidate
jl ; it follows that their misrepresentation score is 0. In fact, each one of the voters
approves one of the candidates in S, as the union of the sets Fjl covers U , and hence
the total misrepresentation of S is 0. Note that the assignment that we have derived is
balanced, and thus is also valid in Monroe’s scheme. Indeed, it must hold that the sets
Fjl are disjoint, as otherwise |V |/3 sets of cardinality 3 cannot cover a set of size |V |.
It follows that exactly three voters are assigned to each candidate.

In the other direction, suppose that the transformed instance is a “yes” instance of
Implementation in the Chamberlin–Courant scheme, or in Monroe’s scheme. There
must exist a set of candidates S = { j1, . . . , jk} with misrepresentation 0. By similar
reasoning as before, the sets {Fj1, . . . , Fjk } associated with these candidates cover the
entire set U (as a point that is not covered corresponds to a voter who does not approve
any candidate, and so has misrepresentation 1).
�

5 Winner selection is tractable when the assembly is small

Our hardness results in the previous section relied on the implicit assumption that the
number of winners k grows with the number of voters and candidates. In this section,
we explore the scenario where the number of winners is constant—this is an addi-
tional property of the problem which is implicitly or explicitly assumed throughout
this section. In fact, we prove:

Theorem 2 When k is constant, Winner-Selection can be solved in time polyno-
mial in n and m, both in the Chamberlin–Courant scheme and in Monroe’s scheme.

It is quite straightforward that Winner-Selection in the Chamberlin–Courant
scheme can be solved efficiently. In this scheme, the misrepresentation value for each
S ∈ S can be easily calculated by assigning each voter i to argmin j∈Sµi j . Moreover,
it holds that

|S| =
(

m

k

)

= m!
k!(m − k)! .

123

360 A. D. Procaccia et al.

This is a polynomial in m when k is constant. For example, if k = 3,

|S| =
(

m

3

)

= m(m − 1)(m − 2)

6
≤ m3,

and in general |S| ≤ mk . To conclude the point, one can compute the misrepresen-
tation for every set in S using a number of operations that is polynomial in n and
m—assuming k is constant.

Solving Winner-Selection efficiently in Monroe’s scheme is far trickier. Natu-
rally, it still holds that S is polynomial in m. An algorithm that efficiently computes
the misrepresentation score of every S ∈ S entails, by similar reasoning as before, an
efficient method to select winners: one simply computes the misrepresentation for all
subsets in S and minimizes.

Unfortunately, computing the misrepresentation for a given S ∈ S in Monroe’s
scheme is not straightforward. It can be accomplished using integer programming,
but the solution suggested by Potthoff and Brams (1998) might be exponential in the
number of candidates. Monroe (1995) himself mentions a simple algorithm: at first,
each voter i is assigned to argmin j∈Sµi j . Then, the assignment is balanced by shifting
voters that “will suffer the least increase in misrepresentation from the shift.” Monroe
adds that “determining the proper order of shifting is more tedious” when k > 2, “but
the process is still straightforward.”

Although this algorithm is indeed suitable when k = 2, a simple interpretation is
not even guaranteed to terminate when k ≥ 3. For example, let S = {1, 2, 3}, and let
there be 3 voters. The misrepresentation values are: µi1 = 1, µi2 = µi3 = 0 for all i .
Suppose that the initial assignment assigns two voters to candidate 2 and one voter to
candidate 3. One of the voters assigned to candidate 2 must be shifted, and the total
misrepresentation remains the same if a voter is shifted to candidate 3. Now candidate
3 is assigned 2 voters instead of one, and a voter is shifted back to candidate 2. This
sequence of events is repeated infinitely.

We propose an efficient but somewhat more complicated method of solving the
problem: formulating it as a transportation problem. In this problem, there are n
sources and m destinations; each source has supply ai ∈ N and each destination has
demand b j ∈ N. For every i, j , there is a cost ci j for transporting one unit of commodity
from source i to destination j . The goal is to meet the demand of the destinations while
minimizing the total cost. We also require that sources transport only non-fractional
units of commodity.

In our case, given a set of k candidates S, we wish to find an optimal balanced
assignment. We create a source for each voter and a destination for each candidate.
The supply of each source is 1, and the demand of each destination is �n/k	. In addi-
tion, we set ci j = µi j . Finally, we add an additional destination m + 1 with demand
n − k�n/k	, and set for all i : ci,m+1 = min j µi j . If source i’s unit of utility was
transported to destination j in the solution, we say i was transported to j .

Lemma 2 Let O PT (S) be the cost of an optimal solution to the transportation prob-
lem induced by S, and let µ(S) be the misrepresentation of S (i.e., the misrepresentation
of the minimizing balanced fS). Then O PT (S) = µ(S).

123

On the complexity of achieving proportional representation 361

Proof We first show that µ(S) ≤ O PT (S). Indeed, a solution to the above trans-
portation problem induces a balanced assignment fS : V → S. For j = 1, . . . , m,
each voter i who was transported to j is assigned to candidate j . Finally, each voter
i who was transported to m + 1 is assigned to candidate argmin jµi j . The assignment
is clearly balanced, as each candidate j is assigned at least the �n/k	 sources who
were transported to j . Moreover, the misrepresentation of the assignment is exactly
the cost of the given solution. We conclude this direction by noting that, in particular,
the optimal solution to the transportation problem induces a balanced assignment with
misrepresentation that is at most as large as the solution’s cost.

In the other direction, we must prove that µ(S) ≥ O PT (S). It is sufficient to show
that any balanced assignment induces a solution to the transportation problem with
smaller or equal cost. Given a balanced assignment, for each candidate j arbitrarily
choose �n/k	 voters i who are assigned to j ; in the solution to the transportation
problem, transport these sources i to destination j . The total cost of these sources is
equal to the associated voters’ total misrepresentation under the balanced assignment.
Now, simply transport all other sources to destination m + 1. Since the cost of each
such source is min j µi j , these sources’ cost in the transportation problem is surely at
most their associated voters’ misrepresentation under the given assignment.
�

Lemma 2 implies that in order to find a minimal balanced assignment in polynomial
time, it is sufficient to create an instance of the transportation problem as described
above (which obviously takes polynomial time), and solve it. It is known that the
transportation problem can be solved in polynomial time, even when the supply and
demand values are integers and it is not possible to transport fractional units of com-
modity (as in our case), using network flow algorithms (Cormen et al. 2001). Thus,
the proof of Theorem 2 is completed.

6 Conclusion

The fact that the Winner-Selection problem in the Monroe and the Chamberlin–
Courant schemes is intractable strongly suggests that these schemes cannot be used in
practical settings. In the worst-case, computing the election results could take eons!
Viewed positively, this result implies that the integer programming formulation pro-
posed by Potthoff and Brams (1998) is in a sense optimal: one cannot hope to find
a polynomial-time solution, and different methods can be used to tackle integer pro-
grams with reasonable efficiency on average (although, of course, the solution might
still take exponential time in the worst-case). Another important aspect of this result
is that the type of ballots cast does not affect the complexity: the problem is hard even
when misrepresentation values are only 0 or 1.

Our hardness results depend on the number of winners growing with the num-
ber of voters and candidates. When the number of winners is small, it is possible to
select winners efficiently. This is straightforward in the Chamberlin–Courant scheme,
but is more difficult in the Monroe scheme, as the misrepresentation of sets is based
on balanced assignments. Our method finds a balanced assignment that minimizes
misrepresentation in polynomial time. We stress that integer programming cannot be
efficiently used in this setting. In fact, in the worst case the solution of an appropriate

123

362 A. D. Procaccia et al.

integer program (of the type proposed by Potthoff and Brams for large electorates)
could run exponentially long in the number of candidates, even if the number of win-
ners is constant.

Acknowledgments The authors would like to thank the anonymous referees for their detailed and helpful
comments, which in particular helped to greatly simplify the proofs in the paper. This work was partially
supported by grant #898/05 from the Israel Science Foundation.

References

Bartholdi J, Orlin J (1991) Single transferable vote resists strategic voting. Soc Choice Welf 8:341–354
Bartholdi J, Tovey CA, Trick MA (1989) The computational difficulty of manipulating an election. Soc

Choice Welf 6:227–241
Bartholdi J, Tovey CA, Trick MA (1989) Voting schemes for which it can be difficult to tell who won the

election. Soc Choice Welf 6:157–165
Brams SJ, Fishburn PC (2002) Voting procedures. In: Arrow KJ, Sen AK, Suzumura K (eds). Handbook of

social choice and welfare. (Chap. 4). North-Holland
Chamberlin JR, Courant PN (1983) Representative deliberations and representative decisions: Proportional

representation and the Borda rule. Am Polit Sci Rev 77(3):718–733
Conitzer V, Sandholm T (2002) Complexity of manipulating elections with few candidates. In: Proceedings

of the national conference on artificial intelligence. Edmonton, Canada, pp 314–319
Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms. (2nd edn) MIT Press
Garey M, Johnson D (1979) Computers and intractability: a guide to the theory of NP-completeness.

Freeman WH
Kariv O, Hakimi L (1979) An algorithmic approach to nework location problems. part ii: The p-medians.

SIAM J Appl Math 37(3):539–560
Monroe BL (1995) Fully proportional representation. Am Polit Sci Rev 89(4):925–940
Papadimitriou CH (1981) On the complexity of integer programming. J Assoc Comput Mach 28(4)
Papadimitriou CH (1994) Computational Complexity. Addison Wesley
Potthoff RF, Brams SJ (1998) Proportional representation: broadening the options. J Theor Polit 10(2)
Procaccia AD, Rosenschein JS (2007) Junta distributions and the average-case complexity of manipulating

elections. J Artif Intell Res 28:157–181
Sipser M (1996) Introduction to the theory of computation. Course Technology

123

	On the complexity of achieving proportional representation
	Abstract
	Introduction
	Computational complexity
	Proportional representation systems
	Winner selection is intractable when the assembly is large
	Winner selection is tractable when the assembly is small
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

