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Abstract. The vertex cover problem is a classic NP-complete problem for which
the best worst-case approximation ratio is roughly 2. In this paper, we use a col-
lection of simple reductions, each of which guarantees an approximation ratio of
3
2 , to find approximate vertex covers for a large collection of test graphs from
various sources. We explain these reductions and explore the interaction between
them. These reductions are extremely fast and even though they, by themselves
are not guaranteed to find a vertex cover, we manage to find a 3/2-approximate
vertex cover for every single graph in our large collection of test examples.

1 Introduction

The vertex cover problem is a classic problem in computer science and one of the first
NP-complete problems, [17, 11]. A vertex cover of a graph G = (V,E) is a subset of
the vertices, C ⊆ V , such that each edge e ∈ E has at least one endpoint in C. The
objective is to minimize the size of the vertex cover.

A simple greedy algorithm gives a 2-approximation for this problem [9]. In spite of
many attempts to design improved approximation algorithms for vertex cover [7, 18, 3,
13] the best known approximation ratio is 2 − θ( log log n

log n ) for a graph with n vertices
[14]. Minimum vertex cover NP-hard to approximate within any factor smaller than
1.36 [8] and many people believe that there does not exist an algorithm with a fixed
approximation ratio better than 2 [15, 10]. In recent years, much good work has been
done on the fixed parameter version of vertex cover, where, given a fixed parameter k
and a graph G with n vertices, we can find a vertex cover of size at most k in time
O(kn + 1.2832k), if such a vertex cover exists [2, 5, 20].

In this paper, we look at the classic vertex cover problem and take a different ap-
proach. We use a collection of simple reductions and allow reductions that don’t main-
tain optimality but only guarantee a worst case approximation ratio of 3/2. Each reduc-
tion has unique properties and utilizes various specific graph structures. We will look
both at the performance of specific reductions and at how they work in combinations.
By combining reductions that use fundamentally different properties of the graph, we
can get very beneficial interactions; these reductions create a scheme that is much more
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powerful than the sum of the individual methods. These interactions between different
reductions create both possibilities and difficulties that we will explore further.

To test these reductions, we collected all graphs we could find on the internet and
from previous works, and also generated graphs specially designed to be difficult for the
vertex cover problem. In principle, our reductions do not guarantee that we will find an
approximate vertex cover, however we managed to find a 3/2-approximate vertex cover
in several seconds for every single graph using only our reductions. For the graphs
where we know the size of the minimum vertex cover, the actual approximation ratio
was usually much lower than 3/2; in many cases the vertex cover we found was either
optimal or very close to optimal.

2 Graph Reductions

Our main approach is to use divide and conquer. The vertex cover problem is a hard
problem, but instead of tackling the whole graph at once, we try to find chinks in its
armor and solve it by breaking it into smaller and easier subproblems. For this approach
to work, we need the following lemma which states that by partitioning the graph and
carefully finding an approximate vertex cover for each part, we can combine them into
a feasible vertex cover for the whole graph with an approximation ratio equal to the
largest approximation ratio of the vertex covers for the subgraphs.

Lemma 1. Assume we have a graph G = (V,E) and a partition of the vertices V =
V1 ∪ V2 ∪ . . . ∪ Vk. Let Gi = (Vi, Ei) be the subgraph induced by Vi and suppose
that ∀i, Ei &= ∅. Also assume that for each Gi we have a vertex cover VCapprox

i with the
property that VCapprox = ∪iVCapprox

i is a vertex cover for G. Let VCopt be an optimal vertex
cover for G. Then: VCapprox

VCopt ≤ max
i

|VCapprox
i |

|VCopt ∩ Vi|
.

Proof. We have that VCapprox = ∪iVCapprox
i and since the vertex partition is disjoint,

|VCapprox| = | ∪i VCapprox
i | =

∑
i |VCapprox|. Since Ei &= ∅, |VCopt ∩ Vi| ≥ 1 for all i.

Then
|VCapprox|
|VCopt| =

| ∪i VCapprox
i |

| ∪i (VCopt ∩ Vi) |
=

∑
i |VCapprox

i |∑
i |VCopt ∩ Vi|

≤ max
i

|VCapprox
i |

|VCopt ∩ Vi|

This lemma implies that we can find an approximate vertex cover for a graph by
iteratively finding an approximate vertex cover for small sections of the original graph,
until hopefully we have an approximate vertex cover for the whole graph. The way we
will use this lemma is to iteratively break off small pieces of the graph. We are not
claiming that finding a vertex cover for each subproblem implies that we’ve found a
vertex cover of the whole graph. The lemma contains the additional restriction that the
union of the vertex covers of the subgraphs is a vertex cover for the whole graph.

Definition 1. An optimal graph reduction is a mapping from a graph G = (V,E) to
a graph G′ = (V ′, E′) with the property that if we have an optimal vertex cover for G′

then we can find an optimal vertex cover for the original graph G.
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Definition 2. A ρ-approximating graph reduction is a mapping from a graph G =
(V,E) to a graph G′ = (V ′, E′) such that if we have an optimal vertex cover for G′

then we can find a ρ-approximate vertex cover for G.

We will use optimal graph reductions and ρ-approximate graph reductions with ρ ≤ 3
2 .

An operation we will use extensively is a vertex contraction.

Definition 3. The contraction of a set of vertices v1, . . . , vk to a new vertex v is an
operation where we replace the vertices v1, . . . , vk with a new vertex v, delete all edges
between removed vertices and replace each edge (vi, u) with an edge (v, u). Then set
of vertices adjacent to v is the union of the vertices that were adjacent to v1, . . . , vk.

When we perform a vertex contraction, we replace multiple edges that might appear
with a single edge and encode information about the contracted vertices and adjacent
edges so that we can recreate them later to get the original graph.

2.1 Optimal Graph Reductions

Almost all the optimal graph reductions that we present in this section are well known
and have been used to simplify difficult graphs previously [1]. The exception to that rule
is the Extended Network Flow method, which is a simple yet powerful idea that to our
knowledge has not been used extensively before. For completeness we briefly explain
these reductions.

Zero- and One-degree Vertices

Claim. A vertex of degree zero is not in an optimal vertex cover.

Claim. Let u be a vertex of degree 1, and w be its neighbor. Then there is an optimal
vertex cover C such that w ∈ C and u &∈ C.

Degree-two Vertices

Claim. If there is a degree-two vertex u whose neighbors v and w are adjacent then
there is an optimal vertex cover that includes both v and w and not u.

Let u be a vertex of degree with v and w as adjacent neighbors. To cover the edge
(u, v), at least one of v or w must be in any vertex cover. By removing that vertex and
all adjacent edges, u becomes a degree-one vertex which means that there is an optimal
vertex cover that includes u and w but does not include u.

Claim. If there is a degree-two vertex u whose neighbors, v and w are non-adjacent,
we can find a new graph G′ by contracting the vertices u,v and w to a new vertex z.
Given a vertex cover for G′ with approximation ratio ρ, we can find a vertex cover for
the original graph G with the approximation ratio ρ. Specifically, if the vertex cover for
G′ is optimal then we can find an optimal vertex cover for G.

This idea of eliminating degree-two vertices was proposed in [5]. Any optimal vertex
cover of G will have at least one of the vertices and at most two. If there is just one of
them in the vertex cover then it must be vertex u. Otherwise if there are two vertices
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in the vertex cover then we can select v and w to be in the cover by the same argu-
ment as before. Let VCopt(G) be the optimal vertex cover for G. Then |VCopt(G)| =
|VCopt(G′)| + 1. If z is in the vertex cover for G′ then v and w will be in the vertex
cover for G, and if z is not in the vertex cover for G′ then only u will be in the vertex
cover for G. Since |VCopt(G)| = |VCopt(G′)| + 1, any approximation ratio for a vertex
cover of G′ holds for the vertex cover of G.

Network Flow. The vertex cover problem can be formulated as the following integer
program.

min
∑

i xi

s.t. xu + xv ≥ 1 ∀ (u, v) ∈ E

xi ∈ {0, 1} ∀ i ∈ V

By solving the linear programming relaxation of this problem we get a fractional so-
lution. Nemhauser and Trotter [19] showed that the solution of this linear program
can be used find a partial solution to the vertex cover problem. Given an optimal so-
lution x∗ to the linear programming relaxation, define P = {u ∈ V |xu > 0.5},
Q = {u ∈ V |xu = 0.5} and R = {u ∈ V |xu < 0.5}. We can show that there is
an optimal vertex cover that is a superset of P and disjoint from R. Hence we can solve
the linear programming relaxation of the vertex cover and remove all vertices that cor-
respond to solution variables with values not equal to 1/2. It is well known that this
problem can be solved as a network flow problem [16].

Extended Network Flow. One of the problems with the network flow algorithm is that
it tends to find solutions with many variables equal to 1/2, even when other solutions
exists with more variables either 0 or 1. In order to find as many non-half solution vari-
ables as possible, we first solve the network flow problem and remove all variables with
values not equal to 1/2. Then, using the optimal solution, we try to set each variable
with value 1/2 equal to 1 and resolve. If the objective value doesn’t change we keep
this new value and repeat for the remaining variables. Otherwise we set the value back
to 1/2 and try the next variable. The Extended Network Flow method works well in
practice on sparse graphs where the size of the optimal vertex cover is close to half the
number of vertices. To our knowledge, this approach has not been used previously. Our
implementation is based on a bipartite matching and unit capacity flow algorithm from
Andrew Goldberg’s Network Optimization Library [12, 6].

2.2 Approximating Graph Reductions

While the optimal reductions can find solutions to simple examples, they are usually
not enough to solve difficult graphs. We use approximating graph reductions to make
further progress. The approximate reductions in this section use Lemma 1 extensively.
We try to find a subgraph with certain properties, reduce this subgraph while ensuring
that all edges between this subgraph and the remaining graph are covered by our re-
duction. By Lemma 1 we can do this repeatedly and get an approximate solution to the
vertex cover problem with approximation ratio equal to the largest approximation ratio
of these reductions.
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Definition 4. Let G = (V,E) be a graph and let G′ be the graph obtained by contract-
ing of a set of vertices Vi ⊂ V to a new vertex z. If, given an optimal vertex cover of
G′, we can use the mapping of Vi to z to find a ρ-approximate vertex cover for G, then
we call z a ρ-approximated vertex. (We will sometimes drop the ρ) A regular vertex
is a vertex that is not an approximated vertex.

Approximated vertices can be very useful in some situations but in others they can cre-
ate difficulties. They are useful because they map a set of vertices to a single vertex and
yield a simpler graph with fewer vertices and edges. The difficulty is that we cannot use
them in further approximating reductions, although we can use approximated vertices
in optimal reductions. Due to this, we try to use reductions that create approximated
vertices only when necessary.

In Definition 4, we are using Lemma 1 when we find the ρ-approximate vertex
cover of the original graph G = (V,E) from the vertex cover of G′. Let z be the ρ-
approximated vertex in G′ and let V1 be the set of vertices in G that we contract to
z, and V2 = V \ V1. Let V C ′ be the vertex cover of G′ and V C2 = V C ′ ∩ V2. Let
V C1 be the cover of V1 that we can find by using the knowledge whether z is in V C ′

or not, while making sure that V C1 covers all edges with one or more endpoint in V1

that are not covered by V C2. Then by Lemma 1 and Definition 4, the vertex cover
V C = V C1 ∪ V C2 is a ρ-approximate vertex cover of G.

Degree-three Vertices. The idea for degree-three vertices is similar to the degree-two
vertices reduction. We find a degree-three vertex, u, with non-adjacent neighbors, v, w
and z, and contract them to a new vertex, q to get a new graph G′. This new vertex, q,
is a 3

2 -approximated vertex, so if we find an optimal vertex cover for this new graph,
we can determine which of u, v, w and z are in an 3

2 -approximate vertex cover for our
original graph.

Lemma 2. Let G = (V,E) be a graph and u ∈ V be a degree-three vertex with v, w
and z as neighbors, v, w and z are non-adjacent. Let G′ be a the graph we get by
contracting u, v, w and z to a new vertex q. Then, if VC∗ is an optimal vertex cover for
G′ then we can find a vertex cover VCapprox for G that is a 3

2 -approximation.

Proof. Let VC∗ be an optimal vertex cover for G′ and set VCapprox be the same as VC∗

for all vertices v ∈ V \ {u, v, w, z}. Now if q is not in VC∗ then every vertex in the
neighborhood of q must be in the vertex cover. Hence, every vertex in the neighborhoods
of v, w and z are in the vertex cover VCapprox and none of v, w or z need to be in the
vertex cover. However, we know that at least one of the vertices u, v, w or z must be in
the vertex cover, hence we can select u to be in the vertex cover VCapprox and by Lemma
1 this is an optimal vertex cover for G. If q is in VC∗ then at least one of q’s neighbors
is not in VC∗ so at least one of v, w or u must be in the vertex cover VCapprox. In that
case we would need at least two of u, v, w and z to be in VCapprox to cover the subgraph
induced by u, v, w and z. We can select v, w and z in the vertex cover VCapprox and get
a 3

2 -approximation for this subgraph. Hence by Lemma 1, if VC∗ is an optimal vertex
cover for G′ then VCapprox is a 3

2 -approximation of the optimal vertex cover for G.

This reduction removes four regular vertices and at least three edges from our graph
while creating one 3

2 -approximated vertex.
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Triangles

Claim. For any clique of size k, at least k − 1 of the vertices are in any vertex cover.

Claim. If the vertices v,u and w form a triangle, then we can include all three vertices
in a vertex cover for a 3

2 -approximation.
A triangle is a clique of size three, so at least two of the vertices must be in any
vertex cover. Hence if we include all three vertices in the vertex cover we get a 3

2 -
approximation. Removing a triangle removes three vertices from the graph along with
all adjacent edges. This has the nice property that it does not create any approximated
vertices.

Four-cycles. Assume we have a cordless cycle of length four with the vertices v1, v2, v3

and v4. For any cycle of length four, at least two of the vertices must be in a vertex cover
and the only way to get exactly two of the vertices in the vertex cover is to select the
opposite corners, i.e. either v1 and v3 or v2 and v4. Any other choice will give us at least
three of the vertices in the vertex cover. We use this property to get a 4

3 -approximate
reduction that removes four regular vertices and at least three edges from the graph, but
at the same time creates two new 4

3 -approximated vertices.

Lemma 3. Let G = (V,E) be a graph with v1, v2, v3 and v4 as a cordless cycle of
length four. Let G′ be a new graph where we contract v1 and v3 to a new vertex z1 and
contract v2 and v4 to a new vertex z2. Then if VC∗ is an optimal vertex cover for G′

then we can find a 4
3 -approximate vertex cover for G.

Proof. For any vertex cover of G, at least two of the vertices v1, . . . , v4 must be in the
cover. The only way to get exactly two of the vertices is to select either v1 and v3 or v2

and v4. Any other selection will have at least three of the vertices in the vertex cover.
In the graph G′, there is an edge between z1 and z2 so at least one of these vertices
must be in any vertex cover. If z1 ∈ VC∗ and z2 &∈ VC∗ then that corresponds to v1

and v3 being in the vertex cover for G. Since the remaining graphs of G′ and G are
the same, this vertex cover is optimal for G. Similarly if z2 ∈ VC∗ and z1 &∈ VC∗.
Then v2 and v4 will be in the vertex cover for G and we have an optimal vertex cover.
However, if both z1 and z2 are in the optimal vertex cover for G′ then at least three of
the vertices v1, . . . , v4 must be in the optimal vertex cover for G. In that case, we take
all four vertices in the cover and get a 4

3 -approximation.

Six-cycles. The idea for cycles of length six is the same as for cycles of length four. If
we have a cordless cycle of length six, we can replace it with only two vertices and get
a 3

2 -approximation. This reduction removes six regular vertices and at least five edges
from the graph, but creates two 3

2 -approximated vertices.

Lemma 4. Let v1, v2, . . . , v6 be a cycle of length six in G. Let G′ be a graph where
v1, v3 and v5 in G are contracted to a new vertex z1 and v2, v4 and v6 are contracted
to z2 while keeping all other vertices and edges the same. If VC∗ is an optimal vertex
cover for G′ then we can find a vertex cover VCapprox for G that is a 3

2 -approximation of
the optimal vertex cover.

The proof for this is almost identical to the proof to Lemma 3..
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2.3 Other Reductions

The crown reduction is an optimal reduction that was introduced by [1]. Here we try
to find an independent set of vertices S such that there exists a matching on the edges
connecting S and its neighborhood, N(S), that matches all the vertices in N(S). If we
can find such a set then we can take the neighborhood set in the vertex cover and none of
the vertices in the independent set. Abu Khzam et. al. [1] proved that this is an optimal
reduction. However, it is easy to show that this reduction is captured by the Extended
Network Flow method.

Greedily Decreasing the Vertex Cover. After we find an approximate vertex cover we
run a simple greedy algorithm to eliminate vertices from the vertex cover. We look at
each vertex in the cover and check if all its neighbors are also in the vertex cover. If that
is the case then we remove this vertex from the cover.

3 Order of Reductions
The reductions in previous section are all simple and straightforward. We can use them
in any order and given one input graph, applying them in different orders will give
different results. This creates some difficulties when we try to automate the reduction,
since the wrong choices can leave us in a dead end without any means of removing
approximated vertices, while a different approach might have solved the problem. The
greatest danger is in using 3-degree, 4-cycle and 6-cycle reductions since they leave
approximated vertices that cannot be used in further approximations. The extended net-
work flow and low degree reductions are optimal while the triangle elimination com-
pletely removes the vertices from the graph, so these methods are safe in the sense that
they do not leave any approximated vertices.

The triangle elimination proved to be very effective on almost all of the graphs but
it is also responsible for the largest approximation ratios. In many cases, just running
triangle elimination followed by the extended network flow method was enough to find
an approximate vertex cover, but often it was necessary to use multiple iterations of
several reductions to get a solution. One example of this is shown in Table 1. This table
shows the results of each iteration for the complement graph of the graph ‘s20.vc’ which
we created using Laura Sanchis’ graph generator (see Section 4). We show the number
of vertices and edges at the start of each iteration and how many vertices and edges each
reduction removes from the graph. In this case, the extended network flow method and
triangle elimination remove many edges which help create low degree vertices, which
are eliminated with low-degree methods. During the low-degree methods, the 2-degree
reduction creates more triangles, thus creating a cycle where we slowly but surely clear
all the vertices.

For a few graphs we had to use the 3-degree reduction or 4-cycle and 6-cycle reduc-
tion to create a way into the graph for the optimal methods or the triangle elimination.
One example of this is shown in Table 2. Here we are trying to find a vertex cover for
the complement graph of the graph ‘san400 0.9 1.clq’ [4]. The table shows how many
vertices and edges are at the start of each iteration, which reduction we used and how
many vertices and edges this reduction removed from the graph. In this example, the
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Table 1. Interaction between triangle elimination and low-degree reductions on the graph
‘s20.vc’. |V | and |E| are the number of vertices and edges at the start of each iteration while
∆V and ∆E show how many vertices and edges are removed from the graph

Method |V | |E| ∆V ∆E
Network flow 500 2000 3 17
Triangles 497 1983 147 1076
Low Degree 350 907 59 96
Triangles 291 811 24 205
Low Degree 267 606 54 67
Triangles 213 539 15 108
Low Degree 198 431 46 49
Triangles 152 382 21 139
Low Degree 131 243 50 57
Triangles 81 186 6 41
Low Degree 75 145 26 60
Triangles 49 85 3 11
Low Degree 46 74 33 50
Triangles 13 24 3 10
Low Degree 10 14 10 14
Finished 0 0 - -

Table 2. The complement graph of ‘san400 0.9 1.clq’. On the left we find a 3/2-approximate
vertex cover by using 3-degree reduction. On the right we use 4-cycle reduction instead. There
we get stuck and cannot finish

Method |V | |E| ∆V ∆E
Triangles 400 7980 348 7864
Low Degree 52 116 12 21
Triangles 40 95 3 18
Low Degree 37 77 2 3
3-Degree 35 74 15 27
Network Flow 20 47 20 47
Finished 0 0 - -

Method |V | |E| ∆V ∆E
Triangles 400 7980 348 7864
Low Degree 52 116 12 21
Triangles 40 95 3 18
Low Degree 37 77 2 3
4-cycle 35 74 10 17
6-cycle 25 57 4 5
Stuck 21 52 - -

three major reductions are not enough and we must use the 3-degree reduction to find a
way into the graph, if we use 4-cycle reduction instead we get stuck.

After much experimentation, we settled on using the following order of reductions
to automate the approximation process. We ran the extended network flow method,
triangle elimination and low-degree in a loop until we had found a solution or no im-
provements were made during an iteration. Then we ran 3-degree, 4-cycle and 6-cycle
reductions, stopping as soon as any one of them made some progress and returning to
the original loop. The stopping criteria is either having processed all the vertices from
the graph which gives us a vertex cover, or running 3-degree, 4-cycle and 6-cycle with-
out any improvements. In that case we stop and must use some other methods, such as
branch-and-bound, to get a solution. If we find a solution then the final step in the al-
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gorithm is to use a simple greedy algorithm to eliminate unnecessary vertices from the
cover. In our experiments we never had to resort to branch-and-bound, our algorithm
managed to solve every single graph we found.

4 Experiments and Results

We did an extensive search for datasets we could use for vertex cover and also gathered
all datasets we could find from previous works.

1. From the DIMACS website we took 78 graphs that were used as a challenge for
the MaxClique problem [4]. We also used the complement graphs for these graphs,
where we find the vertex cover for the complement graphs. These graphs are of
special interest since there is a direct connection between the optimal vertex cover
in a graph and the maximum clique in the complement graph.

2. From the DIMACS challenges we also obtained 60 graphs used as a benchmark for
the MinColor problem, along with the complement graphs.

3. Also from the DIMACS challenges, we found 5 additional benchmark graphs. We
also used the complement graphs.

4. sh2-3.dim and sh2-10.dim are graphs used in [1]. These graphs were obtained from
the biological data repositories NCBI and SWISS-PROT. We also used the comple-
ment graphs.

5. From [22] we found 4 small graphs used as a benchmark for vertex cover algo-
rithms. These graphs are of special interest because the optimal vertex cover is
known. We also tried the complement graphs.

6. We generated 32 graphs using Laura Sanchis’ graph generator [21]. These graphs
have 500 vertices each, with number of edges ranging from 2000 to 110, 000. We
split these graphs into three groups, with maximum clique sizes of 2,4 and 10. The
reason we focused more on graphs with small cliques is that the triangle elimination
is just too powerful on graphs with large cliques, leaving at most two vertices from a
clique of size greater than two. And not surprisingly, we also tried the complement
graphs of these generated graphs for additional 32 graphs.

We solved every one of these 362 graphs, finding a 3/2-approximate vertex
cover in under 5 minutes for each one. The running time for most of these graphs was
less than a second. Moreover, in only one case did we need to use any reduction other
than the extended network flow method, triangle elimination or low degree reduction.
In that case, a simple 3-degree reduction finished off the graph. The triangle elimination
is very powerful, on average it removed 88.78% of the vertices and 93.34% of the edges
from each graph. The extended network flow method removed on average 5.09% of the
vertices and 5.56% of the edges from each graph while low degree reductions averaged
6.12% of the vertices and 1.10% of the edges from each graph.

The experiments were run on a machine with 1.6GHz Intel Pentium 4 and 512MB
RAM. The largest running time we saw for the extended network flow method was
just under 4 minutes on the graph ’MANN a81.clq’ with 3, 321 vertices and 5, 506, 380
edges, even though it didn’t manage to remove anything from that graph. The largest
running time for the triangle elimination was 56 seconds on the same graph, removing
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every single vertex and all the edges. These running times are however largely related
to paging, for smaller graphs with less than 500, 000 edges, the running time for each
reduction was just a fraction of a second.

The MaxClique-Complement graphs are of special interest since many of them have
a known optimal solution. The vertices not in the vertex cover form an independent set,
which is a clique in the complement graph. Since we are trying to minimize the size of
the vertex cover, it’s equivalent to maximizing the clique size. Of the 75 MaxClique-
Complement graphs, we had optimal solutions to 48 of them. The average approxima-
tion ratio was 1.043 and the largest ratio was 1.459.

Since our reductions perform so well and we manage to find an approximate vertex
cover for every graph, we will only go into details about the most difficult and interest-
ing problems.

Worst approximation ratio: The graphs that had the worst approximation ratio were
the complement graphs of the MANN series. These graphs are made by Carlo Mannino
and they are a part of the Maximum Clique challenge on the DIMACS webpage. These
graphs are a clique formulation of the Steiner Triple Problem and they show how easy
it is to create graphs with approximation ratios close to 3/2. They include a large set of
independent triangles and the optimal vertex cover includes only two vertices from each
triangle while the triangle elimination includes all three vertices from each triangle.

The method of greedily decreasing the vertex cover after we have found a feasible
cover is very inconsistent. In the worst cases, it does not help at all while in one of
the best cases we manage to decrease the size of the vertex cover on a graph with 200
vertices from 198 vertices down to the optimal vertex cover of 142 vertices.

Most challenging problems: Some complement graphs of the ‘san200’ and ‘san400’
series from the DIMACS challenges were the most challenging, forcing us to use low
degree, triangle elimination and extended network flow to get a result while still having
approximation ratio over 1.2. The only graph where we had to use 3-degree reduction
is the complement graph of ‘san400 0.9 1.clq’. This is shown in Table 2.

Some graphs we generated using Laura Sanches’ graph generator showed very in-
teresting behavior. The triangle elimination and the extended network flow method re-
moved about half the vertices and then low degree elimination removed a few more.
We seemed to be stuck, the graph had a few 4 and 6-cycles, but if we reduced them we
couldn’t finish the graph completely since we then couldn’t eliminate the approximated
vertices that these reductions created. However, if we went back and forth between 2-
degree elimination and triangle elimination then slowly but surely we finished off the
whole graph. This is shown in Table 1.

Special bad case: Even though we managed to find an approximate vertex cover for
every graph we tested using only these simple methods, it’s easy to construct graphs
where our algorithm gets stuck. One example of such a graph, consisting of connected
5-cycles is shown in Figure 1. The only thing we can do in this case is to use 3-degree
reduction to decrease the size of this graph down from 45 vertices and 75 edges to a
reduced graph of 18 vertices and 48 edges. After that, we are stuck and must turn to
branch-and-bound or some other methods to get a solution. The graph in Figure 1 is a
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Fig. 1. A simple bad case

Table 3. Detailed performance on a small subset of the graphs

Name n m VCdec |V C| ENF n ENF m ENF time LD n LD m LD time T n T m T time
Max-Clique
brock800 3.clq 800 207333 4 794 0 0 0.161 2 1 0 798 207332 0.171
C4000.5.clq 4000 4000268 8 3989 0 0 13.734 4 3 0 3996 4000265 10.392
c-fat500-2.clq 500 9139 0 481 0 0 0.016 44 59 0 456 9080 0.005
johnson32-2-4.clq 496 107880 10 465 30 190 0.056 1 0 0 465 107690 0.101
MANN a81.clq 3321 5506380 2 3318 0 0 229.387 0 0 0 3321 5506380 55.991
p hat1500-2.clq 1500 568960 25 1473 0 0 0.639 3 1 0 1497 568959 0.722
Max-Clique Complement
C1000.9.clq(comp) 1000 49421 27 952 12 16 0.165 28 49 0 960 49356 0.045
hamming10-2.clq(comp) 1024 5120 0 512 1024 5120 0.004 0 0 0 0 0 0
keller6.clq(comp) 3361 1026582 29 3330 0 0 1.536 1 0 0 3360 1026582 0.318
MANN a45.clq(comp) 1035 1980 0 990 0 0 0.04 45 0 0 990 1980 0.002
Min-Color
DSJC1000.1.col 1000 49629 26 956 0 0 0.172 28 28 0 972 49601 0.081
flat1000 50 0.col 1000 245000 6 980 0 0 0.272 22 56 0 978 244944 0.294
le450 25a.col 450 8260 12 370 0 0 0.034 123 332 0 327 7928 0.01
R250.1.col 250 867 8 190 10 41 0.007 90 125 0 150 701 0
zeroin.i.2.col 211 3541 0 84 108 3342 0.003 79 1 0 24 198 0
Min-Color Complement
DSJR500.1c.col(comp) 500 3475 10 438 0 0 0.014 98 134 0 402 3341 0.001
R1000.5.col(comp) 1000 261233 186 808 0 0 0.343 10 12 0 990 261221 0.216
Sanchis’ generator
s17.vc 500 70000 124 375 0 0 0.059 2 1 0 498 69999 0.025
s20.vc 500 2000 18 337 3 17 0.07 278 393 0 219 1590 0.008
s22.vc 500 10000 16 454 0 0 0.04 56 82 0 444 9918 0.009
sh2 problems
sh2-3.dim.sh 839 5860 0 246 839 5860 0.006 0 0 0 0 0 0
sh2-10.dim.sh 839 129697 92 644 44 167 0.244 78 135 0 717 129395 0.149
sh2-10.dim.sh.pp 726 69982 54 529 101 11222 0.213 124 384 0.001 501 58376 0.091
VC benchmarks
vtx cov 3.gph 100 200 3 56 8 40 0.002 74 98 0.001 18 62 0

simple bad case, by combining graphs similar to this and making them larger we can
easily construct large graphs where the methods used here have little or no effect.

Table 3 shows how the reductions performed on a selected subset of the graphs. The
first column is the name of the graph, then we have the number of vertices and number
of edges. The next column shows by how much a simple greedy approach managed to
decrease the size of our vertex cover. Next is the size of the vertex cover we found. Then
we have the performance of the extended network flow method, triangle elimination and
low degree reductions. We show how many vertices and edges each method removed
from each graph, and the total time it took in seconds. This is only a small selection of
the results we have, due to space constraints we cannot show all our results here.

Looking at these results it is clear that for dense graphs (‘C4000.5.clq’,
‘MANN a81.clq’), the triangle elimination is very powerful, while the extended net-
work flow method works well on sparser graphs (‘hamming10-2.clq(comp)’, ‘ze-
roin.i.2.col’, ‘sh2-3.dim.sh’). The three largest graphs show an extreme case of how
the running time increases when the size of the graphs increases, the triangle elimi-
nation takes about 0.3 seconds on a graph with just over 1, 000, 000 edges while for
a graph with 4, 000, 000 edges this takes over 10 seconds and then up to 56 seconds
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on a graph with around 5, 500, 000 edges. Most of this time increase is due to the fact
that these largest graphs do not fit into memory so the performance of the algorithms
takes a hit. The time it takes to do low degree elimination is so small that it is hardly
measurable even though it is very helpful in some cases (‘s20.vc’).

5 Conclusions

simple reductions where we allowed reductions that have a worst case approximation
ratio of 3/2. Even though these reductions do not guarantee that we will find a solution,
we ran these reductions on a wide collection of test problems from every source we
could find and by combining them we managed to find an approximate vertex cover for
every single graph. Moreover, the reductions are extremely fast and easily applied, and
since the bad examples have a very restrictive structure, these reductions should work
well in practice.

To our knowledge, applying reductions that maintain a worst case guarantee has not
been widely studied. This approach should be applicable to other problems.
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