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Scope and  Purlmse---Given an area and its population units, we wish to divide the area into m districts such 
that each district has almost the same population of eligible voters (within a given tolerance), is contiguous, 
compact, and has a minimum number of split population units. This fair representation problem has been a great 
concern of the public for decades. The districting problem is also used in the design of sales territories. Re- 
districting occurs often because of population shifts or for political reasons. The purpose of this paper was to find 
a practical and automated operations research computer solution method for this problem. 

Abst rac t - -For  the political districting problem, I propose the following solution methodology: (a) use 
Lagrangian relaxation to determine the centres of the districts, then, (b) use the transportation technique to assign 
population units to centres, and finally, (c) resolve the splitting problem by solving a sequence of capacitated 
transportation problems. This method is applied to the problem of determining the provincial districts for the 
City of  Saskatoon, Canada, and the results are compared with the actual districting done in 1993 by the Electoral 
Boundaries Commission. Copyright © 1996 Elsevier Science Ltd 

1. I N T R O D U C T I O N  AND L I T E R A T U R E  R E V I E W  

Given an area, e.g. a province or a city, and its population units, e.g. subdivisions or census tracts, we 
wish to divide the area into m districts such that each district has almost the same population of eligible 
voters (within a given tolerance, e.g. 5%). In addition, it is desirable that a district consists of contiguous 
population units and to be compact (close to square or circle). Frequently, to obtain population parity 
within the tolerance, population units have to be split between two or more districts. However, to reduce 
the time-consuming task of actually splitting population units and the ensuing confusion of voters, this 
splitting is to be minimized. 

Political re-districting occurs frequently because of population shifts and because of political desires 
to change the total number of representatives. This problem is related to a problem in marketing called 
sales territory alignment. A computer method to solve political districting is desirable because (a) 
constructing districts with population parity within the tolerance and (b) keeping the number of split 
population units to a minimum are conflicting objectives which cannot be easily resolved manually. 

The main literature on this problem started with Hess et al. [ 1 ] who modelled it as a location-allocation 
problem, but due to the computational difficulty solved it by the following heuristic: (a) start with an 
arbitrary set of centres of districts (a set of population units), (b) use the transportation technique to 
allocate population units to the centres, where the demand for each population unit is its population of 
eligible voters, the supply of each centre is the population quota for each district, and the distance 
between a centre and a population unit is the square of the Euclidean distance between their centres of 
gravity, (c) assign any split population units to the centre supplying the largest fraction of its demand, and 
(d) calculate the centre of gravity of each derived district and resolve the transportation problem with 
these centres until convergence of centres occurs. 

Fleischmann and Paraschis [2] used a similar method, except for the following heuristic used to resolve 
the split population units in the solution of the transportation problem: (a) exclude the full and zero 
assignments, and identify the subtree F consisting of the split population units and their suppliers, (b) for 
each arc (ij) in F, determine if supplier i, after adjustment to any other demands of k with (i,k) in F, needs 
to supply to j  to remain within the tolerance, or if demand point j, after adjustment to any other suppliers 
k with (kj) in F, needs to obtain supplies from i. If the answer is yes to either of these two questions, then 
a (partial) assignment on (ij) is performed, and (c) if the answer to both questions in (b) for every arc 
(ij) in F is negative, then a full assignment is made on (ij) if the tolerance is not exceeded for supplier i. 

5" Mehran Hojati is associate professor of Management Science in the Department of Finance and Management Science of the 
College of Comerce at the University of  Saskatchewan. He received a Ph.D. in Management Science from the University of  
British Columbia. His research interests and publications are in the area of applications of Operations Research in networks and 
finance. 
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Thoreson and Liittschwager [3] used the following heuristic: (a) start with a reference population unit 
A, (b) find another population unit B furthest away from A, (c) build a district around B, including the 
closest population units to B until the district quota is just to be exceeded in which case include any 
contiguous population unit which will result in a population of eligible voters as close to the district quota 
as possible, (d) repeat with the furthest unassigned population unit B2 from A and build a district around 
B2, and (e) continue until all population units are assigned. 

Garfinkel and Nemhauser [4] used the following exact method: (a) construct all sets of potential 
districts which are contiguous, compact, and have a total electorate within the tolerance, and (b) use a set 
partitioning integer linear programming model to minimize the maximum deviation of any chosen district 
from the district quota. 

Among other heuristic methods which iteratively interchange population units between two districts 
are Bourjolly et al. [5] and Robertson [6]. Finally, Zoltners and Sinha [7] proposed a precedence network 
for population units to prevent discontiguity in districts. However, they assume that the centres of the 
districts are already fixed. 

My approach is similar to [1] and [2], with the following differences: (a) I propose the use of 
Lagrangian relaxation to determine the centres of the districts, and (b) to resolve the splitting problem I 
propose the use of a sequence of capacitated transportation problems which at each stage tries to force 
one more shipment in F to zero. These methods are tested by using data for the City of Saskatoon, and 
the results are compared with the actual districting done in 1993 for the provincial legislature. 

2. THE WAREHOUSE LOCATION MODEL 

A warehouse location model for districting can be formulated as follows: 

Let 
N=number of population units 
M=number of districts required 
Q~= number of eligible voters in population unit j (= demand of j) 
Q=district quotient (=sum of Q~ M) 

Xu=proportion of demand of population unit j  supplied by centre i (in population unit i). (N 2 varia- 
bles) 

c o' =square Euclidean distance from centre of population unit i to the centre of population unit j. This 
is similar to [1]. Other distance measures were also examined 

Cij=Ci/ X Qj 
Yi=indicator variable for population unit i: 

= 1 if population unit i is to be chosen as the centre of a district 
=0 otherwise. 

N N 

X crY0 (1) 
i = l  j = l  

Minimize 

Subject to: 
Demand: 

N 

E X0= 1 For eachj  (2) 
i=1 

Supply: 
N 

~, Q:flo=QYi For each i (3) 
j=l 

N 

Y. Y~=M (4) 
i=1 

X0--- Yi For each j, for each i 

0<-X0-< 1 For each pair i, j 

Y~=O or 1 For each i. 

Note that the population tolerance for each district is not used at this stage. 

(5) 

(6) 

(7) 
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3. THE LAGRANGIAN RELAXATION METHOD 

The procedure used here is a simplified version of that given in Beasley [8] who relaxes both the 
supply and the demand constraints. 

First, normalize (3) by dividing it by Q. Let sj and t~ be the multipliers associated with (2) and the 
normalized (3). The Lagrangian lower bound programme (LLBP) is: 

Minimize 

~ciyXij+ ~sj(1- ~Xij ~ ~ti[-Yi+ ~ (-~)X0] 
iffil j = l  j = l  i= l  i= l  j = t  

Subject to: (4)-(7). 
Defining 

LLBP becomes 

Minimize 
N N N N 

x x c,,x,j- ty,+ x sj (8) 
i= I jffi I i= j=  I 

Subject to: (4)-(7). 
If ¥~=0, then the contribution of X 0 and ¥~ to (8) is 0 (because X o will be set to 0 too), whereas if 11,.= 1, 
this contribution is given by 

N 

al= - t,+ X min(O,Cq) 
j = l  

because it is optimal to set X~j= 1 if C0--< >0, and X~.i=O if Cu>O. Therefore, LLBP reduces to 

Minimize 
74 N 

X aiYi+ 2 sj 
i=1 jffil 

Subject to: 
N 
Y, yi=M 
i ffi l 

Ya=O or 1 For each i. 

This zero/one programme can be solved by inspection as follows: Sort the a~ in ascending order and set 
Y~= 1 for the first M population units. Set Xq= 1 if Y~= 1 and C,~-<0, else set X0=0. Then, a valid lower 
bound on the optimal solution is given by 

N N 

ZLB= Y~ ay,.+ X sj. 
i= l  j = l  

The near-optimal values for t~, i= 1 . . . . .  N, and sj, j= 1 . . . . .  N, are determined iteratively by the following 
subgradlent optimization method: 

Let 
Zm., = maximum lower bound found 
Zm~=an upper bound for (1) (e.g. choose an arbitrary set of M centres, solve by the transportation 

technique, then set Zua=objective value) 
n = number of subgradient iterations since Z,.~ last increased 
f= step length parameter. 

Step 1. Initialize Zm~=- ~;  n=O;f=2; t;=O, i=1 . . . . .  N; sj=%,j= 1 . . . . .  N. 

Step 2. Solve LLBP with the current set of multipliers' and let the solution be Zte, (Yi), and (X0). If 
C~t |3:12-8 
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ZLS>Zm~, set n=0, and Zm~=7-q. B. Else, set n=n+ 1. 

Step 3. If n = 30, then 30 iterations of the subgradient procedure have been performed without an increase 
in Zm~. Hence, halve the step length parameterfby settingf=fl2 and set n=0. Use the solution Zta, (Yi) 
and (Xo) corresponding to the best lower bound Zm~ obtained so far. 

Step 4. Calculate the subgradients G~ and Hi using 

N 

G 2 = l -  E X  o j = l  . . . . .  N 
i=l 

and 

Step 5. If 
j = l  i=1 

G 2+ ~ /-/~ =0 or f<O.O05, go to Step 7. 

Step 6. Define the step size T by 

Update the Lagrange multipliers using 

and go to Step 2. 

Step 7. Solve the solution (Yt) 

i=1 . . . . .  N 

T= ~)(7--,us - ZLs) 

j= l iffil 

si=sj+TG j j = l  . . . . .  N 

ti=ti+THi i=1 ..... N 

associated with the current maximum lower bound Zm~ using a 
transportation technique. Terminate. 

4. RESOLVING THE SPLITS 

After determining the centres of districts by Lagrangian relaxation and solving the district composition 
problem by the transportation technique, the solution obtained will have at most m -  1 population units 
which are split between two or more districts. 

Lemma 1. The solution of the transportation technique will have at most m - l split population units. 

Proof. Because there are at most m+N-  1 basic cells in this solution, at most m -  1 demand points 
(population units) can have two or more cells in their associated columns, leaving at least N - m +  1 

O 

Fig. 1. The two-pertition reduction to (SRP) used in the proof of Lemma 2. 
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Table 1. Population units (PU), number of 
eligible voters (I 993), and the coordinates 

of centres of population units 

PU Voters X coordinate Y coordinate 

I 4880 11.5 1.5 
2 2350 10.5 2.5 
3 3445 10 I 
4 3455 8 1.5 
5 4020 7.5 3 
6 4550 4 3.5 
7 3090 5 5 
8 2990 5 6 
9 3315 3 5 
10 2665 2 5 
11 1205 7 5.5 
12 2330 8 5.5 
13 3440 7.5 4.5 
14 4585 9 4 
15 2635 11.5 3.5 
16 2365 10.5 4 
17 2235 11.5 5 
18 4050 13 5 
19 3205 14.5 5 
20 2605 13 3.5 
21 5155 13 2 
22 3670 15 2.5 
23 3070 12 7.5 
24 3835 13.5 7 
25 1725 15 7.5 
26 505 13 9 
27 3475 9.5 5.5 
28 3950 8.5 7 
29 1255 7 6.5 
30 2665 6 6 
31 2615 4 7 
32 2630 2 6 
33 3825 2 7 
34 2510 3 8.5 
35 2150 5 8 
36 3110 6 7.5 
37 3480 7 8.5 
38 3120 8 9 
39 3920 10 10 
40 3540 II I1 
41 3310 10.5 11.5 
42 3935 10.5 12.5 

.42 

38  4 0  

34  23 25  

~~31 
32 35 17 

6 3 

Fig. 3. The op t im~  solution to the transportation problem; suppl ie~ are hold-faced; each supplier supplies i s  
own population unit (not shown). 
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1098 

~ 3 2 0  

%: 
1695 449 

~ ~ 7 ~  ~ " - - - - " ~ ) ~ 8 0  / 8 7 2  
2705 ~ "  

Fig. 4. The F subtree corresponding to the split population units in ~e solution of Fig. 3. 

columns having exactly one basic cell. This is because 2(m - 1)+(N-  m+ 1)=N+m - 1. If a population 
unit is split among more than two districts, then the number of split population units will be less than 
m - l . I  

The split-resolution problem (SRP) can be formulated as follows: 

Let 
(xu)= solution of the transportation technique (in number of eligible voters not proportion) 

J '  = set of split population units 
I' = set of centres adjacent to any split area 
F=the graph with vertex set I' UJ '  and the above adjacency [a forest since (x~j) is a basic solution] 

U~=set of vertices adjacent to vertex v of F 
Am~,=Q(1 +tolerance), tolerance, e.g., =0.05 
Amin = Q(1 - tolerance) 

a~= size of district i without split population units. 

Min. number of arcs (ij) in F with xu>0 

Subject to: 

E xu=Qj j i n J '  
iEuJ 

Amin<--a,+ ~, xu<--Am~ i in 1' (SRP) 
jGu~ 

X~--~O i in I ' , j in J'. 

Lemma 2. (SRP) is NP-hard. 

Proof We will reduce the NP-complete two-partition problem to (SRP). Given n real numbers B~, B2 . . . . .  
B,, the two-partition problem asks if there is a set S C { 1 . . . . .  n } such that 

j E S  

This problem is equivalent to a (SRP) with total number of suppliers in F=2n, supplier si having 
Ama x -ai=Bi, and Amin- ai=Bi, i= 1 . . . . .  n; supplier s,.' having A m -a~=B i, and Ami.- a~=O, i= 1 . . . . .  n; 
demand point d i having Qj=Bj, j= 1 . . . . .  n, and demand point d having demand 

Qd= ~. B/2 
i= I 

and the relationship as depicted in Fig. 1. • 
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(SRP) can be formulated as a zero/one integer linear programme. Fleischmann and Paraschis [2] used the 
following heuristic to solve a problem which is equivalent to (SRP): 
(a) For any arc (i,j) in F, an obligatory partial assignment xo= 8 o takes place if 

80=max(8,,~) > 0 

where 

~1 = Qj  - ~, (Amax - ah) 
h G Uj~,'i 

~=Amin-ai- ~" Qk . 
k ~ UiJ~j 

Then, ai and Qj are updated by a,=ai+x o and Q j = Q j - x  0, and another arc (k,/) is examined. 
(b) If for every arc (ij) in F, 8o-----0, then an arbitrary full assignment can take place for any arc (i,]) 

if ai+Qj<-Am,~. After this, repeat steps (a) (some 8# may become positive) and (b) until all arcs are 
assigned. 

The application of Fleischmann and Paraschis heuristic may not reduce the number of arcs in F with 

COST 

s33 

s33e 

s9 

s9e 

s8 

s8e 

s37 

s37e 

s41 

s41e 

s12 

s12e 

s5 

s5e 

s16 

s16e 

s18 

s18e 

s24 

s24e 

s21 

s21e 

dl0 d7 d36 d39 d28 d13 d14 d15 

.00000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 s33 

.00000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 s33e 

.00000 .00000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 s9 

.00000 .00000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 s9e 

9.0000 .00000 .00000 9.0000 9.0000 9.0000 9.0000 9.0000 s8 

9.0000 .00000 .00000 9.0000 9.0000 9.0000 9.0000 9.0000 s8e 

9.0000 9.0000 .00000 .00000 .00000 9.0000 9.0000 9.0000 s37 

9.0000 9.0000 .00000 .00000 .00000 9.0000 9.0000 9.0000 s37e 

9.0000 9.0000 9.0000 .00000 9.0000 9.0000 9.0000 9.0000 s41 

9.0000 9.0000 9.0000 .00000 9.0000 9.0000 9.0000 9.0000 s41e 

9.0000 9.0000 9.0000 9.0000 .00000 .00000 9.0000 9.0000 s12 

9.0000 9.0000 9.0000 9.0000 .00000 .00000 9.0000 9.0000 s12e 

9.0000 9.0000 9.0000 9.0000 9 0000 .00000 .00000 9.0000 s5 

9.0000 9.0000 9.0000 9.0000 9 0000 .00000 .00000 9.0000 s5e 

9.0000 9.0000 9.0000 9.0000 9 0000 9.0000 .00000 .00000 s16 

9.0000 9.0000 9.0000 9.0000 9 0000 9.0000 .00000 .00000 s16e 

9.0000 9.0000 9.0000 9.0000 9 0000 9.0000 9.0000 .00000 s18 

9.0000 9.0000 9.0000 9.0000 9 0000 9.0000 9.0000 .00000 s18e 

9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 s24 

9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 s24e 

9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 s21 

9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 9.0000 s21e 

DEMAND 2665.0 3090.0 3110.0 3920.0 3950.0 3440.0 4585.0 2635.0 DEMAND 

COST dl0 d7 d36 d39 d28 d13 d14 d15 

Fig. 5. C o n t i n u e d o v e d e ~  
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COST d19 d22 DD 

s33 9.0000 9.0000 9.0000 

s33e 9.0000 9.0000 .00000 

s9 9.0000 9.0000 9.0000 

sge 9.0000 9.0000 .00000 

s8 9.0000 9.0000 9.0000 

s8e 9.0000 9.0000 .00000 

s37 9.0000 9.0000 9.0000 

s37e 9.0000 9.0000 .00000 

s41 9.0000 9.0000 9.0000 

s41e 9.0000 9.0000 .00000 

s12 9.0000 9.0000 9.0000 

s12e 9.0000 9.0000 .00000 

s5 9.0000 9.0000 9.0000 

s5e 9.0000 9.0000 .00000 

s16 9.0000 9.0000 9.0000 

s16e 9.0000 9.0000 .00000 

s18 .00000 .00000 9.0000 

s18e .00000 .00000 .00000 

s24 .00000 9.0000 9.0000 

s24e .00000 9.0000 .00000 

s21 9.0000 .00000 9.0000 

s21e 9.0000 .00000 .00000 

DEMAND 3205.0 3670.0 6545.0 

COST d19 d22 DD 

Fig. 5. The capacitated transportation model for F (arc capacities not shown). 

SUPPLY 

.00000 

915.00 

3449 0 

1190 0 

2211 0 

1190 0 

4712 0 

1190 0 

503.00 

1190 0 

4319 0 

1190 0 

3796 0 

1190 0 

3156 0 

1190 0 

2416 0 

1190 0 

2161 0 

1190 0 

1277 0 

1190 0 

SUPPLY 

x~j>0, as will be seen in Section 6. Therefore, I propose the following heuristic for (SRP). 

s33 

s33e 

s9 

s9e 

s8 

s8e 

s37 

s37e 

s41 

s41e 

s12 

s12e 

s5 

s5e 

s16 

s16e 

s18 

s18e 

s24 

s24e 

s21 

s21e 

DEMAND 

(a) Identify all arcs (id) in F with 8u--<0, and call this set NA. These arc will always have a positive 
flow in them. 

(b) Give all arcs in F an infinite capacity. 
(c) Choose an arc (i,]) in F not in NA, set its capacity to zero, and solve a capacitated transportation 

problem as described below. 
(d) If the problem obtained is feasible, go to next step; else reset the capacity of (id) back to infinity 

and continue. 
(e) Choose another arc (k,/) in F not in NA, set its capacity to zero, and solve the capacitated 

transportation problem. Repeat as in (d) until all arcs in F not in NA are examined. 

5. THE CAPACITATED TRANSPORTATION PROBLEM 

The following formulation is similar to that given by Marlin [9], who used it to solve a (servicemen) 
districting problem with fixed district centers. Note that Marlin did not solve the split area problem. To 
represent the split resolution problem (which has a minimum and a maximum for each supplier) as a 
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1128 

O 3110 

2792 

1881 
263~ 

~161 

1372 

Fig. 6. The F subtme resulting from my heuristic. 

transportation problem, we divide the shipments of a supplier i into two types: regular shipments x~j which 
is part of the minimum supply Ami, - ai, and the extra shipments ~ (if needed, upto a total of Am,~ - Ami,). 
Therefore, for each supplier si, we introduce a duplicate supplier ~. Also, in addition to all demand points 
J', we introduce a dummy demand point DD to receive any extra shipments ~ which is not shipped to 
any demand point in J ' .  Demand of DD is equal to (number of suppliers in F)(Ama~ -Ami,)12. 

Let 
xu= shipment from si to dj to satisfy (part of) Ami n -a~ 
~ =  shipment from s,'. to d r 

~.oo=shipment from s7 to DD 
co=9 if (ij) not in F (any positive cost will work) 

=0 if (ij) in F 
c~=9 if (ij) not in F 

=0 if (id) in F o r j=DD 

Minimize ~: c/:~.~+ ~ c~+ 2 c~,oo 
iGl'j~J' iEl'jeJ'  iel' 

1693 

O 
)15 

1750 1391 

2290 

820 

;64 

3667 

1956 

:161 

Fig. 7. The F subtree resulting from Fleischmann and Paraschis heuristic. 
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34 38 
23 ~ ~-31 

~32 35 ( ~  ~ )  17, 

2 9 ~  20 

x/4 1 ~ 
6 3 

Fig. 8. The final solution (after split resolution heuristic). 

Subject to: 

5; 
i¢l'~eJ' 

xo+ 2 ~=Qj  For each j in J' 
i~l'd~J" 

5; X~iaav=ll'l X (Am~ -Amin)/2 
i¢l' 

x / j = A m i n  - ai For each i in I' 
jGJ" 

5; f fq+ff i ,Do----Amax--Ami a For each i in I' jEJ' 

Each cell's shipment is capacitated. 

6. AN APPLICATION 

The City of Saskatoon is to be partitioned into 11 provincial constituencies (districts). The population 
units were chosen to be census tracts, see Statistics Canada [10]. A census tract is generally a local 
community of population between 1000 to 5000 residents. The 42 census tracts were numbered 
population unit 1 to 42 as shown in Fig. 2. 

The number of eligible voters in each census tract was obtained by summing all age groups 20 years 
or older residing in the tract from [10], and the city was grided horizontally and vertically to determine 
the coordinates of the centres of each census tract, see Table 1. 

Then, the square Euclidean distance between all centres were computed, and all data were input to a 
computer programme which performed the Lagrangian relaxation method. The solution i.e. centres of 
districts, after 35 min on a 486 personal computer, in terms of population unit numbers is: 

5, 8, 9, 12, 16, 18, 21, 24, 33, 37, and 41. 

Then, a transportation software was used with the above centres as suppliers each having a capacity of 
Q= 130 865/11 = 11 896.8, demands as given in Table 1, and square Euclidean distances. The optimal 
solution is displayed in Fig. 3. 

Next, the split resolving method was used. The F subtree corresponding to split population units in the 
above solution and their split shipments are displayed in Fig. 4. The first ¢apacitated transportation model 
to solve the split problem is displayed in Fig. 5. Note the tolerance was 5% or 595 voters. 

Applying Fleischmann's 80 results in Step (a) identified the following arcs (the set NA): 



1158 Mehran H0jati 

J 

il 
u 

u 

o. 

t~ 

e~ 

¢- 

o4 

J 

.r'- 

c~ 

Z 

m ~ --.7. 
O 

O% 

J 



Optimal political districting 1159 

g 

J 

o 

GI 

. c .D  

a m o "e~ 

~$ .sZ.~ ~ 

I I "~ ~ ; ~  
~ ~aml.s,~og 

I ~, ~ o 

• ̂ ¥  8mua ' j  . 

o 

v ~  

r / 2  

2 
e~ 

- s  

c5 

< 

o 



1160 Mehran  Hojati 

(s9,dl0), (s9,d7), (s37,d39), (s41,d39), (s12,d28), (s12,d13), 
(s5,d14), (sl6,dl4), (sl6,dl5), (s18,d22), (s24,d19), (s21,d22). 

Finally, the capacitated transportation model was repeatedly solved as follows (feasible has the objective 
value=0, infeasible has objective value>0): 

Iteration Capacity=0 Result 
1 (s33,d10) feasible 
2 (s8,a"/) infeasible (reset capacity=~) 
3 (s36,d8) feasible 
4 (s37,d36) infeasible (reset capacity = ~)  
5 (s37,d28) feasible 
6 (s5,d13) infeasible (reset capacity=oo) 
7 (s18,d15) feasible 
8 (s18,d19) infeasible (reset capacity=~) 

The F subtree has now changed to that displayed in Fig. 6. The number of split population units has 
been decreased by four, which happens to be the optimal solution to (SRP) in this ease. In contrast, the 
Fleischmann and Paraschis heuristic results in a solution (see Fig. 7) with no elimination of arcs of F. 

The final solution including the full assignments and those assignments given by my heuristic in Fig. 
6 is displayed in Fig. 8. This solution is displayed in terms of city area in Fig. 9. The actual constituencies 
determined by the Electoral Boundaries Commission [11] are displayed in Fig. 10. 

The following statistics compare the two solutions: 

My Solution Actual Solution 
Maximum deviation from quotient 5% 
Compactness measure 15 
No. of discontiguous districts 1 
No. of split areas 6 

where compactness is measured as 

of district i. 

1% 
20 
0 
17 

IL~- W~l, L~=maximum length of district i, Wt=maximum width 
i=l 

7. C O N C L U S I O N  

For the political districting problem I have proposed the following three-step solution methodology: (a) 
use Lagrangian relaxation to determine the centres of the districts, then, (b) use the transportation 
technique to assign population units to centres, and finally, (c) resolve the splitting problem by solving 
a sequence of capacitated transportation problems. The contributions of this paper are, (i) the use of 
Lagrangian relaxation to determine the centres of districts in the districting problem is new, and (ii), the 
use of a sequence of capacitated transportation problems to resolve the split area problem is also new. 

As can be seen in Section 6, this three-step method is efficient and practical. It resulted in more 
compact districts and considerably less split areas (6) than the actual districts implemented (17). Compact 
areas are more convenient for the voters and the elected representatives in terms of travelling distances. 
A smaller number of split areas would mean reduced administrative costs in terms of record keeping and 
organisation of the district. Furthermore, our method needs a minimum number of manual intervention 
and is least affected by local politics. 
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